什么叫内应力,该如何消除内应力

合集下载

消除工件内应力的热处理方法

消除工件内应力的热处理方法

消除工件内应力的热处理方法1. 内应力是什么?内应力,听起来是不是很专业?其实就是工件在制造过程中,由于各种原因,比如冷却速度不均匀、加工过程中的变形等,导致的内部压力。

这就像一个人被压得喘不过气来,心里总是有种不舒服的感觉,时不时还得爆发一下。

工件也一样,如果内应力得不到处理,可能会在使用中出现裂纹,或者直接导致失败。

哎,这可真是让人心疼啊!所以,咱们今天要聊聊,怎么通过热处理来消除这些“隐形”的内应力。

别担心,不会让你觉得枯燥无味,我会用轻松幽默的方式,把这些技术性内容讲得简单明了。

准备好了吗?2. 热处理的原理2.1 加热和冷却首先,热处理的核心在于“加热”和“冷却”。

就像你在冬天想喝热汤一样,先把水加热,然后再让它慢慢冷却。

工件也是如此,通过加热到一定温度,让金属内部的分子运动起来,打破那种沉闷的内应力。

想象一下,金属的分子就像聚在一起的小伙伴,热了一下,大家都开始蹦跶,内应力自然就被“舞动”给消除了一部分。

不过,这个过程可不能马虎,冷却速度也要控制好。

有些材料需要慢慢降温,像是给它们一个温柔的拥抱,而有些则可以快速冷却,犹如给它们来个猛然的“冷水浴”。

不同的工件、不同的材料,处理方式也各有千秋,真是让人琢磨不透!2.2 热处理的类型说到热处理,种类可多了,咱们最常见的有退火、正火、淬火和回火。

听起来很复杂,其实就像点菜一样,各有各的特色。

退火:简单来说,就是把工件加热到一定温度,保持一段时间,然后缓慢冷却。

就像给工件一个大大的安慰,让它放松心情,内应力自然就消失得无影无踪。

正火:这个有点像“火锅”,把工件放在高温中,然后再在空气中冷却。

能提高它的力学性能,让工件“练出一身好本领”。

淬火:别小看这个名字,淬火可是个狠角色!加热后迅速冷却,强大的冷却速度让内应力瞬间消失,但这也会让工件变得脆弱,需要再来一次回火,才能让它强壮起来。

3. 热处理的好处3.1 提高性能那么,热处理的好处有哪些呢?首先,它能显著提高工件的力学性能。

内应力的产生及消除方法

内应力的产生及消除方法

内应力得产生及消除ﻫ所谓应力,就是指单位面积里物体所受得力,它强调得就是物体内部得受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力得应力;物体在不受外力作用得情况下,内部固有得应力叫内应力,它就是由于物体内部各部分发生不均匀得塑性变形而产生得、按照内应力作用得范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成得宏观范围内得内应力;(二)第二类内应力(微观内应力),即物体得各晶粒或亚晶粒(自然界中,绝大多数固体物质都就是晶体)之间不均匀得变形而产生得晶粒或亚晶粒间得内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成得内应力,它就是变形物体(被破坏物体)中最主要得内应力、塑料内应力就是指在塑料熔融加工过程中由于受到大分子链得取向与冷却收缩等因素而响而产生得一种内在应力、内应力得实质为大分子链在熔融加工过程中形成得不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应得平衡构象,这种不平衡构象得实质为一种可逆得高弹形变,而冻结得高弹形变平时以位能形式贮存在塑料制品中,在适宜得条件下,这种被迫得不稳定得构象将向自由得稳定得构象转化,位能转变为动能而释放、当大分子链间得作用力与相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象、ﻫ几乎所有塑料制品都会不同程度地存在内应力,尤其就是塑料注射制品得内应力更为明显、内应力得存在不仅使塑料制品在贮存与使用过程中出现翘曲变形与开裂,也影响塑料制品得力学性能,光学性能,电学性能及外观质量、为此,必须找出内应力产生得原因及消除内应力得办法,最大程度地降低塑料制品内部得应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品得力学1热学等性能、塑料内应力产生得原因ﻫ产生内应力得原因有很多,如塑料熔体在加工过程中受到较强得剪切作用,加工中存在得取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力得产生、依引起内应力得原因不同,可将内应力分成如下几类、ﻫ(1)取向内应力ﻫ取向内应力就是塑料熔体在流动充模与保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生得一种内应力、取向应力产生得具体过程为:*近流道壁得熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向得取向、取向得大分子链冻结在塑料制品内也就意味着其中存在未松弛得可逆高弹形变,所以说取向应力就就是大分子链从取向构象力图过渡到无取向构象得内力、用热处理得方法,可降低或消除塑料制品内得取向应力、ﻫ塑料制品得取向内应力分布为从制品得表层到内层越来越小,并呈抛物线变化、2(ﻫ)冷却内应力ﻫ冷却内应力就是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生得一种内应力、尤其就是对厚壁塑料制品,塑料制品得外层首先冷却凝固收缩,其内层可能还就是热熔体,这徉芯层就会限制表层得收缩,导致芯层处于压应力状态,而表层处于拉应力状态、ﻫ塑料制品冷却内应力得分布为从制品得表层到内层越来越大,并也呈抛物线变化、、ﻫ另外,带金属嵌件得塑料制品,由于金属与塑料得热胀系数相差较大,容易形成收缩不一均匀得内应力、ﻫ除上述两种主要内应力外,还有以下几种内应力:对于结晶塑料制品而言,其制品内部各部位得结晶结构与结晶度不同也会产生内应力、另外还有构型内应力及脱模内应力等,只就是其内应力听占比重都很小、ﻫ影响塑料内应力产生得因素(1)分子链得刚性分子链刚性越大,熔体粘度越高,聚合物分子链活动性差,因而对于发生得可逆高弹形变恢复性差,易产生残余内应力口例如,一些分子链中含有苯环得聚合物,如PC,PPO,PPS等,其相应制品得内应力偏大、(2)分子链得极性一分子链得极性越大,分子间相互吸引得作用力越大,从而使分子间相互移动困难增大,恢复可逆弹性形变得程度减小,导致残余内应力大、例如,一些分子链中含有羰基,酯基,睛基等极性基团得塑料品种,其相应制品得内应力较大、(3)取代基团得位阻效应大分子侧基取代基团得体积越大,则妨碍大分子链自由运动导致残余内应力加大、例如,聚苯乙烯取代基团得苯基体积较大,因而聚苯乙烯制品得内应力较大、几种常见聚合物得内应力大小顺序如下:ﻫPPO>PSF>PC〉ABS>PA6>PP>HDPE塑料内应力得降低与分散(1)原料配方设计1)选取分子量大,分子量分布窄得树脂聚合物分子量越大,大分子链间作用力与缠结程度增加,其制品抗应力开裂能力较强;聚合物分子量分布越宽,其中低分子量成分越大,容易首先形成微观撕裂,造成应力集中,便制品开裂、ﻫ2)选取杂质含量低得树脂聚合物内得杂质即就是应力得集中体,又会降低塑料得原有强度,应将杂质含量减少到最低程度、ﻫ3)共混改性易出现应力开裂得树脂与适宜得其它树脂共混,可降低内应力得存在程度、ﻫ例如,在PC中混入适量PS,PS呈近似珠粒状分散于PC连续相中,可使内应力沿球面分散缓解并阻止裂纹扩展,从而达到降低内应力得目得、再如,在PC中混入适量PE ,PE球粒外沿可形成封闭得空化区,也可适当降低内应力、4ﻫ)增强改性ﻫ用增强纤维进行增强改性,可以降低制品得内应力,这就是因为纤维缠结了很多大分子链,从而提高应力开裂能力、例如,30%GFPC得耐应力开裂能力比纯PC提高6倍之多、ﻫ5)成核改性ﻫ在结晶性塑料中加入适宜得成核剂,可以在其制品中形成许多小得球晶,使内应力降低并得到分散、2(ﻫ)成型加工条件得控制在塑料制品得成型过程中,凡就是能减小制品中聚合物分子取向得成型因素都能够降低取向应力;凡就是能使制品中聚合物均匀冷却得工艺条件都能降低冷却内应力;凡有助于塑料制品脱模得加工方法都有利于降低脱模内应力、对内应力影响较大得加工条件主要有如下几种、①料筒温度ﻫ较高得料筒温度有利于取向应力得降低,这就是因为在较高得料筒温度,熔体塑化均匀,粘度下降,流动性增加,在熔体充满型腔过程中,分子取向作用小,因而取向应力较小、而在较低料筒温度下,熔体粘度较高,充模过程中分子取向较多,冷却定型后残余内应力则较大、但就是,料筒温度太高也不好,太高容易造成冷却不充分,脱模时易造成变形,虽然取向应力减小,但冷却应力与脱模应力反而增大、②模具温度ﻫ模具温度得高低对取向内应力与冷却内应力得影响都很大、一方面,模具温度过低,会造成冷却加快,易使冷却不均匀而引起收缩上得较大差异,从而增大冷却内应力;另一方面,模具温度过低,熔体进入模其后,温度下降加快,熔体粘度增加迅速,造成在高粘度下充模,形成取向应力得程度明显加大、ﻫ模温对塑料结晶影响很大,模温越高,越有利于晶粒堆砌紧密,晶体内部得缺陷减小或消除,从而减少内应力、ﻫ另外,对于不同厚度塑料制品,其模温要求不同、对于厚壁制品其模温要适当高一些、以PC为例,其内应力大小与模具温度得关系如表5-5所示、ﻫ③注射压力注射压力高,熔体充模过程中所受剪切作用力大,产生取向应力得机会也较大、因此,为了降低取向应力与消除脱模应力,应适当降低注射压力、、以PC为例,其内应力大小与注射压力得关系如表5-6所示、、ﻫ④保压压力保压压力对塑料制品内应力得影响大于注射压力得影响、在保压阶段,随着熔体温度得降低,熔体粘度迅速增加,此时若施以高压,必然导致分子链得强迫取向,从而形成更大得取向应力、⑤注射速度ﻫ注射速度越快,越容易造成分子链得取向程度增加,从而引起更大得取向应力、但注射速度过低,塑料熔体进入模腔后,可能先后分层而形成熔化痕,产生应力集中线,易产生应力开裂、所以注射速度以适中为宜、最好采用变速注射,在速度逐渐减小下结束充模、⑥保压时间ﻫ保压时间越长,会增大塑料熔体得剪切作用,从而产生更大得弹性形变,冻结更多得取向应力、所以,取向应力随保压时间延长与补料量增加而显著增大、⑦开模残余压力ﻫ应适当调整注射压力与保压时间,使开模时模内得残余压力接近于大气压力,从而避免产生更大得脱模内应力、(3)塑料制品得热处理ﻫ塑料制品得热处理就是指将成型制品在一定温度下停留一段时间而消除内应力得方法、热处理就是消除塑料制品内取向应力得最好方法、ﻫ对于高聚物分子链得刚性较大,玻璃化温度较高得注塑件;对壁厚较大与带金属嵌件得制件;对使用温度范围较宽与尺寸精度要求较高得制件;时内应力较大而又不易自消得制件以及经过机械加工得制件都必须进行热处理、对制件进行热处理,可以使高聚物分子由不平衡构象向平衡构象转变,使强迫冻结得处于不稳定得高弹形变获得能量而进行热松弛,从而降低或基本消除内应力、常采用得热处理温度高于制件使用温度10~20℃或低于热变形温度5~10℃、热处理时间取决于塑料种类,制件厚度,热处理温度与注塑条件、一般厚度得制件,热处理1~2小时即可,随着制件厚度增大,热处理时间应适当延长、提高热处理温度与延长热处理时间具有相似得效果,但温度得效果更明显些、ﻫ热处理方法就是将制件放入水,甘油,矿物油,乙二醇与液体石蜡等液体介质中,或放入空气循环烘箱中加热到指定温度,并在该温度下停留一定时间,然后缓慢冷却到室温、实验表明,脱模后得制件立即进行热处理,对降低内应力,改善制件性能得效果更明显、此外,提高模具温度,延长制件在模内冷却时间,脱模后进行保温处理都有类似热处理得作用、尽管热处理就是降低制件内应力得有效办法之一,但热处理通常只能将内应力降低到制件使用条件允许得范围,很难完全消除内应力、对PC制件进行较长时间得热处理时,PC分子链有可能进行有序得重排,甚至结晶,从而降低冲击韧性,使缺口冲击强度降低、因而,不应把热处理作为降低制件内应力得唯一措施、(4)塑料制品得设计①塑料制品得形状与尺寸在具体设计塑料制品时,为了有效地分散内应力,应遵循这样得原则:制品外形应尽可能保持连续性,避免锐角,直角,缺口及突然扩大或缩小、ﻫ对于塑料制品得边缘处应设计成圆角,其中内圆角半径应大于相邻两壁中薄者厚度得70%以上;外圆角半径则根据制品形状而确定、对于壁厚相差较大得部位,因冷却速度不同,易产生冷却内应力及取向内应力、因此,应设计成壁厚尽可能均匀得制件,如必须壁厚不均匀,则要进行壁厚差异得渐变过渡、ﻫ②合理设计金属嵌件ﻫ塑料与金属得热膨胀系数相差5~10倍,因而带金属嵌件得塑料制品在冷却时,两者形成得收缩程度不同,因塑料得收缩比较大而紧紧抱住金属嵌件,在嵌件周围得塑料内层受压应力,而外层受拉应力作用,产生应力集中现象、在具体设汁嵌件时,应注意如下几点,以帮助减小或消除内应力、a、尽可能选择塑料件作为嵌件、b、尽可能选择与塑料热膨胀系数相差小得金属材料做嵌件材料,如铝,铝合金及铜等、ﻫc、在金属嵌件上涂覆一层橡胶或聚氨酯弹性缓冲层,并保证成型时涂覆层不熔化,可降低两者收缩差、ﻫd、对金属嵌件进行表面脱脂化处理,可以防止油脂加速制品得应力开裂、ﻫe、金属嵌件进行适当得预热处理、f、金属嵌件周围塑料得厚度要充足、例如,嵌件外径为D,嵌件周围塑料厚度为h,则对铝嵌件塑料厚度h≥0、8D;对于铜嵌件,塑料厚度h≥0、9 D、ﻫg、金属嵌件应设计成圆滑形状,最好带精致得滚花纹、③塑料制品上孔得设计ﻫ塑料制品上孔得形状,孔数及孔得位置都会对内应力集中程度产生很大得影响、ﻫ为避免应力开裂,切忌在塑料制品上开设棱形,矩形,方形或多边形孔、应尽可能开设圆形孔,其中椭圆形孔得效果最好,并应使椭圆形孔得长轴平行于外力作用方向、如开设圆孔,可增开等直径得工艺圆孔,并使相邻两圆孔得中心连接线平行于外力作用方向,这样可以取得与椭圆孔相似得效果;还有一种方法,即在圆孔周围开设对称得槽孔,以分散内应力、(5)塑料模具得设计在设计塑料模具时,浇注系统与冷却系统对塑料制品得内应力影响较大,在具体设计时应注意如下几点、①浇口尺寸ﻫ过大得浇口将需要较长得保压补料时间,在降温过程中得补料流动必定会冻结更多得取向应力,尤其就是在补填冷料时,将给浇口附近造成很大得内应力、ﻫ适当缩小浇口尺寸,可缩短保压补料时间,降低浇口凝封时模内压力,从而降低取向应力、但过小得浇口将导致充模时间延长,造成制品缺料、ﻫ②浇口得位置浇口得位置决定厂塑料熔体在模腔内得流动情况,流动距离与流动方向、、当浇口设在制品壁厚最大部位时,可适当降低注射压力,保压压力及保压时间,有利于降低取向应力、当浇口设在薄壁部位时,宜适当增加浇口处得壁厚,以降低浇口附近得取向应力、熔体在模腔内流动距离越长,产生取向应力得几率越大、为此,对于壁厚,长流程且面积较大得塑料件,应适当分布多个浇口,能有效地降低取向应力,防止翘曲变形、ﻫ另外,由于浇口附近为内、应力多发地带,可在浇口附近设汁成护耳式浇日,使内应力产生在护耳中,脱模后切除内应力较大得护耳,可降低塑料制品内得内应力、③流道得设计ﻫ设计短而粗得流道,可减小熔体得压力损失与温度降,相应降低注射压力与冷却速度,从而降低取向应力与冷却压力、ﻫ④冷却系统得设计冷却水道得分布要合理,使浇口附近,远离浇口区,壁厚处,壁薄处都得到均匀且缓慢得冷却,从而降低内应力,ﻫ⑤顶出系统得设计要设计适当得脱模锥度,较高得型芯光洁度与较大面积得顶出部位,以防止强行脱模产生脱模应力、ﻫ检查塑料件得应力得方法主要就是溶剂浸渍法、用冰醋酸浸30s,晾干,发白处即就是应力集中处、应力大时塑料会开裂,裂纹越多表示应力越大、也可以浸2rain,裂纹更深更明显、ﻫ可以用甲乙酮与丙酮1:1得混合液浸15s,来代替冰醋酸浸渍、ﻫ消除应力得方法有加热法,即在65~70℃下烘4h、小件可以用25%得丙酮水溶液浸泡30rain来消除应力、应力太大时,这两种方法均无效,零件不能电镀。

单片机原理实验 内应力

单片机原理实验 内应力

单片机原理实验内应力内应力是指材料内部的应力状态,通常由外部加载产生。

在单片机原理实验中,我们经常会遇到内应力的影响,尤其是在材料选择、设计和制造过程中。

本文将探讨内应力对单片机原理实验的影响,并提出相应的解决方案。

内应力可能会导致材料的变形和破坏。

在单片机原理实验中,我们经常需要使用各种材料来制作电路板、外壳等零部件。

如果材料内部存在较大的内应力,当受到外部加载时,材料可能会发生变形或破裂,从而影响实验结果的准确性和可靠性。

因此,在选择材料时,需要考虑其内应力状态,尽量选择内应力较小的材料,或者采取相应的处理措施来降低内应力。

内应力还可能影响材料的机械性能。

在单片机原理实验中,我们经常需要使用材料来制作传感器、执行器等功能部件。

如果材料内部存在较大的内应力,可能会导致材料的硬度、强度等机械性能下降,从而影响实验设备的性能和稳定性。

因此,在设计和制造零部件时,需要充分考虑材料的内应力状态,确保材料具有良好的机械性能。

内应力还可能影响材料的电气性能。

在单片机原理实验中,我们经常需要使用材料来制作电子元件、线路板等电路部件。

如果材料内部存在较大的内应力,可能会导致电子元件的电阻、电容等电气性能发生变化,从而影响实验结果的准确性和可靠性。

因此,在设计和制造电路部件时,需要充分考虑材料的内应力状态,确保电路部件具有良好的电气性能。

内应力是单片机原理实验中需要重点关注的一个问题。

在材料选择、设计和制造过程中,需要充分考虑材料的内应力状态,采取相应的措施来降低内应力的影响。

只有这样,才能保证实验设备的性能和稳定性,确保实验结果的准确性和可靠性。

希望本文能为单片机原理实验中内应力问题的解决提供一些参考和帮助。

材料内应力的概念以及危害

材料内应力的概念以及危害

材料内应力的概念以及危害材料内应力的概念以及危害材料是指构成产品的各种物质,它们通过物理或化学的方法加工成所需要的形状。

在材料制造过程中,材料内部受到的力会形成内应力。

本文将探讨材料内应力的概念以及危害。

一、材料内应力的概念材料内应力被定义为材料内部存在的惯性等效的力作用。

这些力相互平衡,从而导致物体处于静止状态。

材料内应力是由于材料中的几何失调、材料成分不均匀、合金的热膨胀系数不同等原因引起的。

材料内应力通常有以下三种类型:1.拉伸和压缩应力;2.剪切应力;3.扭转应力。

二、材料内应力的危害材料内应力的形成是材料制造过程中不可避免的现象。

然而,如果不采取适当的措施加以解决,材料内应力可能会给材料和产品带来一系列的危害。

以下是一些常见的危害:1.材料和产品的失效材料内应力过大会影响到材料的性能,从而导致材料和产品失效。

例如,内部应力过大会导致材料脆性增加或导致材料开裂,使得材料产生显著的变形。

2.产品质量不稳定产品含有内部应力,会导致产品的形状,尺寸和表面质量不稳定,导致产品质量问题。

3.生产成本增加材料内应力会对产品的加工和成型有不良影响,导致生产出的产品质量下降甚至报废,从而增加生产成本。

4.安全隐患材料内应力过大会导致材料的破坏,在某些情况下,可能导致严重的安全事故。

三、材料内应力的解决方法解决材料内应力问题的方法包括以下几种:1.热处理通过热处理,可以改善内部应力,促进材料的晶粒生长,从而降低材料内应力。

2.表面处理表面处理可以通过冲压、抛光以及电解抛光等方法消除材料表面产生的内部应力。

3.选择合适的加工方法选择合适的加工方法可以减少材料的应力集中,从而降低内部应力的发生。

总之,材料内应力虽然是材料制造过程中不可避免的问题,但我们可以通过以正确的方式处理它,从而避免或减少它的危害。

树脂固化时体积收缩内应力的本质及消除途径

树脂固化时体积收缩内应力的本质及消除途径

树脂固化时体积收缩内应力的本质及消除途径树脂固化时产生的体积收缩和内应力是由于固化过程中发生的分子间结合或化学反应导致材料体积变化,从而产生内部应力的结果。

在实际应用中,树脂的体积收缩和内应力会对制品的形状稳定性、机械性能、尺寸精度等产生负面影响。

因此,如何有效消除树脂固化过程中的体积收缩和内应力对于提高制品质量和性能至关重要。

一、体积收缩和内应力的本质1.1树脂固化时的体积收缩树脂固化时的体积收缩是指固化后树脂材料的体积减小的现象。

体积收缩通常发生在树脂发生聚合反应或交联反应的过程中。

在聚合或交联过程中,分子间的结合会导致分子之间的距离变短,从而导致整体体积的减小。

不同种类的树脂,其固化时的体积收缩量也会有所不同。

1.2固化后产生的内应力固化后产生的内应力是由于树脂固化时的体积收缩所产生的。

这些内部应力会对材料的结构和性能产生影响,例如会导致材料的变形、开裂或者影响材料的强度等。

二、体积收缩和内应力的消除途径针对树脂固化时的体积收缩和内应力问题,可以通过以下途径来进行有效的消除。

2.1选择低收缩树脂选择低体积收缩的树脂是最直接的方法来减少树脂固化时的体积收缩和内应力。

例如,聚氨酯树脂通常具有较低的体积收缩率,因此在一些对体积稳定性要求较高的应用中会选择聚氨酯树脂作为替代材料。

还可以通过改变树脂中的固化剂配方或者添加特定的填料来减少固化时的体积收缩。

2.2控制固化温度和时间控制固化温度和时间是另一种有效的手段来减少树脂固化时的体积收缩和内应力。

合理的固化温度和时间可以有效地减少体积收缩的程度,从而降低内部应力的产生。

采用缓慢固化的方式也可以降低体积收缩和内部应力的产生。

2.3使用补偿材料在一些对体积稳定性要求较高的应用中,可以采用补偿材料来抵消树脂固化时的体积收缩和内应力。

例如,在铸造过程中,可以采用较硬的模具材料来抵消树脂固化时的体积收缩和内应力。

还可以在树脂材料中添加特定的辅助材料或者使用复合材料的方式来降低体积收缩和内应力。

聚合物内应力产生与解决办法

聚合物内应力产生与解决办法

聚合物内应力的产生及消除一、内应力产生在注塑制品中,各处局部应力状态是不同的,制品变形程度将决定于应力分布。

如果制品在冷却时。

存在温度梯度,则这类应力会发展,所以这类应力又称为“成型应力”。

注塑制品的内应力包两种:一种是注塑制品成型应力,另一种是温度应力。

当熔体进入温度较低的模具时,靠近模腔壁的熔体讯速地冷却而固化,于是分子链段被“冻结”。

由于凝固的聚合物层,导热性很差,在制品厚度方向上产生较大的温度梯度。

制品心部凝固相当缓慢,以致于当浇口封闭时,制品中心的熔体单元还未凝固,这时注塑机又无法对冷却收缩进行补料。

这样制品内部收缩作用与硬皮层作用方向是相反的;心部处于静态拉伸而表层则处于静态压缩。

在熔体充模流动时,除了有体积收缩效应引起的应力外。

还有因流道,浇口出口的膨胀效应而引起的应力;前一种效应引起的应力与熔体流动方向有关,后者由于出口膨胀效应将引起在垂直于流动方向应力作用。

二、影响残余应力的工艺因素(1)向应力的影响在速冷条件下,取向会导致聚合物内应力的形成。

由于聚合物熔体的粘度高,内应力不能很快松驰,影响制品的物理性能和尺寸稳定性。

各参数对取向应力的影响a熔体温度,熔体温度高,粘度低,剪切应力降低取向度减小;另一方面由于熔体温度高会使应力松驰加快,促使解取向能力加强。

可是在不改变注塑机压力的情况下,模腔压力会增大,强剪切作用又导致取向应力的提高。

b在喷嘴封闭以前,延长保压时间,会导致取向应力增加。

c提高注射压力或保压压力,会增大取向应力,d模具温度高可保证制品缓慢冷却,起到解取向作用。

e增加制品厚度使取向应力降低,因为厚壁制品冷却时慢,粘度提高慢,应力松驰过程的时间长,所以取向应力小。

(2)温度对应力的影响如上所述由于在充模时熔体和型壁之间温度梯度很大,先凝固的外层熔体要助止后凝固的内层熔体的收缩,结果在外层产生压应力(收缩应力),内层产生拉应力(取向应力)。

如果充模后又在保压压力的作用下持续较长时间,聚合物熔体又补入模腔中,使模腔压力提高,此压力会改变由于温度不均而产生的内应力。

内应力的产生及消除方法

内应力的产生及消除方法

内应力的产生及消除方法内应力是指物体内部各部分之间以及各个分子之间产生的相互作用力。

内应力的产生主要是由于物体的形状变化或外部作用力的影响,而内应力的消除可以通过物体的形状恢复或有效地去除外部作用力来实现。

下面将详细介绍内应力的产生及消除方法。

一、内应力的产生1.形状变化:当物体的形状发生变化时,内部各部分之间的相互作用力会发生变化,产生内应力。

例如,当拉伸金属丝时,金属丝内部的晶格结构发生变形,使金属丝受到拉伸内应力。

2.外部作用力:当物体受到外部作用力时,外部作用力在物体内部传递,使内部各部分之间产生相互作用力,产生内应力。

例如,当压缩弹簧时,弹簧内部的分子间相互作用力增大,产生压缩内应力。

3.温度变化:当物体受到温度变化时,物体的形状会产生变化,分子之间的相互作用力也会发生变化,从而产生内应力。

例如,当金属材料受到高温热膨胀时,内部分子间的相互作用力会增大,产生热膨胀内应力。

二、内应力的消除方法1.形状恢复:通过改变物体的形状,使内部各部分之间的相互作用力恢复到原始状态,从而消除内应力。

例如,当金属材料受到变形时,可以通过加工、锻造等方法来恢复其原始形状并消除内应力。

2.降低外部作用力:减小物体受到的外部作用力,从而减小内部各部分之间的相互作用力,进而消除内应力。

例如,当弹簧受到压缩时,可以减小外部作用力来消除内应力。

3.控制温度变化:通过控制物体所处的温度,使其形状保持稳定,从而减小内应力。

例如,在制造金属制品时,可以控制金属材料的加热和冷却过程,以避免或减小温度变化引起的内应力。

4.应力放松:通过在物体上施加一个与内应力相反方向的应力来消除内应力。

例如,当金属材料受到弯曲后,可以施加相反方向的拉伸力来消除内应力。

5.材料选择:选择具有较小内应力的材料来制造物体,从而减小内应力的产生。

例如,选择材料的热膨胀系数较小的特性,可以减小温度变化引起的内应力。

综上所述,内应力的产生主要是由于物体的形状变化或外部作用力的影响。

内应力

内应力

内应力注塑过程会产生内应力会带来很多影响,下面就系统谈下内应力。

1、关于称谓通常的定义“内应力是塑料在成型加工的过程中高分子链段受到强迫高弹形变后趋于回复的一种力量”并不完全。

其实内应力是指熔融树脂在冷却过程中会由于热效应/取向效应带来的内部应力,但我们理解其时候不要仅仅理解其为静止的应力,它其实伴随着缩水,变形等动态现象,大家可以理解它为内应力效应。

2、关于影响内应力在塑胶产品中或多或少一定都有,它带来的影响有:缩水缺陷,变形缺陷,真空泡缺陷,分层缺陷,应力开裂缺陷(特别是有金属嵌件的开裂,烤漆电镀时的开裂,天气变化变冷时候的开裂,尖角开裂),粘模缺陷,起皮缺陷等。

3、内应力的成因及分类。

大体上内应力分为3类。

3.1冻结应力。

由于“喷泉流动”的原因,正常熔体最外层其分子链被强制拉直且紧贴模腔壁冷却,这层冷固层大约0.05~~0.2mm厚,依据剪切力和模具温度不同而不同,这种被强制拉直的状态不是高分子链的本来状态,是不稳定的。

这层是致密的,密度最高,但其取向并不严重。

3.2 取向应力。

冷固了的停止流动的凝固层与中心热的芯部形成速度剪刀差,高的速度梯度下形成了高取向层,这层厚度比凝固层后,取向更大,回复趋势更明显。

3.3 体积应变应力。

热的芯部慢慢收缩,形成低密度的芯部,而外部的密度相对较高,密度不同带来了应力差异。

这样,外层是压应力,内层是拉应力,这种拉压的趋势产生了巨大的应力。

4、各种不同机理应力的缺陷果。

4.1冻结应力对应的缺陷<=>应力开裂;4.2取向应力对应的缺陷<=>变形,起皮,分层;4.3 体积应变应力对应的缺陷<=>收缩,真空泡,脱模裂;5、消除措施。

了解到上述原因,消除措施也就简单了。

5.1冻结应力的消除。

就是高模温低剪切。

也就是高模温低射速而已。

5.2取向应力的消除。

就是低射速低剪切。

5.3体积应变应力的消除。

低的内压就可以了,就是饱和度低点,也就是保压小点短点。

内应力

内应力

内应力的产生及消除所谓应力,是指单位面积里物体所受的力,它强调的是物体内部的受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力的应力;物体在不受外力作用的情况下,内部固有的应力叫内应力,它是由于物体内部各部分发生不均匀的塑性变形而产生的.按照内应力作用的范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成的宏观范围内的内应力;(二)第二类内应力(微观内应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的内应力,它是变形物体(被破坏物体)中最主要的内应力.塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力.内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放.当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象.几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显.内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能,光学性能,电学性能及外观质量.为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能.塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生.依引起内应力的原因不同,可将内应力分成如下几类.(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力.取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向.取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力.用热处理的方法,可降低或消除塑料制品内的取向应力.塑料制品的取向内应力分布为从制品的表层到内层越来越小,并呈抛物线变化.(2)冷却内应力冷却内应力是塑料制品在熔融加工过程中因冷却定型时收缩不均匀而产生的一种内应力.尤其是对厚壁塑料制品,塑料制品的外层首先冷却凝固收缩,其内层可能还是热熔体,这徉芯层就会限制表层的收缩,导致芯层处于压应力状态,而表层处于拉应力状态.塑料制品冷却内应力的分布为从制品的表层到内层越来越大,并也呈抛物线变化.. 另外,带金属嵌件的塑料制品,由于金属与塑料的热胀系数相差较大,容易形成收缩不一均匀的内应力.除上述两种主要内应力外,还有以下几种内应力:对于结晶塑料制品而言,其制品内部各部位的结晶结构和结晶度不同也会产生内应力.另外还有构型内应.力及脱模内应力等,只是其内应力听占比重都很小.影响塑料内应力产生的因素(1)分子链的刚性分子链刚性越大,熔体粘度越高,聚合物分子链活动性差,因而对于发生的可逆高弹形变恢复性差,易产生残余内应力口例如,一些分子链中含有苯环的聚合物,如PC,PPO,PPS等,其相应制品的内应力偏大.(2)分子链的极性一分子链的极性越大,分子间相互吸引的作用力越大,从而使分子间相互移动困难增大,恢复可逆弹性形变的程度减小,导致残余内应力大.例如,一些分子链中含有羰基,酯基,睛基等极性基团的塑料品种,其相应制品的内应力较大.(3)取代基团的位阻效应大分子侧基取代基团的体积越大,则妨碍大分子链自由运动导致残余内应力加大.例如,聚苯乙烯取代基团的苯基体积较大,因而聚苯乙烯制品的内应力较大.几种常见聚合物的内应力大小顺序如下:PPO>PSF>PC>ABS>PA6>PP>HDPE塑料内应力的降低与分散(1)原料配方设计1)选取分子量大,分子量分布窄的树脂聚合物分子量越大,大分子链间作用力和缠结程度增加,其制品抗应力开裂能力较强;聚合物分子量分布越宽,其中低分子量成分越大,容易首先形成微观撕裂,造成应力集中,便制品开裂.2)选取杂质含量低的树脂聚合物内的杂质即是应力的集中体,又会降低塑料的原有强度,应将杂质含量减少到最低程度.3)共混改性易出现应力开裂的树脂与适宜的其它树脂共混,可降低内应力的存在程度.例如,在PC中混入适量PS,PS呈近似珠粒状分散于PC连续相中,可使内应力沿球面分散缓解并阻止裂纹扩展,从而达到降低内应力的目的.再如,在PC中混入适量PE , PE球粒外沿可形成封闭的空化区,也可适当降低内应力.4)增强改性用增强纤维进行增强改性,可以降低制品的内应力,这是因为纤维缠结了很多大分子链,从而提高应力开裂能力.例如,30%GFPC的耐应力开裂能力比纯PC提高6倍之多.5)成核改性在结晶性塑料中加入适宜的成核剂,可以在其制品中形成许多小的球晶,使内应力降低并得到分散.(2)成型加工条件的控制在塑料制品的成型过程中,凡是能减小制品中聚合物分子取向的成型因素都能够降低取向应力;凡是能使制品中聚合物均匀冷却的工艺条件都能降低冷却内应力;凡有助于塑料制品脱模的加工方法都有利于降低脱模内应力.对内应力影响较大的加工条件主要有如下几种.①料筒温度较高的料筒温度有利于取向应力的降低,这是因为在较高的料筒温度,熔体塑化均匀,粘度下降,流动性增加,在熔体充满型腔过程中,分子取向作用小,因而取向应力较小.而在较低料筒温度下,熔体粘度较高,充模过程中分子取向较多,冷却定型后残余内应力则较大.但是,料筒温度太高也不好,太高容易造成冷却不充分,脱模时易造成变形,虽然取向应力减小,但冷却应力和脱模应力反而增大.②模具温度模具温度的高低对取向内应力和冷却内应力的影响都很大.一方面,模具温度过低,会造成冷却加快,易使冷却不均匀而引起收缩上的较大差异,从而增大冷却内应力;另一方面,模具温度过低,熔体进入模其后,温度下降加快,熔体粘度增加迅速,造成在高粘度下充模,形成取向应力的程度明显加大.模温对塑料结晶影响很大,模温越高,越有利于晶粒堆砌紧密,晶体内部的缺陷减小或消除,从而减少内应力.另外,对于不同厚度塑料制品,其模温要求不同.对于厚壁制品其模温要适当高一些.以PC为例,其内应力大小与模具温度的关系如表5-5所示.③注射压力注射压力高,熔体充模过程中所受剪切作用力大,产生取向应力的机会也较大.因此,为了降低取向应力和消除脱模应力,应适当降低注射压力..以PC为例,其内应力大小与注射压力的关系如表5-6所示..④保压压力保压压力对塑料制品内应力的影响大于注射压力的影响.在保压阶段,随着熔体温度的降低,熔体粘度迅速增加,此时若施以高压,必然导致分子链的强迫取向,从而形成更大的取向应力.⑤注射速度注射速度越快,越容易造成分子链的取向程度增加,从而引起更大的取向应力.但注射速度过低,塑料熔体进入模腔后,可能先后分层而形成熔化痕,产生应力集中线,易产生应力开裂.所以注射速度以适中为宜.最好采用变速注射,在速度逐渐减小下结束充模.⑥保压时间保压时间越长,会增大塑料熔体的剪切作用,从而产生更大的弹性形变,冻结更多的取向应力.所以,取向应力随保压时间延长和补料量增加而显著增大.⑦开模残余压力应适当调整注射压力和保压时间,使开模时模内的残余压力接近于大气压力,从而避免产生更大的脱模内应力.(3)塑料制品的热处理塑料制品的热处理是指将成型制品在一定温度下停留一段时间而消除内应力的方法.热处理是消除塑料制品内取向应力的最好方法.对于高聚物分子链的刚性较大,玻璃化温度较高的注塑件;对壁厚较大和带金属嵌件的制件;对使用温度范围较宽和尺寸精度要求较高的制件;时内应力较大而又不易自消的制件以及经过机械加工的制件都必须进行热处理.对制件进行热处理,可以使高聚物分子由不平衡构象向平衡构象转变,使强迫冻结的处于不稳定的高弹形变获得能量而进行热松弛,从而降低或基本消除内应力.常采用的热处理温度高于制件使用温度10~20℃或低于热变形温度5~10℃.热处理时间取决于塑料种类,制件厚度,热处理温度和注塑条件.一般厚度的制件,热处理1~2小时即可,随着制件厚度增大,热处理时间应适当延长.提高热处理温度和延长热处理时间具有相似的效果,但温度的效果更明显些.热处理方法是将制件放入水,甘油,矿物油,乙二醇和液体石蜡等液体介质中,或放入空气循环烘箱中加热到指定温度,并在该温度下停留一定时间,然后缓慢冷却到室温.实验表明,脱模后的制件立即进行热处理,对降低内应力,改善制件性能的效果更明显.此外,提高模具温度,延长制件在模内冷却时间,脱模后进行保温处理都有类似热处理的作用.尽管热处理是降低制件内应力的有效办法之一,但热处理通常只能将内应力降低到制件使用条件允许的范围,很难完全消除内应力.对PC制件进行较长时间的热处理时,PC分子链有可能进行有序的重排,甚至结晶,从而降低冲击韧性,使缺口冲击强度降低.因而,不应把热处理作为降低制件内应力的唯一措施.(4)塑料制品的设计①塑料制品的形状和尺寸在具体设计塑料制品时,为了有效地分散内应力,应遵循这样的原则:制品外形应尽可能保持连续性,避免锐角,直角,缺口及突然扩大或缩小.对于塑料制品的边缘处应设计成圆角,其中内圆角半径应大于相邻两壁中薄者厚度的70%以上;外圆角半径则根据制品形状而确定.对于壁厚相差较大的部位,因冷却速度不同,易产生冷却内应力及取向内应力.因此,应设计成壁厚尽可能均匀的制件,如必须壁厚不均匀,则要进行壁厚差异的渐变过渡.②合理设计金属嵌件塑料与金属的热膨胀系数相差5~10倍,因而带金属嵌件的塑料制品在冷却时,两者形成的收缩程度不同,因塑料的收缩比较大而紧紧抱住金属嵌件,在嵌件周围的塑料内层受压应力,而外层受拉应力作用,产生应力集中现象.在具体设汁嵌件时,应注意如下几点,以帮助减小或消除内应力.a.尽可能选择塑料件作为嵌件.b.尽可能选择与塑料热膨胀系数相差小的金属材料做嵌件材料,如铝,铝合金及铜等.c.在金属嵌件上涂覆一层橡胶或聚氨酯弹性缓冲层,并保证成型时涂覆层不熔化,可降低两者收缩差.d.对金属嵌件进行表面脱脂化处理,可以防止油脂加速制品的应力开裂.e.金属嵌件进行适当的预热处理.f.金属嵌件周围塑料的厚度要充足.例如,嵌件外径为D,嵌件周围塑料厚度为h,则对铝嵌件塑料厚度h≥0.8D;对于铜嵌件,塑料厚度h≥0.9 D.g.金属嵌件应设计成圆滑形状,最好带精致的滚花纹.③塑料制品上孔的设计塑料制品上孔的形状,孔数及孔的位置都会对内应力集中程度产生很大的影响. 为避免应力开裂,切忌在塑料制品上开设棱形,矩形,方形或多边形孔.应尽可能开设圆形孔,其中椭圆形孔的效果最好,并应使椭圆形孔的长轴平行于外力作用方向.如开设圆孔,可增开等直径的工艺圆孔,并使相邻两圆孔的中心连接线平行于外力作用方向,这样可以取得与椭圆孔相似的效果;还有一种方法,即在圆孔周围开设对称的槽孔,以分散内应力.(5)塑料模具的设计在设计塑料模具时,浇注系统和冷却系统对塑料制品的内应力影响较大,在具体设计时应注意如下几点.①浇口尺寸过大的浇口将需要较长的保压补料时间,在降温过程中的补料流动必定会冻结更多的取向应力,尤其是在补填冷料时,将给浇口附近造成很大的内应力.适当缩小浇口尺寸,可缩短保压补料时间,降低浇口凝封时模内压力,从而降低取向应力.但过小的浇口将导致充模时间延长,造成制品缺料.②浇口的位置浇口的位置决定厂塑料熔体在模腔内的流动情况,流动距离和流动方向..当浇口设在制品壁厚最大部位时,可适当降低注射压力,保压压力及保压时间,有利于降低取向应力.当浇口设在薄壁部位时,宜适当增加浇口处的壁厚,以降低浇口附近的取向应力.熔体在模腔内流动距离越长,产生取向应力的几率越大.为此,对于壁厚,长流程且面积较大的塑料件,应适当分布多个浇口,能有效地降低取向应力,防止翘曲变形. 另外,由于浇口附近为内.应力多发地带,可在浇口附近设汁成护耳式浇日,使内应力产生在护耳中,脱模后切除内应力较大的护耳,可降低塑料制品内的内应力.③流道的设计设计短而粗的流道,可减小熔体的压力损失和温度降,相应降低注射压力和冷却速度,从而降低取向应力和冷却压力.④冷却系统的设计冷却水道的分布要合理,使浇口附近,远离浇口区,壁厚处,壁薄处都得到均匀且缓慢的冷却,从而降低内应力,⑤顶出系统的设计要设计适当的脱模锥度,较高的型芯光洁度和较大面积的顶出部位,以防止强行脱模产生脱模应力.检查塑料件的应力的方法主要是溶剂浸渍法.用冰醋酸浸30s,晾干,发白处即是应力集中处.应力大时塑料会开裂,裂纹越多表示应力越大.也可以浸2rain,裂纹更深更明显.可以用甲乙酮和丙酮1:1的混合液浸15s,来代替冰醋酸浸渍.消除应力的方法有加热法,即在65~70℃下烘4h.小件可以用25%的丙酮水溶液浸泡30rain来消除应力.应力太大时,这两种方法均无效,零件不能电镀。

内应力的产生及消除

内应力的产生及消除

内应力的产生及消除所谓应力,是指单位面积里物体所受的力,它强调的是物体内部的受力状况;一般物体在受到外力作用下,其内部就会产生抵抗外力的应力;物体在不受外力作用的情况下,内部固有的应力叫内应力,它是由于物体内部各部分发生不均匀的塑性变形而产生的。

按照内应力作用的范围,可将它分为三类:(一)第一类内应力(宏观内应力),即由于材料各部分变形不均匀而造成的宏观范围内的内应力;(二)第二类内应力(微观内应力),即物体的各晶粒或亚晶粒(自然界中,绝大多数固体物质都是晶体)之间不均匀的变形而产生的晶粒或亚晶粒间的内应力;(三)第三类内应力(晶格畸变应力),即由于晶格畸变,使晶体中一部分原子偏离其平衡位置而造成的内应力,它是变形物体(被破坏物体)中最主要的内应力。

塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素而响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。

塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

陶瓷内应力

陶瓷内应力

陶瓷内应力
摘要:
1.陶瓷内应力的定义与产生原因
2.陶瓷内应力的影响
3.陶瓷内应力的解决方法
正文:
陶瓷内应力是指在陶瓷材料内部,由于温度变化、化学反应、加工过程等原因产生的应力。

这种应力可能会对陶瓷的性能和结构造成影响,因此对陶瓷内应力的研究具有重要意义。

陶瓷内应力的产生原因主要包括温度变化、化学反应和加工过程。

当陶瓷材料经历温度变化时,材料的热膨胀系数不同,导致内部产生应力。

化学反应也会引起内部应力,例如,当陶瓷材料中的离子发生迁移时,会产生内部应力。

此外,在陶瓷加工过程中,如切割、钻孔等操作,也会导致内部应力的产生。

陶瓷内应力会对材料产生一定的影响。

首先,内应力会降低陶瓷的抗弯强度和抗拉强度,影响其力学性能。

其次,内应力会导致陶瓷的疲劳性能降低,加速疲劳破坏的发生。

此外,内应力还会引起陶瓷的裂纹扩展,进一步降低其使用寿命。

为了解决陶瓷内应力的问题,可以采取以下方法:
1.调整陶瓷材料的成分和工艺,降低内应力的产生。

例如,选择热膨胀系数相近的材料,降低温度变化引起的内应力。

2.采用合理的加工方法,避免加工过程中产生过大的内应力。

如在陶瓷加工过程中,采用激光切割、化学腐蚀等方法,减少机械加工带来的内应力。

3.对陶瓷进行热处理,如退火、时效处理等,以消除或降低内应力。

总之,陶瓷内应力对材料的性能和结构具有重要影响。

消除玻璃内应力的方法

消除玻璃内应力的方法

消除玻璃内应力的方法玻璃作为一种常见的材料,广泛应用于建筑、家居、电子产品等多个领域。

然而,在制造和使用过程中,玻璃可能会产生内应力。

内应力是指材料内部各部分之间的相互挤压或拉伸的力量,可能导致玻璃破裂或变形。

因此,消除玻璃内应力对于提高产品的稳定性和安全性至关重要。

本文将介绍几种消除玻璃内应力的方法。

1.热处理热处理是消除玻璃内应力的常用方法。

通过将玻璃加热至接近其软化点,然后缓慢冷却,可以减小或消除内应力。

在热处理过程中,玻璃内部的原子或分子的运动速度会减缓,从而使内应力得到释放。

这种方法的优点是简单、高效,适用于大多数玻璃材料。

然而,热处理过程需要严格控制温度和冷却速度,否则可能导致玻璃开裂或变形。

2.化学处理化学处理是通过向玻璃中添加特定的化学物质来消除内应力。

这些化学物质可以与玻璃中的成分发生反应,改变其内部结构,从而减小内应力。

常用的化学处理方法包括离子交换法和表面涂层法。

离子交换法是将一种与玻璃中的离子大小相近的离子加入到玻璃中,通过离子交换来改变玻璃的内部结构。

表面涂层法是在玻璃表面涂覆一层特殊的涂层,通过涂层的收缩和扩张来消除内应力。

化学处理的优点是可以在不改变玻璃外部形态的情况下消除内应力,但处理时间和成本较高。

3.机械处理机械处理是通过施加外部力来消除玻璃内应力。

这种方法通常适用于具有较大内应力的玻璃材料。

机械处理包括振动、冲击和压力等方法。

振动和冲击可以通过施加周期性的力来使玻璃内部的内应力得到释放,而压力法则是通过施加均匀的压力来减小内应力。

机械处理的优点是简单易行,但可能会对玻璃造成一定的损伤或变形。

4.激光处理激光处理是一种新兴的消除玻璃内应力的方法。

通过使用高能激光束对玻璃表面进行扫描,可以产生局部的高温高压,使玻璃内部的原子或分子的运动速度加快,从而释放内应力。

激光处理的优点是精度高、无接触、无损伤,适用于各种形状和尺寸的玻璃材料。

然而,激光处理需要昂贵的设备和专业的操作人员,成本较高。

消除内应力

消除内应力

消除内应力由于固化时的体积收缩和线膨胀系数差异所存在于粘接体系内部的应力称为内应力。

内应力的产生来自于如下几方面:1、胶粘剂固化时的体积收缩除了压敏胶和密封胶外,通过溶剂挥发而硬化的胶粘剂,产生体积收缩是不言而喻的。

由化学反应固化发生体积收缩也是很容易理解的,当聚合时,原来的范德华力结合变为共价键结合,从微观来看,分子之间的距离缩小,反映在宏观上必然是密度增加,体积缩小,这种由于体积收缩产生的内应力也称为收缩应力。

削弱界面的粘附力是粘接强度下降的主要原因,回大大缩短粘接部件的使用寿命。

可以说胶粘剂固化时产生的内应力是一种潜在的破坏因素。

2、胶层与被粘物线膨胀系数的差异在固化后的使用过程中,因胶层与被粘物线膨胀系数的差异而在温度变化时引起的热应力,是一种潜在的内应力,因为当温度均匀后热应力则消失。

3、胶层吸收水分而产生溶胀由于吸收水分后溶胀,产生体积膨胀,也会产生内应力。

4、界面上气泡和夹入空气粘接界面在工艺过程中如果处理不当而留下气泡或空气,也会引起内应力。

内应力对粘桌性能有着重要的影响,一般内应力大,粘接强度小;内应力小,粘接强度大。

因此应设法消除或减少内应力,可有如下一些方法。

1、采用零膨胀粘接技术应用各种膨胀单位与树脂进行共聚合时,由于膨胀单体在聚合反应中发生了化学键的变化,引起的总效应是聚合物体积发生膨胀。

应用零膨胀性能的新型胶粘剂,能够获得无内应力的粘接。

利用膨胀单体实验,能使固化过程中的体积变化趋近于零,此时材料强度能达极大值。

2、降低固化反应活性固化反应产生的放热温度越低,内应力越小。

固化温度不宜过高,应取最低的起始反应温度,以延长固化时间,使分子不致运动太厉害,以免造成过大的收缩率,而使内应力增大。

在凝胶固化后继续加热固化,应采用阶梯式升温方式。

3、在胶粘剂中加入活性增韧剂加入脂肪长链并带有活性基因的增韧剂,会在固化的体形结构中形成长链的韧性桥键,提高了韧性和延伸率,降低了弹性模量。

怎样消除产品内应力

怎样消除产品内应力

塑料内应力是指在塑料熔融加工过程中由于受到大分子链的取向和冷却收缩等因素影响而产生的一种内在应力。

内应力的实质为大分子链在熔融加工过程中形成的不平衡构象,这种不平衡构象在冷却固化时不能立即恢复到与环境条件相适应的平衡构象,这种不平衡构象的实质为一种可逆的高弹形变,而冻结的高弹形变平时以位能形式贮存在塑料制品中,在适宜的条件下,这种被迫的不稳定的构象将向自由的稳定的构象转化,位能转变为动能而释放。

当大分子链间的作用力和相互缠结力承受不住这种动能时,内应力平衡即遭到破坏,塑料制品就会产生应力开裂及翘曲变形等现象。

几乎所有塑料制品都会不同程度地存在内应力,尤其是塑料注射制品的内应力更为明显。

内应力的存在不仅使塑料制品在贮存和使用过程中出现翘曲变形和开裂,也影响塑料制品的力学性能、光学性能、电学性能及外观质量。

为此,必须找出内应力产生的原因及消除内应力的办法,最大程度地降低塑料制品内部的应力,并使残余内应力在塑料制品上尽可能均匀地分布,避免产生应力集中现象,从而改善塑料制品的力学1热学等性能。

塑料内应力产生的原因产生内应力的原因有很多,如塑料熔体在加工过程中受到较强的剪切作用,加工中存在的取向与结晶作用,熔体各部位冷却速度极难做到均匀一致,熔体塑化不均匀,制品脱模困难等,都会引发内应力的产生。

依引起内应力的原因不同,可将内应力分成如下几类。

(1)取向内应力取向内应力是塑料熔体在流动充模和保压补料过程中,大分子链沿流动方向排列定向构象被冻结而产生的一种内应力。

取向应力产生的具体过程为:*近流道壁的熔体因冷却速度快而造成外层熔体粘度增高,从一而使熔体在型腔中心层流速远高于表层流速,导致熔体内部层与层之间受到剪切应力作用,产生沿流动方向的取向。

取向的大分子链冻结在塑料制品内也就意味着其中存在未松弛的可逆高弹形变,所以说取向应力就是大分子链从取向构象力图过渡到无取向构象的内力。

用热处理的方法,可降低或消除塑料制品内的取向应力。

塑料内应力为何形成?怎么检测和解决?

塑料内应力为何形成?怎么检测和解决?

塑料内应⼒为何形成?怎么检测和解决?⼀、什么是内应⼒?塑料内应⼒是指在塑料熔融加⼯过程中由于受到⼤分⼦链的取向和冷却收缩等因素影响⽽产⽣的⼀种内在应⼒。

⼏乎所有塑料制品都会不同程度地存在内应⼒,尤其是塑料注射制品的内应⼒更为明显。

内应⼒的存在不仅使塑料制品在储存和使⽤过程中出现应⼒开裂和翘曲变形,也影响塑料制品的⼒学性能、光学性能、电学性能及外观质量等。

内应⼒的存在会出现以下常见危害:(1)开裂:因为应⼒的存在,在受到外界作⽤后(如移印时接触到化学溶剂或者烤漆后端时⾼温烘烤),会诱使应⼒释放⽽在应⼒残留位置开裂。

开裂主要集中在浇⼝处或过度填充处。

图:内应⼒导致的开裂(2)翘曲及变形:因为残留应⼒的存在,因此产品在室温时会有较长时间的内应⼒释放或者⾼温时出现短时间内残留应⼒释放的过程,同时产品局部存在位置强度差,产品就会在应⼒残留位置产⽣翘曲或者变形问题。

(3)产品尺⼨变化:因为应⼒的存在,在产品放置或后处理的过程中,如果环境达到⼀定的温度,产品就会因应⼒释放⽽发⽣变化。

图:内应⼒导致的发亮、发⽩图:内应⼒集中处产⽣彩虹纹(透明产品)⼆、5种常见塑料测试应⼒开裂的⽅法材料名称测试应⼒开裂⽅法PMMA制品⽤酒精:⽔=9:1溶液中浸15分钟后取出,放置1⼩时后观察,若开裂则存在应⼒。

应进⾏退⽕(韧化)处理:热风循环/除湿机器,在低于材料热变形温度10-15℃情况下进⾏约1h的处理。

红外线退⽕可在热变形温度基础上提⾼10℃,时间约10-15min即可。

PC将PC制品浸⼊四氯化碳溶液中,以制品发⽣开裂破坏所需的时间来判断应⼒的⼤⼩,时间越长则应⼒越⼩。

如果浸5-15秒就开裂,说明应⼒很⼤;如果浸1-2分钟不出现裂纹,说明内应⼒很⼩POM将经过热处理后的制品,放⼊30%盐酸溶液中浸渍30分钟,若不出现裂纹,说明制品中残存的内应⼒较⼩ABS将制品浸⼊冰醋酸中,5-15秒内出现裂纹,则说明制品内应⼒⼤;⽽2分钟后⽆裂纹出现,则表明制品内应⼒⼩PA PA材料消除⽅法:⼩部件在沸⽔中泡煮约2h,尺⼨⼤的部件应采⽤悬挂式,在蒸汽房⾥保持吸湿⾄⽔分平衡。

内应力的产生及消除方法

内应力的产生及消除方法

内应力的产生及消除方法内应力(Internal stress)是指物体内部各部分之间存在的相互作用力引起的应力状态。

内应力的产生与消除方法有很多,下面我们将从不同的角度进行分析。

1.应力形成的原因:-外部载荷的作用:物体受到外部载荷的作用时,会产生内应力。

比如,将一根橡皮筋拉伸或扭曲,就会产生内部的应力。

-温度变化引起的热应力:当物体在温度变化过程中,不同部分的热胀冷缩系数不同,就会产生内应力。

比如,铁轨在夏天会出现膨胀,而在冬天会出现收缩,这就会产生内应力。

-材料变形引起的结构应力:当物体的构造发生变化时,比如材料的拉伸、挤压、弯曲等,就会产生内应力。

一般情况下,材料形变越大,其内应力越大。

2.内应力的消除方法:-增加材料的强度:制造材料时,可以采用强化处理等方法,增加其抗拉强度、硬度和韧性,从而减少通过力传递引起的内应力。

-采用功能材料:有些材料具有自愈合功能,如具有粘合性的材料,可以减少或消除内应力。

-控制材料的热处理过程:在材料加工的过程中,合理控制温度和冷却速度等参数,可以减少材料的热应力,并提高材料的稳定性。

-使用可调控的结构:采用可调控的结构设计,可以通过结构参数的调整来改变应力分布,从而降低局部的应力集中。

-合理设计构件形状:设计构件的形状时,应该尽量避免出现棱角、悬臂和尖突的结构,这样可以减少应力集中,从而减少内应力。

3.内应力的分析方法:-数值模拟分析:通过数学模型和计算机仿真,可以对材料的内应力进行数值模拟分析,从而找到应力的分布规律,并确定合理的消除应力的方法。

-压缩应力测试方法:利用压缩应力测试设备,可以对材料的内应力进行测试,从而确定合理的消除应力的方式。

-切割应力测试方法:通过在材料上进行切割应力测试,可以测量材料的内应力分布情况,进而找到消除应力的方法。

树脂固化时体积收缩内应力的本质及消除途径

树脂固化时体积收缩内应力的本质及消除途径

树脂固化时体积收缩内应力的本质及消除途径树脂固化时体积收缩内应力的本质及消除途径树脂固化过程中,由于化学反应引起基体体积收缩,产生内应力,这是树脂固化中一个重要的现象。

体积收缩内应力的存在会对树脂制品的性能、形状和尺寸稳定性产生不良影响,因此消除体积收缩内应力成为树脂固化工艺中关注的焦点之一。

体积收缩内应力的本质是由于树脂分子之间的交联引起的收缩现象。

在固化过程中,树脂分子发生聚合反应,形成高分子网络结构,同时伴随着体积收缩。

由于树脂分子之间的交联引起了空间占有率的增加,使得体系体积缩小,从而产生内应力。

树脂固化过程中体积收缩内应力的消除途径主要有以下几个方面:1.添加填充材料:在树脂中添加适量的填充材料可以降低树脂的体积收缩率,减少固化产生的内应力。

填充材料可以是无机材料、有机材料或其它纤维材料等,通过填充材料的增加体积,能够有效地抵消树脂的收缩,降低内应力的大小。

2.控制固化条件:固化条件的控制是消除体积收缩内应力的重要手段之一。

固化温度、时间等条件的合理选择能够影响固化过程中的体积收缩行为,通过调节这些条件可以减少体积收缩内应力的产生。

3.添加抑制剂:树脂固化过程中,可以添加一些抑制剂来延缓固化反应速度,从而减少体积收缩的程度。

抑制剂可以限制树脂分子的反应速度,使聚合反应过程更加缓慢,减少体积收缩的发生。

4.使用分层固化技术:分层固化技术是一种有效的消除体积收缩内应力的方法。

通过将固化过程分为多个阶段,逐步进行固化,可以减少每个阶段的体积收缩,缓解内应力的积累。

这种方法能够有效地控制树脂固化过程中体积收缩引起的变形和应力集中。

5.使用补偿材料:在固化树脂的同时,可以在另一侧添加补偿材料,以通过其体积膨胀来抵消树脂固化引起的体积收缩。

这种方法常用于树脂填充型材料的制备中,能够有效地减少体积收缩内应力的产生。

综上所述,树脂固化时体积收缩内应力的本质是由于化学反应引起的树脂分子之间的交联收缩现象。

塑料内应力形成的原理消除方案及检测方法

塑料内应力形成的原理消除方案及检测方法

塑料内应力形成的原理消除方案及检测方法塑料内应力是指在注塑成型过程中,由于温度梯度、冷却速度不均匀、收缩率不同等原因,使得注塑件内部产生了一定的应力。

这些应力可以始于注塑过程中的温度分布不均匀,也可以源于塑料材料的分子结构改变所引起。

当注塑件从模具中取出后,由于温度、应力、收缩等因素的影响,会导致塑料件发生变形、开裂、翘曲等问题。

消除方案:1.优化注塑工艺:通过合理调整注塑工艺参数,如料温、模温、注射速度、注射压力等,可以减少温度梯度和收缩率的差异,从而减小内应力的产生。

2.优化模具设计:采用合理的模具结构,如加入冷却系统、合理设置型腔、减小模具间隙等,可以提高注塑件的冷却速度和均匀性,从而减小内应力的产生。

3.选择合适的塑料材料:不同的塑料材料具有不同的分子结构和性质,选择合适的材料可以减少内应力的产生。

例如,使用低收缩率的塑料材料,可以减小收缩率差异,从而减少内应力。

4.后处理措施:采用后处理方法,如热处理、加工放松等,可以帮助减小塑料件内部的应力,改善其性能。

检测方法:1.光学显微镜观察法:使用光学显微镜观察注塑件表面的裂痕、气泡、疵点等缺陷,间接检测出内应力的存在。

2.射线衍射法:通过使用射线衍射技术,对注塑件进行射线照射后,观察衍射图案的变化,可以判断出注塑件中的应力分布情况。

3.室温拉伸试验法:对注塑件进行拉伸试验,在试验过程中观察和记录试样的变形情况,通过分析变形程度和变形形状,可以间接推断出注塑件中的内应力程度。

4.热膨胀法:测量注塑件在不同温度下的尺寸变化,通过分析尺寸变化规律,可以推断出注塑件中的内应力分布情况。

总结:塑料内应力是注塑件常见的质量问题之一,可以通过优化注塑工艺、模具设计、选择合适的材料和后处理措施来减小或消除内应力的产生。

同时,通过光学显微镜观察、射线衍射、室温拉伸试验和热膨胀等检测方法,可以对注塑件的内应力进行检测和分析。

消除工件内应力的热处理方法

消除工件内应力的热处理方法

消除工件内应力的热处理方法哎呀,这可是个大问题啊!咱们的工件在生产过程中,总会遇到各种各样的问题。

有时候,这些问题会导致工件内部产生应力,影响到工件的质量和使用寿命。

那么,怎么办呢?消除工件内应力的热处理方法,就是解决这个问题的好办法!我们来了解一下什么是内应力。

内应力,简单来说,就是物体内部各个部分之间的相互作用力。

这种作用力会导致物体发生变形、破裂等现象。

而在我们的工件中,内应力往往是导致工件出现裂纹、变形等问题的原因之一。

那么,如何消除这些内应力呢?其实,消除内应力的方法有很多种,其中最常用的就是热处理方法。

热处理是一种通过加热和冷却的方式,改变工件内部组织结构的方法。

通过热处理,我们可以使工件内部的应力得到释放,从而达到消除内应力的目的。

接下来,我们就来看一看热处理的具体步骤吧!我们需要将工件放入加热炉中进行加热。

这个过程叫做保温期。

在保温期内,加热炉会将工件加热到一定温度,使得工件内部的分子运动加剧,从而使内应力逐渐增大。

当加热到一定程度后,我们会将加热炉中的工件移出,进行冷却。

冷却过程分为两个阶段:快速冷却和慢速冷却。

快速冷却主要是通过水淬或油淬的方式,让工件迅速降温。

这样可以使工件内部的应力迅速释放出来。

而慢速冷却则是通过空气冷却或者自然冷却的方式,让工件逐渐降温。

这样可以让工件内部的结构更加致密,从而提高工件的强度和硬度。

经过这样的热处理过程之后,我们的工件就可以摆脱内应力的困扰了!当然啦,热处理方法还有很多种,不同的工件需要采用不同的热处理方法。

但是总的来说,热处理是一种非常有效的消除内应力的方法。

好了,今天的分享就到这里啦!希望大家对消除工件内应力的热处理方法有了更深入的了解。

以后在生产过程中遇到类似的问题,不妨试试这种方法吧!相信它一定会给你带来惊喜的效果!下次再见啦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么叫内应力,该如何消除内应力?
1. 物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。

在所考察的截面某一点单位面积上的内力称为应力。

同截面垂直的称为正应力或法向应力。

2. 在没有外力存在下,材料内部由于加工成型不当,温度变化,溶剂作用等原因所产生的应力。

3、内应力的取消有几种方法:一对物体进行热处理(只针对金属性质的工件)二是放到自然条件下进行消除。

三是人工通过敲打振动等方式进行消除。

内应力是在结构上无外力作用时保留于物体内部的应力没有外力存在时,弹性物体内所保存的应力叫做内应力,它的特点是在物体内形成一个平衡的力系,即遵守静力学条件.按性质和范围大小可分为宏观应力,微观应力和超微观应力.按引起原因可分为热应力和组织应力.按存在时间可分为瞬时应力和残余应力.按作用方向可分为纵向应力和横向应力.。

相关文档
最新文档