数字图像处理_图像复原

合集下载

数字图像处理~图像复原

数字图像处理~图像复原
2
2π σ
e
21 of 36
瑞利噪声
瑞利噪声的概率密度函数 :
2 ( z − a )e p (z ) = b 0
µ = a +
σ
2
− ( z − a )2
b
z ≥ a z < a
概率密度的均值和方差:
πb
4
=
b (4 − π 4
)
22 of 36
伽马(爱尔兰)噪声
伽马噪声PDF:
18 of 36
噪声和图像
数字图像中的噪声源来自于Biblioteka 像获取(将连续转为 数字)以及传输过程
图像传感器会受到环境的干扰 图像在传输过程中会受到的干扰
19 of 36
噪声模型
对于图像中的噪声项η(x, y) 有多种不同模型:
高斯(Gaussian)噪声 瑞利(Rayleigh)噪声 伽马(爱尔兰)噪声 指数(Exponential)噪声 均匀(Uniform)噪声 脉冲(椒盐)噪声
p (z ) = 0
a b z b −1 − az e (b − 1 )!
z≥0 z<0
其中,a>0,b为正整数且“!”表示阶乘。其密度 的均值和方差为: b µ = a b 2 σ = 2 a
23 of 36
指数分布噪声
指数噪声的PDF:
ae − az p( z ) = 0
ˆ f ( x, y ) =
mn ( s ,t )∈S xy
∑ g ( s, t )
被实现为一个简单的平滑滤波器,此时可以消除噪 声,使图像变得模糊。
1/ 1/ 1/ 9 9 9 1/ 1/ 1/ 9 9 9 1/ 1/ 1/ 9 9 9

数字图像处理-图像复原

数字图像处理-图像复原

图像复原技术是试图利用退化过程的先验知识使已退化的 图像恢复本来面目,即根据退化的原因,分析引起退化的环 境因素,建立相应的数学模型,并沿着使图像降质的逆过程 恢复图像.目的在于消除或减轻在图像获取以及传输过程 中造成的图像品质下降,恢复图像的本来面目.因此,复原 技术就是把退化模型化,并采用相反的过程进行处理,以便 复原出原图像.
其中h( x, y )是退化函数的空间描述,*表示空间卷积. 等价的频域描述为 :
G(u, v) H (u, v) F (u, v) N (u, v)
这两个公式是本章大部分内容的基础。
以连续图像为例,推倒图像退化数学模型:
以连续图像为例,推倒图像退化数学模型:
以连续图像为例,推倒图像退化数学模型:

这种滤波器适合减少或是在实际中消除椒盐噪声的影响.
当Q值为正数时,滤波器用于消除"胡椒"噪声; 当Q值为负数时,滤波器用于消除"盐"噪声; 当Q=0时,逆谐波均值滤波器退化为算术均值滤波器; 当Q=-1时,逆谐波均值滤波器退化为谐波均值滤波器.
(a) 电路板的X射线图像 (b) 由附加高斯噪声污染 的图像 (c) 用3×3算术均值滤波器 滤波的结果 (d) 用3×3的几何均值滤波 器滤波的结果
高斯噪声来 源于电子电 路噪声和由 低照度或高 温带来的传 感器噪声。
脉冲噪声主要 在成像的短暂 停留中出现, 如开关操作。
瑞利噪声常用 在特征化噪声。
均匀噪声在实 践中很少遇到。 但可以作为模 拟随机数的产 生器。
指数噪声和 伽马噪声常 出现在激光 成像中。
测试图像
高斯
瑞利
伽马
指数
均匀
椒盐
周期噪声
算术均值和几何均 值都能衰减噪声, 但比较而言,几何均 值滤波器较难使图 像变模糊.

数字图像处理第5章 图像的复原

数字图像处理第5章 图像的复原


ge ( x) f e (m)he ( x m)
m
一维离散退化模型
上式还可以用矩阵的形式表示为
g=H· f
其中
f e (0) f e (1) f ...... f ( M 1) e
g e (0) g e (1) g ...... g ( M 1) e
g ( x, y)

f ( , )H ( x , y )dd
连续函数的退化模型
令 h(x,a,y,β)=Hδ(x-a,y-β) ,h(x,a,y,β) 称为H的冲激响应,它表示 系统H对坐标 (α,β) 处的冲激函数δ(x-a,y-β) 的响应。在光学中, 冲激为一个光点,一般也称h(x,a,y,β)为点扩散函数。由此可得
或G(u,v)=H(u,v)F(u,v)+N(u,v) 式中 N(u,v) 为噪声函数 n(x,y) 的傅里叶变换。 大多数情况下都可以利用线性系统理论近似地解决图像复原问 题。当然在某些特定的应用中,讨论非线性、空间可变性的退化模 型更具普遍性,也会更加精确,但在数学上求解困难。因此,本章 只讨论线性空间不变的退化模型。
ge ( x) f e (m, n)he ( x m, y n) n( x, y)
m n
与一维情况类似,二维离散退化模型也可用矩阵表示,即
g=H· f
5.3 代数恢复方法
5.3.1 无约束复原
由式(5.2.1)可得退化模型中的噪声项为 n=g-Hf 当对 n 一无所知时,有意义的准则函数是寻找一个 fˆ ,使得H fˆ 在最小二乘意义上近似于g,即要使噪声项的范数尽可能小,也 就是使 2 2

数字图像处理技术在图像复原中的应用效果评估

数字图像处理技术在图像复原中的应用效果评估

数字图像处理技术在图像复原中的应用效果评估数字图像处理技术已经广泛应用于图像复原领域,通过利用图像处理算法和技术,对损坏、模糊或降质的图像进行修复和恢复。

本文将探讨数字图像处理技术在图像复原中的应用效果评估。

图像复原是一项复杂的任务,旨在从损坏或降质的图像中恢复原始信息。

在数字图像处理中,有许多方法可以用于图像复原,例如去噪、增强、去模糊等。

然而,对于不同类型和程度的图像损坏,不同的方法可能会产生不同的效果。

因此,评估图像复原方法的效果非常重要。

为了评估图像复原方法的效果,可以使用多种客观和主观的评估指标。

客观评估指标是基于数学和统计分析的指标,可以量化图像恢复质量的好坏。

常用的客观评估指标包括均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)。

MSE指标通过计算原始图像和复原图像之间像素间的误差平方和来评估图像复原效果,MSE值越小表示复原效果越好。

PSNR指标通过测量原始图像和复原图像之间的峰值信噪比来评估图像复原质量,PSNR值越大表示复原效果越好。

SSIM指标通过比较图像的亮度、对比度和结构信息来评估图像复原质量,SSIM值越接近1表示复原效果越好。

除了客观评估指标外,主观评估也是评估图像复原效果的重要方法。

主观评估主要通过人工观察和主观判断来评估图像复原的视觉质量。

常见的主观评估方法包括主观质量评估(SME)和主观双向比较(DSM)。

在主观质量评估中,评价者通过观察原始图像和复原图像来对复原质量进行评估。

在主观双向比较中,评价者会对不同复原结果进行直接比较,以确定复原质量的优劣。

主观评估的优势在于能够考虑人眼对图像的感知,但主观评估受到主观因素的影响,评估结果可能存在一定的主观性。

除了评估方法,评估数据的选择和准备也对图像复原效果评估的准确性和可靠性起着重要的作用。

对于不同类型和程度的图像损坏,应选择适合的评估数据集进行评估。

评估数据集应包含多样化的图像,包括不同场景、不同角度和不同光照条件下的图像,以模拟实际应用场景中的复原需求。

数字图像处理技术-图像恢复

数字图像处理技术-图像恢复
数字图像处理
图像恢复
北京邮电大学
图像退化及复原
什么是图像退化 图像的质量变坏叫做退化。退化的形式有图像模糊、图像有干扰等 图像退化的处理方法 无论是由光学、光电或电子方法获得的图像都会有不同程度的退化; 退化的形式多种多样。如传感器噪声、摄像机未聚焦、物体与摄像 设备之间的相对移动、随机大气湍流、光学系统的相差、成像光源 或射线的散射等; 如果我们对退化的类型、机制和过程都十分清楚,那么就可以利用 其反过程来复原图像。 典型的图像复原方法是根据图像退化的先验知识建立一个退化模型, 以此模型为基础,采用滤波等手段进行处理,使得复原后的图像符合 一定的准则,达到改善图像质量的目的。
∫∞e
x
t2 2
dt
由于概率分布中最简单的是(0, 1)区间上均匀分布的随机数,
Erk = 1 / 2
Drk = 1 / 12
当n充分大时
12 n n ∑ ri X = n i =1 2
的分布近似于标准正态分布N(0,1)。通常取,此时
12 X = ∑ ri 6 i =1
称 h( x,α ; y, β ) 为点扩散函数(PSF)或系统冲击响应。 多数情况下它表现为时不变的,反映在图像中为位移不变的,则
h( x,α ; y, β ) 可以表示为h( x α , y β ) g ( x, y ) =
∞ ∞ ∞ ∞
∫ ∫ f (α , β )h( x α , y β )dαdβ
ISNR(the Improvement in SNR)
∑ [ f (i, j ) y (i, j )]2 ISNR = 10 log10 i , j [ f (i, j ) f (i, j )]2 ∑ i, j f (i, j )--原始图像 y (i, j )--降质图像 f (i, j )--恢复图像

图像复原的名词解释

图像复原的名词解释

图像复原的名词解释图像复原是数字图像处理领域中的一个重要概念,旨在通过科学的技术手段恢复或改善被损坏的图像质量。

它在许多领域中具有广泛的应用,如医学影像、遥感图像、文化遗产保护等。

图像复原的基本目标是恢复图像本来的清晰度、细节和真实性,使其更好地适应观察者需求和实际应用。

图像在采集、传输、存储等过程中往往经历了噪声、模糊、失真等问题,使得图像质量下降,难以满足人们对图像的需求。

图像复原即通过信号处理的方法,利用图像本身的特征和统计学原理来消除这些问题,使得观察到的图像更接近真实。

图像复原的主要技术手段包括滤波、去噪、增强和复原等。

其中,滤波是最常见的一种方法,其基本思想是通过选择性地传递或抑制不同频率的信号成分来实现图像质量的改善。

常见的滤波方法有线性滤波、非线性滤波等。

线性滤波适用于处理噪声较小、失真较轻的图像,通过卷积运算对图像进行平滑或边缘增强;非线性滤波则可以更好地适用于噪声较强、失真较严重的图像,其基本原理是根据图像统计特性对像素值进行调整,以实现去噪和增强效果。

图像去噪是图像复原中的一个重要环节,旨在消除图像中的噪声干扰,使得图像清晰可见。

噪声是由于图像捕捉、传输等过程中引入的随机干扰,使图像变得模糊不清、细节不明显。

图像去噪技术主要有空域方法和频域方法。

空域方法一般通过滑动窗口或邻域平均来对图像进行平滑处理,从而消除噪声。

频域方法则是将图像转换到频域进行处理,如利用傅里叶变换或小波变换等,通过滤波、阈值处理等操作实现图像的去噪。

图像增强是另一个重要的图像复原技术,其目标在于通过调整图像的对比度、亮度、颜色饱和度等参数,提高图像的视觉效果和观感。

图像增强可以分为直方图增强、空域增强和频域增强等方法。

直方图增强是根据图像的灰度直方图进行操作,通过拉伸直方图的动态范围,改变图像灰度分布来改善图像质量。

空域增强则是直接在像素级别上进行操作,如对比度拉伸、亮度调整、局部增强等。

而频域增强则是将图像转换到频域进行处理,如滤波、锐化等操作,来增强图像的视觉效果。

数字图像处理之图像复原

数字图像处理之图像复原

实验五、图象复原一、实验目的1.了解图象退化的几种原因;2.掌握对相应退化原因的复原方法。

二、实验内容1.使用函数fspecial( )和imfilter( )模拟产生退化图象;2.对于不同的噪声引起图像的退化,采用不同的滤波方法复原图象。

3.学会使用维纳滤波器deconvwnr()函数对图像进行复原的方法。

三、实验步骤1.加性噪声退化图象用imnoise( )函数给图象加噪声,如增加高斯白噪声。

使用平滑滤波器对其进行滤波,可达到复原图像的效果x=imread(‘cameraman.tif’);x=imnoise(x,’gaussian’)imshow(x)h=fspecial(‘average’)y=imfilter(x,h);figureimshow(y)2、周期噪声退化图像对于周期噪声可以通过频域滤波来减弱或消除,实现复原图像。

实验五文件夹中有被正弦周期噪声污染退化的图像'pout_g_64.bmp',使用理想带阻滤波器对其频域滤波,复原图像。

(1) pout_g_64.bmp图像及其傅立叶谱见下图。

(2) 构造理想带阻滤波器close allx=imread('pout_g_64.bmp');xm=size(x,1); xn=size(x,2);M2=floor(xm/2); N2=floor(xn/2);u=-M2:1:M2-1; v=-N2:1:N2-1;[U,V]=meshgrid(u,v);D=sqrt(U.^2+V.^2);D0=64;W=4;H=double(D<(D0-W/2)|D>(D0+W/2));figureMesh(U,V,H) ;title('D0=64,W=4,理想带阻滤波器')思考:使用上述理想带阻滤波器对’pout_g_64.bmp’图像进行频域滤波,得到复原图像,结果类似下图。

close allx=imread('pout_g_64.bmp');xm=size(x,1); xn=size(x,2);M2=floor(xm/2); N2=floor(xn/2);u=-M2:1:M2-1; v=-N2:1:N2-1;[U,V]=meshgrid(u,v);D=sqrt(U.^2+V.^2);D0=64;W=4;H=double(D<(D0-W/2)|D>(D0+W/2));F=fft2(x);f=fftshiFt(F);G=f.*H;subplot(121)imshow(real(G));title('频域滤波')GG=fftshift(G);I=ifft2(GG);subplot(122)imshow(uint8(I))title('复原后图像')3、运动模糊退化图像给图像添加运动模糊,使用deconvwnr()维纳滤波器进行图像复原。

数字图像处理实验三:图像的复原

数字图像处理实验三:图像的复原

南京工程学院通信工程学院实验报告课程名称数字图像处理C实验项目名称实验三图像的复原实验班级算通111 学生姓名夏婷学号 208110408 实验时间 2014年5月5日实验地点信息楼C322实验成绩评定指导教师签名年月日实验三、图像的恢复一、实验类型:验证性实验二、实验目的1. 掌握退化模型的建立方法。

2. 掌握图像恢复的基本原理。

三、实验设备:安装有MATLAB 软件的计算机四、实验原理一幅退化的图像可以近似地用方程g=Hf+n 表示,其中g 为图像,H为变形算子,又称为点扩散函数(PSF ),f 为原始的真实图像,n 为附加噪声,它在图像捕获过程中产生并且使图像质量变坏。

其中,PSF 是一个很重要的因素,它的值直接影响到恢复后图像的质量。

I=imread(‘peppers.png’);I=I(60+[1:256],222+[1:256],:);figure;imshow(I);LEN=31;THETA=11;PSF=fspecial(‘motion’,LEN,THETA);Blurred=imfilter(I,PSF,’circular’,’conv’);figure;imshow(Blurred);MATLAB 工具箱中有4 个图像恢复函数,如表3-1 所示。

这4 个函数都以一个PSF 和模糊图像作为主要变量。

deconvwnr 函数使用维纳滤波对图像恢复,求取最小二乘解,deconvreg 函数实现约束去卷积,求取有约束的最小二乘解,可以设置对输出图像的约束。

deconvlucy 函数实现了一个加速衰减的Lucy-Richardson 算法。

该函数采用优化技术和泊松统计量进行多次迭代。

使用该函数,不需要提供有关模糊图像中附加噪声的信息。

deconvblind 函数使用的是盲去卷积算法,它在不知道PSF 的情况下进行恢复。

调用deconvblind 函数时,将PSF 的初值作为一个变量进行传递。

数字图像处理图像复原PPT课件

数字图像处理图像复原PPT课件


五 章
4. 中点滤波器
-
图 像 复 原 简 介
36
-
5.4.2 顺序统计滤波器

五 5. 修正后的阿尔法均值滤波器
章 图 像 复 原 简 介
mn-1,
37
-
5.4.3 自适应滤波器

五 • 自适应滤波器
章 图 像 复 原 简 介
38
5.4.3 自适应滤波器

五 章
1. 自适应、局部噪声消除滤波器
介 复原始图像的最优估值。
√图像复原技术可以使用空间域或频率域滤波器
实现。
7
5.2 图像退化/复原过程的模型
第 五 章

-


原 √ f(x,y)表示一幅输入图像
简 介
√ g(x,y)是f(x,y)产生的一幅退化图像 √ H表示退化函数
√ η(x,y )表示外加噪声
√给定g(x,y),关于退化函数H的一些知识和外加噪声项
g(x, y)


由于冲激的傅立叶变换为常数A,可得:


H(u,v) G(u,v)
A
64
第5章图像复原
退化函数
第 五 章

-





冲激特性的退化估计
(a) 一个亮脉冲
(b) 图像化的(退化的)冲激
65
第5章图像复原
5.6.2 退化函数
(3) 模型估计法 第
五 章
建立退化模型,模型要把引起退化的环境因素考虑在内.
15
-
5.3.1一些重要噪声的概率密度函数 (PDF)

五 4. 指数分布噪声

数字图像处理实验九、图像复原

数字图像处理实验九、图像复原

fs(x,y):
FFt
Fs(u,v)
Gs(u,v)
Hs(u,v)=
Fs(u,v)
2.数学建模法 大气湍流的退化函数:
H (u, v) e
k ( n2 v 2 )5 / 6
匀速运动的退化函数:
T H ( u, v) sin[ ( ua vb)]e j ( ua vb ) ( ua vb)
三、退化函数引起图像退化的复原方法 1.逆滤波法: 无噪声时: F(u,v)= G(u,v) H(u,v) N(u,v) H(u,v)
有噪声时: F(u,v)= F(u,v)+ 问
题:在H(u,v)趋于0处,噪声会被急剧放大。
解决办法:增加一个低通滤波器。
1 | H (u, v) |2 ]G(u, v) 2.维纳滤波法: F (u, v) [ 2 H (u, v) | H (u, v) | k
调入原始图像 fxy
计算退化图像的频谱 Guv
K=0.01;%特殊常数,一般要用交互的方式确定 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 计算原始图像频谱 计算噪声的频谱 Nuv Rtuxy=abs(ifft2(Fuvyp)); Fuv=fft2(fxy) subplot(2,2,2),imshow(Rtuxy,[]),title('K=0.01时维纳滤波的结果') 还
生 成 退 化 图 像
原 退 Fuvyp=(Huv.*conj(Huv)).*Guv./(Huv.*(Huv.*conj(Huv)+K)); 化 Rtuxy=abs(ifft2(Fuvyp)); 计算 复原图像的频谱Fuvyp 图 生产退化图像频谱 subplot(2,2,3),imshow(Rtuxy,[]),title('K=0.005时维纳滤波的结果') Guv=Huv· Fuv 像

数字图像处理—基于Python 第12讲 图像复原-复原算法

数字图像处理—基于Python 第12讲 图像复原-复原算法
squares filter)
9
估计点扩散函数
如果退化函数已知,则图像复原将变得较 为简单
估计psf 函数的基本方法有: – 观察法 – 实验法 – 建模法
10
估计点扩散函数
–观察法
取一个信号强、噪声小的子图像g (x,y) ,然后用一系列的 滤波器处理这个子图像,得到较好的效果图像f (x,y). 那么, 退化函数可以通过H (u,v)= G (u,v)/ F (u,v)得到
第5章 图像复原
图像复原算法
2
回顾
什么是图像复原 针对噪声的复原
− 噪声模型 − 空域滤波去噪方法 − 频域去噪方法
针对模糊等退化的复原
− 线性移不变退化模型 − 无约束图像复原 − 有约束图像复原
针对畸变的图像复原
− 几何变换 − 灰度插值 − 几何校正
3
本课内容
线性移不变退化模型 估计点扩散函数 图像复原算法
g(x, y)
T 0
f
x x0(t), y
y0(t)
dt
– x 0 (t) 和 y 0 (t) 随时间变化的移动距离 –T 是按下快门的时长
14
估计点扩散函数
G(u, v) g(x, y)e j2 (uxvy)dxdy
T 0
f
(x x0(t),
y
y0 (t))dte j2 (uxvy)dxdy
18
本课内容
线性移不变退化模型 估计点扩散函数 图像复原算法
无约束还原: − 逆滤波(Inverse filter) − 伪逆滤波(Pseudo inverse filtering) 有约束还原 − 维纳滤波(Wiener filter) − 受限最小二乘滤波(Constrained least

《数字图像处理A》图像复原与重建实验

《数字图像处理A》图像复原与重建实验

《数字图像处理A》图像复原与重建实验一、实验目的图像的降噪与复原既在日常生活中拥有广泛的应用场景,又是数字图像处理领域的经典应用。

本实验首先对特定图像进行添加噪声和模糊,然后再使用经典的算法对噪声退化图像进行复原和重建。

通过该实验,进一步理解图像降噪和复原的基本原理,巩固图像处理基本操作的同时,提升对图像降噪和复原的理解和掌握。

二、实验内容1.利用matlab实现对特定图像添加高斯噪声和运动模糊。

2.使用逆滤波对退化图像进行处理。

3.使用常数比进行维纳滤波。

4.使用自相关函数进行维纳滤波。

三、实验原理1. 图像退化模型在一般情况下图像的退化过程可建模为一个退化函数和一个噪声项,对一幅图像f(x,y)进行处理,产生退化图像g(x,y),如下所示,其中η(x,y)是噪声项,H则是源图像的退化函数。

g(x,y)=H[f(x,y)]+η(x,y)2. 图像的噪声模型图像的噪声模型分为空间域噪声模型(通过噪声的概率密度函数对噪声进行描述)和频率域噪声模型(由噪声的傅里叶性质进行描述)两种类型。

在本实验中,我们采用的是空间噪声的经典噪声模型高斯噪声,高斯噪声模型的概率分布函数如下所示,其中σ是标准差,μ是期望。

p(z)=√2πσ−(x−μ)22σ2⁄3. 图像模糊图像模糊是一种常见的主要的图像退化过程。

场景和传感器两者导致的模糊可以通过空间域和频率域低通滤波器来建模。

而另一种常见的退化模型是图像获取时传感器和场景之间的均匀线性运动生成的图像模糊。

本实验的模糊模型采用的则是运动模糊,该模糊可以通过工具箱函数fspecial进行建模。

1.带噪声退化图像的复原在图像复原中经典的方法包括两种,分别是直接逆滤波和维纳滤波。

其中,直接逆滤波的复原模型如下所示,其中G(u,v)表示退化图像的傅里叶变换,H(u,v)则表示退化函数。

除了直接逆滤波之外,更为常见的是使用维纳滤波对退化图像进行复原,复原模型如教材100页4.7节所示。

数字图像处理第5章图像复原

数字图像处理第5章图像复原

5.3 有约束复原
5.3.1 5.3.2 5.3.3 5.3.4 有约束的最小二乘方图像复原 维纳滤波方法 有约束最小平方滤波 去除由匀速运动引起的模糊
5.3.1 有约束的最小二乘方图像复原
有约束图像复原技术是指除了要求了解关于退化系统的传 递函数之外,还需要知道某些噪声的统计特性或噪声与图 像的某些相关情况。根据所了解的噪声的先验知识的不同, 采用不同的约束ห้องสมุดไป่ตู้件,从而得到不同的图像复原技术。最 常见的是有约束的最小二乘方图像复原技术。 在最小二乘方复原处理中,有时为了在数学上更容易处理, 常常附加某种约束条件。例如,可以令Q为f的线性算子, 那么,最小二乘方复原问题可看成是使形式为||Qf||2的函 数,服从约束条件 的最小化问题。
第5章 图像复原 本章重点: 图像退化的一般模型 非约束复原方法 约束复原方法 非线性复原方法
第5章 图像复原
5.1 5.2 5.3 5.4 5.5 5.6 基本概念 非约束复原 有约束复原 非线性复原方法 几种其他图像复原技术 小结
5.1 基本概念
5.1.1 5.1.2 5.1.3 5.1.4 图像退化一般模型 成像系统的基本定义 连续函数的退化模型 离散函数的退化模型
5.2.2 逆滤波器方法
逆滤波法复原的基本原理:
H(u,v)可以理解为成像系统的“滤波”传递函数,在频域中系统的传递 函数与原图像信号相乘实现“正向滤波”,这里,G(u,v)除以H(u,v)起到 了“反向滤波”的作用,这意味着,如果已知退化图像的傅立叶变换 和“滤波”传递函数,则可以求得原始图像的傅立叶变换,经反傅立 叶变换就可求得原始图像f(x,y) 。
5.2.1 非约束复原的代数方法
在并不了解噪声项n的情况下,希望找到一个f,使得对在 最小乘方意义上来说近似于g,也就是说,希望找到一个f, 使得:

数字图像处理_第五章_图像复原

数字图像处理_第五章_图像复原
5.3 仅存在噪声时的复原 5.3.3 自适应滤波器 到目前为止,我们所讨论的 滤波器都是:一但选定了一种滤 波器,就不考虑从一点到另一点 图像性能(特征)的变化。 本节介绍两种滤波器,其行 为变化是基于 mxn内矩形窗口 S内的统计特征,叫自适应滤 xy 波器,其性能优于前边所有滤波 器性能。 自适应局部噪声消除滤波器 统计度量→均值,方差。 方差→平均对比度 滤波器作用于局部区域,滤 波器在中心化区域中任何点的响 应其于以下4个量:
5.2.4 噪声参数的估计 假设S代代表小带,则:
z P( z )
i i
z iS
2 ( z )2 P( z )
i i
z iS
zi为S中象素灰度值,P ( zi )归一化直方图。
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
数字图像处理
Chapter 5 Image Restoration
5.3 仅存在噪声时的复原
5.3.1 均值滤波器
算术均值滤波器 1 f ( x, y ) g ( x, y ) mn ( s ,t )S xy S xy 表示大小为m n中心在( x, y )的窗口
谐波均值滤波器 mn ˆ ( x, y ) f
数字图像处理
Chapter 5 Image Restoration
5.2 噪声模型
数字图像的噪声主要来源于图像获取和传输过程。
5.2.1 噪声的空间和频率特性 几个概念和要讨论的问题: 相关性:噪声是否与图像相关 频率特性:噪声在傅立叶域的频率内容 白噪声:谱为常量 本章假设:噪声独立于空间坐标,并与图像本身无关联。
数字图像处理
Chapter 5 Image Restoration

数字图像处理实验07图像的复原处理

数字图像处理实验07图像的复原处理

一、数字图像处理实验实验七 图像的复原处理一、实验目的熟悉几种在实际应用中比较重要的图像复原技术,学会用MATLAB复原函数对退化图像进行复原处理。

二、实验内容1.用点扩散(PSF)函数创建运动模糊图像,修改参数改变模糊程度。

2.用维纳滤波复原函数deconvwnr 对模糊图像进行复原重建。

三、实验原理图像在形成、传输和记录的过程中,由于受多种原因的影响,图像的质量会有下降,典型表现为图像模糊、失真、有噪声等。

这一降质的过程称为图像的退化。

而图像复原试图利用退化现象的某种先验知识(即退化模型),把已经退化了的图像加以重建和复原。

其目的就是尽可能地减少或去除在获取图像过程中发生的图像质量的下降(退化),恢复被退化图像的本来面目。

本实验主要学习如何使用MATLAB函数来恢复原图像,请参考第一部分4.7节MATLAB复原处理内容。

四、实验方法及程序MATLAB图像处理工具箱包含四个图像复原函数,本实验编程实现一个相对比较简单的维纳滤波复原函数。

1.用点扩散(PSF)函数创建运动模糊图像a) 无噪声运动模糊图像b) 有噪声运动模糊图像2.维纳滤波复原函数deconvwnra) 对无噪声运动模糊图像用deconvwnr(I,PSF)进行复原b)对有噪声运动模糊图像用deconvwnr(I,PSF)、deconvwnr(I,PSF,NSR)和deconvwnr(I,PSF,NCORR,ICORR)函数进行复原。

用help查阅复原函数的具体使用方法。

五、实验结果与分析1. 分别对复原后的图像进行分析和比较。

2. 叙述图像复原和图像增强两者之间的区别。

1。

数字图像处理第04_课图像复原

数字图像处理第04_课图像复原

数字图像处理Ch04. 图像复原OUTLINE •图像复原问题•图像退化与复原模型•图像复原方法–逆滤波–维纳滤波–约束最小二乘滤波–Lucy-Richardson算法•盲复原问题•什么是图像复原–针对图像退化而言的–数字图像获取的过程中产生的质量下降,称为图像退化–成像的每一个过程都可能引起退化–举例:成像过程干扰:运动模糊–举例:成像系统不理想:离焦、像散、像差–举例:成像条件不理想:湍流、云雾–举例:电路、传输、编解码噪声–图像复原目的是要由退化图像尽量恢复出理想图像•Importance–1964年美国水手4号火星探测飞船计划–耗资约1000万美元–Results:21 幅火星表面图像–图像退化降质意味着经济损失•Potential Applications–天文:地基观测大气扰动;成像系统不理想;噪声–遥感:大气扰动造成的降晰;相对地面移动导致的模糊;薄云–医学:噪声;分辨率增强–公安:照片复原;监控录像复原;–文件处理:文物保护和复原;扫描文档图像增强–Phase Retrieval–Super-resolution•图像复原与图像增强–图像增强更主观,目的使处理后的图像更有利于人眼观察–图像复原更倾向于客观过程,使处理后的图像最接近于理想图像•图像退化和复原建模:–物体的理想图像设为f(x,y)–由于成像不理想,实际得到的是退化图像g(x,y)–图像复原由给定g(x,y)去估计原图像f(x,y)的过程,恢复的结果记为f’(x,y)退化函数复原滤波函数图像退化复原模型•点扩散函数PSF–PSF:输入物为点光源时,经过成像过程得到的输出–原物体上的一个点若经过理想成像,应该在图像上也对应一个点–此时PSF为脉冲函数(delta)–非理想成像情况,PSF更复杂,可记做h(x, y, x’, y’)–线性成像系统,输入光场与PSF的卷积图像退化过程的描述(,)(,)(,)(,)G u v H u v F u v N u v =+=+g Hf n),(),(*),(),(y x n y x f y x h y x g +=•空域卷积形式:•频域变换形式:•矩阵形式:估计复原算子r (x ,y )估计复原算子r (x ,y )估计噪声估计噪声(,)x y η%估计退化函数估计退化函数(,)h x y %退化函数h(x,y)退化函数h(x,y)图像复原:简单情形•若认为图像退化过程中只受到噪声的干扰,则:•此时图像的复原问题即是噪滤波的问题–空域滤波–频域滤波–与图像增强中采用的技术一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像复原1、实验目的1、 熟练掌握图像的几何操作原理,图像几何变换的程序设计技术,可以按要求完成对任意图像几何变换。

2、掌握图像复原的原理及常用图像复原方法。

2、实验原理图像恢复指将退化的图像尽量恢复到原来的状态。

1、几何校正图像与原景物图像相比,会产生比例失调,扭曲,我们把这类图像退化现象称之为几何畸变,消除几何畸变的复原过程,称几何校正。

设两幅图像坐标系统之间几何畸变关系能用解析式来描述若函数h1(x,y)和h2(x,y)已知,则可以从一个坐标系统的像素坐标算出在另一坐标系统的对应像素的坐标。

在未知情况下, 通常h1(x,y)和h2(x,y)可用多项式来近似。

几何校正分平移、旋转、缩放、镜像、转置。

(1)图像旋转使用B=imrotate(A,angle,method); angle 是旋转的角度(单位是“度”);method 是插补的方法,可以是nearest (最邻近插补),bilinear (双线性插补),bicubic (双立方插补)。

还可使用B= B=imrotate(A,angle,method,’crop ’); crop 表示剪切。

(2)图像剪切使用:x2=imcrop(x,map),对索引图像进行交互式剪切;I2=imcrop(I), 对灰度图像进行交互式剪切;RGB2=imcrop(rgb),对彩色图像进行交互式剪切;x2=imcrop(x,map ,RECT),对索引图像进行非交互式剪切;I2=imcrop(I ,RECT), 对灰度图像进行非交互式剪切;rgb2=imcrop(rgb ,RECT),1(,)x h x y '=2(,)y h x y '=1100N N ij ij i j x a x y --=='=∑∑1100N N i j ij i j y b x y --=='=∑∑对彩色图像进行非交互式剪切;RECT是四元素向量[xmin ymin width height] 例如:rgb2=imcrop(rgb,[100 100 80 10]),(3)图像缩放使用B=imresize(A,m,method) 返回为A的m倍]大小的图像;b=imresize(A,[mrows ncols],method),返回为mrows× ncols]大小的图像。

(4)镜像分三种情况:垂直镜像、水平镜像、对角镜像。

低版本的matlab可以用mirror(I,n )函数,n=1、2、3J1=mirror(I,1);%原图像的水平镜像J2=mirror(I,2);%原图像的垂直镜像J3=mirror(I,3);%原图像的水平垂直镜像高版本的,使用flipdim(I,n),n=1、2、3J1=flipdim(I,1);%原图像的水平镜像J2=flipdim(I,2);%原图像的垂直镜像J3=flipdim(I,3);%原图像的水平垂直镜像还可以使用:tform=maketform('affine',[-1 0 0;0 1 0;width 0 1]);tform2=maketform('affine',[1 0 0;0 -1 0;0 height 1]);2、图像复原逆滤波复原、维纳滤波复原和盲复原MATLAB中的维纳滤波函数:deconvwnr( )J=deconvwnr(I,PSF,NSR ) 或 J=deconvwnr(I,PSF,NCORR,ICORR )NSR :信噪比,默认0 NCORR噪声自相关函数,ICORR原始图像自相关函数PSF点扩散函数,在处理时,必须定义。

如:PSF=fspecial('motion',LEN,theta) LEN运动向数个数,默认9;theta运动方向角,默认MATLAB提供deconvblind( )函数进行盲复原[J,PSF]=deconvblind(I,INITPSF,NUMIT,DAMPAR,WEIGHT,READOUT3. 运动模糊复原PSF = fspecial('motion',20,15);J = imfilter(I,PSF,'conv','circular');3、实验内容(包括实验程序、实验图片、实验数据、实验结果分析)(1)%设计程序,将已知图像分别按顺时针和逆时针旋转40度,%采用不同的插值方法后与原图像比较,分析统计数据。

clc;clear;I=imread('C:\Users\Administrator\Desktop\sy4_1.jpg'); imshow(I),title('原图')%%As=imrotate(I,-40,'nearest');An=imrotate(I,40,'nearest');figuresubplot(121),imshow(As),title('最邻近插补(顺时针40度)') subplot(122),imshow(An),title('最邻近插补(逆时针40度)') %%Bs=imrotate(I,-40,'bilinear');Bn=imrotate(I,40,'bilinear');figuresubplot(121),imshow(Bs),title('双线性插补(顺时针40度)') subplot(122),imshow(Bn),title('双线性插补(逆时针40度)') %%Cs=imrotate(I,-40,'bicubic');Cn=imrotate(I,40,'bicubic');figuresubplot(121),imshow(Cs),title('双立方插补(顺时针40度)') subplot(122),imshow(Cn),title('双立方插补(逆时针40度)') %%Ds=imrotate(I,40,'crop');Dn=imrotate(I,320,'crop');figuresubplot(121),imshow(Ds),title('剪切(顺时针40度)') subplot(122),imshow(Dn),title('剪切(逆时针40度)')(2)%设计程序将已知图像缩小到1/3,将图像放大3倍,%选择不同的插补方式,输出。

分析统计数据。

clc;clear;I=imread('C:\Users\Administrator\Desktop\sy4_1.jpg'); imshow(I),title('原图')%%Al=imresize(I,1/3,'nearest')As=imresize(I,3,'nearest')figuresubplot(121),imshow(Al),title('最邻近插补(缩小到1/3)') subplot(122),imshow(As),title('最邻近插补(放大3倍)') %%Bl=imresize(I,1/3,'bilinear')Bs=imresize(I,3,'bilinear')figuresubplot(121),imshow(Al),title('双线性插补(缩小到1/3)') subplot(122),imshow(As),title('双线性插补(放大3倍)') %%Cl=imresize(I,1/3,'bicubic')Cs=imresize(I,3,'bicubic')figuresubplot(121),imshow(Al),title('双立方插补(缩小到1/3)') subplot(122),imshow(As),title('双立方插补(放大3倍)')(3)%做一幅图像的水平、垂直、对角镜像图像及转置图像,%分析变化情况。

clc;clear;I=imread('C:\Users\Administrator\Desktop\sy4_1.jpg'); subplot(221),imshow(I),title('原图')%%J1=flip(I,1);subplot(222),imshow(J1),title('水平镜像')%%J2=flip(I,2);subplot(223),imshow(J2),title('垂直镜像')%%J3=flipdim(I,3);subplot(224),imshow(J3),title('对角镜像')(4)%设计程序从已知图像中剪切出[60 90 100 90]的部分后与原图像在同一画面输出,%加坐标,利用交互式剪切在图像中剪切出人头,并以30万像素存储。

clc;clear;A=imread('C:\Users\Administrator\Desktop\sy4_1.jpg');%%B=imcrop(A,[60 90 100 90])x=1:1:110y=1:1:110subplot(121),imshow(A),title('原图')axis onsubplot(122),imshow(B),title('剪切图')axis on%%figureRGB2=imcrop(A);RGB2=imresize(RGB2,[550,550])imshow(RGB2),title('交互式剪切')(5)%对退化的图像设置不同信噪比、噪声和自相关系数进行维纳滤波复原。

clc;clear;I=imread('C:\Users\Administrator\Desktop\sy4_1.jpg');%%I=imnoise(I,'poisson');PSF=fspecial('motion',9) %点扩散函数J=deconvwnr(I,PSF,0.5)subplot(121),imshow(I),title('原图噪声')subplot(122),imshow(J),title('复原图')(6)%对退化的图像设置不同信噪比、噪声和自相关系数进行盲复原处理。

相关文档
最新文档