高考文科数学核心考点总结.doc

合集下载

文科高级中学考试数学重点知识点.doc

文科高级中学考试数学重点知识点.doc

文科高考数学重点知识点文科高考数学重点知识点总结1.十四个必考考点:(1)集合:集合的运算;(2)复数:复数的运算或几何意义;(3)极坐标与参数方程:化直角坐标;(4)算法:(5)解三角形:(6)数列:等差(比)数列的概念及运算,问法会有创新;(7)几何证明选讲:(8)三视图:综合考察多面体或旋转体的基本性质、空间几何元素的位置关系、表面积或体积的计算;(9)平面向量:平面向量的概念及运算或小综合,或与思维方法有关;(10)二元一次不等式组有关的问题:小综合、问法上会有创新;(11)直线与圆:综合在几何证明选讲或极坐标、参数方程中考察。

(12)圆锥曲线:考察定义、几何性质或标准方程;(13)排列组合、二项式定理:主要考察利用两个原理或两个计数模型计数。

(14)函数:综合、创新。

另外,定积分、几何概型在近四年的高考中都出现了一次,也属于容易题,在今年的备考中也要加以注意。

2.除了一些必考的知识点外,应对中档题还有哪些是必须掌握的内容?(1)三角变换、正弦型函数的图像与性质、最值或与解三角形相关的问题。

(2)立体几何中平行垂直的证明、空间角的求法。

特别要注意最后一问往往是探究性问题。

(3)概率与统计:主要考察对概念的理解及在解决实际问题中的应用。

(4)导数及函数性质的应用。

与往年相比在最后一问上可能会有变化或创新。

(5)解析几何:主要以椭圆或抛物线为背景,考察解析法的运用及分析问题和解决问题的能力,综合性较强。

3.要得高分,肯定还要拿下一些较难的题目,较难题都考查哪些内容?(1)第8题、14题:多以几何问题或实际问题为背景,考察学生的思维能力、探究能力。

常常要构造函数,利用函数的观点解决问题以及数列有关的问题。

(2)第20题主要考察思维能力和逻辑推理能力。

往往以组合数学的内容为依托。

通常三问,第三问难度较大(一般5分)。

文科高中生必看课外书文科高中生必看课外书精选1.《论语》2.《三国演义》(罗贯中)3.《红楼梦》(曹雪芹)4.《呐喊》(鲁迅)5.《女神》(郭沫若)6.《子夜》(茅盾)7.《家》(巴金)8.《雷雨》(曹禺)9.《围城》(钱钟书)10.《谈美书简》(朱光潜)11.《哈姆莱特》(莎士比亚)12.《堂吉诃德》(塞万提斯)13.《歌德谈话录》(艾克曼)14.《巴黎圣母院》(雨果)15.《欧也妮葛朗台》(巴尔扎克) 16.《匹克威克外传》(狄更斯)17.《复活》(列夫托尔斯泰)18.《普希金诗选》(普希金)19.《老人与海》(海明威)20.《泰戈尔诗选》(泰戈尔)课外必读书目文科高中生必看课外书经典1. 钱钟书《围城》2. 韩寒《青春》3.《一座城池》4. 亦舒《人淡如菊》5. 《铁屋中的呐喊》6. 周国平《守望的距离》7. 《雪国》8. 《活着》9. 《尘埃落定》10. 《黄金时代》11. 《绿毛水怪》12. 《欧亨利小说集》13.《长恨歌》14. 《霜冷长河》15.《兄弟》文科高中生必看课外书推荐1.《受戒》2.《曾国藩家书》3. 《百年孤独》。

高考文科数学必考知识点

高考文科数学必考知识点

高考文科数学必考知识点高考文科数学必考知识点主要包括数与代数、函数与方程、几何与空间、统计与概率四个模块,下面将对每个模块的重点内容进行详细介绍。

一、数与代数1. 整式与分式整式是只包含有限个非负整数次幂的代数式,如2x²+3x-1;分式是由多项式除以非零多项式得到的表达式,如(2x²+3x-1)/(x+2)。

必考知识点包括整式的加减乘除运算、分式的约分和等值变形。

2. 方程与不等式方程是含有未知数的等式,如2x+3=7;不等式是含有未知数的不等式,如2x+3>7。

必考知识点包括一元一次方程及其应用、一元二次方程及其应用、一元一次不等式及其应用。

3. 指数与对数指数是用来表示乘法的重复操作,如2³=2×2×2;对数是指数运算的逆运算,如log₂8=3。

必考知识点包括指数与幂、对数的定义和性质。

4. 等比数列与等差数列等差数列是指相邻两项之差相等的数列,如1, 3, 5, 7, ...;等比数列是指相邻两项之比相等的数列,如2, 4, 8, 16, ...。

必考知识点包括等差数列与等比数列的通项公式、求和公式及其应用。

二、函数与方程1. 函数函数是一个映射关系,将一个集合的每个元素都对应到另一个集合中的唯一元素,如y=x ²。

必考知识点包括函数的定义、函数的图像、函数的性质以及常见的基本函数。

2. 二次函数二次函数是一个以x的二次多项式形式表示的函数,如y=ax²+bx+c。

必考知识点包括二次函数的图像、二次函数的最值、零点及其应用。

3. 指数函数与对数函数指数函数是以变量为指数的函数,如y=2ˣ;对数函数是指数函数的逆运算,如y=log₂x。

必考知识点包括指数函数与对数函数的图像、性质和应用。

4. 三角函数三角函数是描述角度与边长之间关系的函数,如y=sin(x)。

必考知识点包括三角函数的图像、周期性、相关性质以及应用。

高考数学文科知识点总结

高考数学文科知识点总结

高考数学文科知识点总结一、函数及其图象(一)函数的概念及表示法1、映射2、函数的概念3、函数的自变量和因变量4、函数的表示法(二)函数的性质1、函数值和函数的性质2、函数的奇偶性3、函数的周期性(三)函数的图象1、函数的图象2、函数的图象的性质3、函数的图象的平移、拉伸和翻折(四)函数的运算及应用1、函数的四则运算2、函数的复合3、函数的逆函数4、函数的应用(五)二次函数1、二次函数的概念2、二次函数的图象3、二次函数的性质二、导数与微分(一)函数的变化率与导数1、平均速度和瞬时速度2、导数的概念3、导数的计算4、导数的表示法5、导数的应用(二)函数的微分与微分中值定理1、微分的概念2、微分的计算3、微分中值定理(三)导数的应用1、函数的单调性和极值2、函数的凹凸性及拐点3、函数的图象与导数的关系三、不定积分(一)不定积分的概念1、原函数与不定积分2、不定积分的性质3、不定积分的计算4、不定积分的换元法(二)不定积分的应用1、定积分的概念2、定积分与不定积分的关系3、定积分的计算4、定积分的应用四、数学归纳法(一)数学归纳法的基本原理1、数学归纳法的基本原理2、数学归纳法的一般步骤3、数学归纳法的应用五、平面向量(一)平面向量的概念1、平面向量的概念2、平面向量的表示法3、平面向量的线性运算(二)平面向量的数量积1、数量积的概念2、数量积的运算法则3、数量积的应用(三)平面向量的向量积1、向量积的概念2、向量积的运算法则3、向量积的应用六、坐标系与参数方程(一)直角坐标系1、点坐标2、点的坐标与到原点的距离3、直角坐标系的方程及性质(二)参数方程及其图象1、参数方程的概念2、参数曲线的性质3、参数方程的变形七、解析几何(一)直线与圆1、直线的方程2、直线的位置关系3、圆的方程4、圆的位置关系(二)圆锥曲线1、椭圆的定义及方程2、双曲线的定义及方程3、抛物线的定义及方程(三)空间向量1、空间向量的概念2、空间向量的数量积3、空间向量的向量积八、统计学(一)统计量的概念1、统计量的概念2、平均数的计算3、中位数和众数的计算(二)频率分布1、频率分布的概念及性质2、频率分布的应用3、频率分布的分析及图示(三)概率统计1、概率的概念2、基本事件与必然事件3、概率的计算九、数理逻辑(一)命题与联结词1、命题的概念2、命题的联结词3、命题的等值式(二)命题的推理1、充分条件与必要条件2、等价命题3、充要条件推理(三)命题的逻辑关系与应用1、充分必要条件2、逻辑与或非命题3、逻辑连接词的运用总之,以上是高考数学文科的知识点总结,通过系统的学习和实践,相信学生们可以掌握这些知识点,从而取得理想的成绩。

高三常考知识点文科数学

高三常考知识点文科数学

高三常考知识点文科数学一、函数与方程函数是高中文科数学中的重要概念,它描述了两个变量之间的依赖关系。

在高考中,函数的性质、运算及应用是常考的知识点。

例如,二次函数的图像和性质、指数函数和对数函数的基本概念及其运算法则等。

同时,函数与方程之间的联系也是考查的重点,如函数的零点与方程的根之间的关系。

二、数列与级数数列是高中数学中又一核心内容,高考中对等差数列和等比数列的考查尤为频繁。

学生需要掌握这两种数列的通项公式、求和公式以及它们的应用。

此外,级数的概念和简单级数的求和也是文科数学的一部分,如等差级数和等比级数的求和公式。

三、三角函数三角函数是解决与角和三角形相关问题的重要工具。

高考中,三角函数的图像和性质、三角恒等变换、解三角形问题等都是考查的重点。

学生需要熟练掌握正弦、余弦、正切等基本三角函数的性质,以及如何运用这些知识解决实际问题。

四、解析几何解析几何部分,高考主要考查直线和圆的方程、直线与圆的位置关系、圆锥曲线的基本概念等。

学生需要理解坐标系中点的坐标、线段的中点和斜率等基本概念,并能够运用这些知识求解问题。

五、概率与统计概率与统计在文科数学中的应用广泛,高考中通常涉及到随机事件的概率计算、统计量的计算以及概率分布等。

学生需要掌握基本的概率计算方法,如加法原理和乘法原理,以及如何利用样本数据进行统计分析。

六、数学思维与方法高考数学不仅考查学生的计算能力,还注重考查学生的数学思维和解题方法。

这包括逻辑推理、数学证明、数学建模等。

学生应该学会如何运用数学知识分析问题、解决问题,培养良好的数学思维习惯。

七、综合题的解题策略综合题是高考数学中难度较大的题型,它往往涉及多个知识点的综合运用。

在解答这类题目时,学生需要具备扎实的基础知识,同时还要能够灵活运用各种解题技巧和策略。

例如,通过画图辅助理解问题、分类讨论、转化化归等方法来简化问题,从而更有效地求解。

总结而言,高三文科数学的复习应该注重基础知识的巩固和综合运用能力的提升。

高三文科数学知识要点总结

高三文科数学知识要点总结

高三文科数学知识要点总结一、函数与方程1. 函数的概念与性质:函数的定义、函数的自变量和因变量、函数的定义域和值域、函数的奇偶性等。

2. 一次函数与二次函数:一次函数的特征、一次函数的图像与性质、一次函数的解析式、二次函数的标准型、顶点式与一般式、二次函数的图像与性质等。

3. 指数函数与对数函数:指数函数与指数方程的定义与性质、对数函数与对数方程的定义与性质、指数函数与对数函数的图像与性质等。

4. 三角函数与三角方程:三角函数的概念与性质、三角函数的图像、三角函数的基本关系式、三角方程的解法等。

5. 幂函数与反比例函数:幂函数的概念与性质、幂函数的图像与性质、反比例函数的概念与性质、反比例函数的图像与性质等。

6. 方程与不等式:方程的变形、方程及不等式的解集表示、一元一次方程及一元一次不等式的解法、二元一次方程组的解法、一元二次方程与一元二次不等式的解法等。

二、数列与数学归纳法1. 等差数列与等比数列:等差数列的概念与性质、等差数列的通项公式与前n项和公式、等比数列的概念与性质、等比数列的通项公式与前n项和公式等。

2. 数学归纳法:数学归纳法的基本思想与应用、数列与数学归纳法的关系、数学归纳法的证明与推理等。

3. 递推数列与递推关系式:递推数列的概念与性质、递推关系式的建立与应用、递推数列求极限与求和等。

三、三角函数与解三角形1. 三角函数的基本关系式与诱导公式:正弦定理、余弦定理、正切定理等。

2. 解三角形:已知两边及夹角求第三边、已知两角及一边求其它边、已知三角形的三边求角等。

四、空间几何与立体几何1. 空间向量:向量的定义与性质、向量的线性运算、共线、共面等。

2. 空间平面与直线:平面的一般方程与点法式、直线的三种表示方法、平面与直线的位置关系等。

3. 空间几何体的求体积与表面积:长方体、正方体、柱体、锥体、球体等的体积与表面积的计算等。

五、概率与统计1. 随机事件与概率:随机事件与样本空间、事件的运算、概率的定义与性质、条件概率与乘法定理、独立事件与加法定理等。

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳(2篇)

高考文科数学知识点总结归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

第七,解析几何高考的难点,运算量大,一般含参数。

文科数学高频必考考点第一部分:选择与填空1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);2.常用逻辑用语(充要条件,全称量词与存在量词的判定);3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);4.幂、指、对函数式运算及图像和性质5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);6.空间体的三视图及其还原图的表面积和体积;7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;12.向量数量积、坐标运算、向量的几何意义的应用;13.正余弦定理应用及解三角形;14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;15.线性规划的应用;会求目标函数;16.圆锥曲线的性质应用(特别是会求离心率);17.导数的几何意义及运算、定积分简单求法18.复数的概念、四则运算及几何意义;19.抽象函数的识别与应用;第二部分:解答题第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;第18题:(文)概率与统计(概率与统计相结合型)(理)离散型随机变量的概率分布列及其数字特征;第19题:立体几何①证线面平行垂直;面与面平行垂直②求空间中角(理科特别是二面角的求法)③求距离(理科:动态性)空间体体积;第20题:解析几何(注重思维能力与技巧,减少计算量)①求曲线轨迹方程(用定义或待定系数法)②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)③求定点、定值、最值,求参数取值的问题;第21题:函数与导数的综合应用这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

高考文科数学知识点总结归纳

高考文科数学知识点总结归纳

高考文科数学知识点总结归纳高考文科数学考试主要涉及以下几个知识点:1. 代数与函数:- 线性方程与线性不等式- 二次函数与一元二次方程- 指数与对数- 三角函数与三角方程- 复数与复数方程2. 数列与数学归纳法:- 等差数列与等比数列- 递推数列- 数学归纳法的应用3. 几何与向量:- 角的概念与性质- 三角形与四边形的性质- 圆的概念与性质- 直线与平面的方程- 向量的定义与运算4. 概率与统计:- 事件的概念与性质- 离散型随机变量与连续型随机变量- 概率的计算与性质- 统计的基本概念与方法下面对每个知识点进行进一步总结:1. 代数与函数:- 线性方程与线性不等式:高考文科数学中的线性方程与线性不等式主要涉及到一元一次方程与一元一次不等式的求解。

需要掌握将方程转化为标准形式、去括号、移项、合并同类项、整理得到方程的解,以及用图象法解不等式。

- 二次函数与一元二次方程:二次函数与一元二次方程是高考文科数学中重要的知识点。

需要掌握二次函数的顶点、对称轴、单调性、最值等性质,以及一元二次方程的求解方法,包括配方法、公式法、因式分解法等。

- 指数与对数:指数与对数是高考文科数学中的基本知识点,涉及到指数函数与对数函数的性质、指数方程与对数方程的求解方法,以及指数对数的换底公式等。

- 三角函数与三角方程:三角函数与三角方程是高考文科数学中的重要内容。

需要掌握三角函数的定义、性质与图象,以及三角方程的求解方法,包括基本解、通解等。

- 复数与复数方程:复数与复数方程是高考文科数学中的较为高级的知识点。

需要掌握复数的定义、运算与性质,以及复数方程的求解方法,包括一次解法与二次解法。

2. 数列与数学归纳法:- 等差数列与等比数列:高考文科数学中经常涉及到等差数列与等比数列的问题,需要掌握等差数列与等比数列的通项公式、求和公式以及相关性质。

- 递推数列:递推数列是高考文科数学中常见的一种数列,需要了解递推数列的定义、通项公式、前n项和以及性质。

高考文科数学总知识点

高考文科数学总知识点

高考文科数学总知识点高考文科数学是高中毕业生参加高考时必须考察的科目之一,它的考察对象包括数学的基本概念、运算规则、解题方法等等。

下面是高考文科数学的总知识点。

1.数与代数1.1 数的性质与运算1.2 代数运算与因式分解1.3 一元一次方程与一元一次不等式1.4 二次根式与二次方程1.5 高次方程与不等式1.6 数列的概念与性质2.函数2.1 函数的性质与图像2.2 一次函数与二次函数2.3 指数函数与对数函数2.4 三角函数3.几何3.1 点、直线和平面3.2 各种角的概念与性质3.3 三角形的概念与性质3.4 四边形的概念与性质3.5 圆的概念与性质3.6 空间几何4.概率与统计4.1 随机事件与概率4.2 统计的基本概念和方法4.3 相关系数与回归直线5.数学推理与证明5.1 几何证明5.2 数学归纳法5.3 数论证明以上是高考文科数学的总知识点,通过对这些知识点的掌握,考生能够在高考中取得较好的成绩。

高考数学的重点在于对基本概念的理解和解题能力的培养,所以考生在备考过程中要注重理论的学习和题目的练习。

同时,考生还要注重方法的灵活运用,多思考、多总结,提高解题的效率和准确性。

为了高效地备考数学,考生可以采取以下方法:首先,理论学习要扎实。

要充分理解并掌握每一个知识点,掌握其内在的联系和运用方法。

其次,进行大量的习题训练。

通过大量的练习,逐步提高解题的技巧和速度。

再次,注重错题的总结和订正。

对于做错的题目,要找出错因,加以总结和订正,避免同样的错误再次出现。

最后,要有计划地进行复习。

将所有的知识点进行系统的梳理,进行有针对性的复习,强化薄弱环节。

总之,高考文科数学是一门理论与实践相结合的学科,需要灵活运用所学知识进行解题。

通过系统的学习和大量的练习,考生一定能够取得令人满意的成绩。

希望大家都能在高考中取得优异的成绩,实现自己的理想!。

高考数学文必考知识点归纳

高考数学文必考知识点归纳

高考数学文必考知识点归纳高考数学文科必考知识点归纳涉及多个领域,包括代数、几何、概率统计等。

以下是一些重要的知识点归纳:1. 函数与方程:- 函数的概念、性质(单调性、奇偶性、周期性等)- 函数的图像与变换- 二次函数、指数函数、对数函数、幂函数、三角函数等基本函数的性质和图像- 函数的零点与方程的根- 函数的复合与反函数2. 不等式:- 不等式的基本性质- 解一元一次不等式和一元二次不等式- 分式不等式和绝对值不等式的解法- 基本不等式的应用3. 数列:- 等差数列和等比数列的定义、通项公式和求和公式- 数列的单调性- 数列的极限概念4. 三角函数与三角恒等变换:- 三角函数的定义、图像和性质- 三角恒等式:和差化积、积化和差、倍角公式、半角公式等- 三角函数的图像变换5. 解析几何:- 直线的方程:点斜式、斜截式、一般式- 圆的方程:标准式和一般式- 椭圆、双曲线、抛物线的标准方程和性质- 点、直线、圆的位置关系6. 立体几何:- 空间直线与平面的位置关系- 空间多面体和旋转体的表面积和体积计算- 空间向量在立体几何中的应用7. 概率与统计:- 随机事件的概率计算- 条件概率和独立事件- 离散型随机变量及其分布列- 统计数据的收集、整理和描述:频率分布表、直方图、箱线图 - 统计量的计算:均值、中位数、众数、方差、标准差8. 导数与微分:- 导数的定义和几何意义- 基本导数公式- 复合函数、反函数、隐函数的导数- 微分的概念和应用9. 积分:- 不定积分和定积分的概念- 基本积分公式- 定积分在几何和物理中的应用10. 数学思维与方法:- 归纳推理与演绎推理- 数学建模与问题解决策略这些知识点是高考数学文科考试中的重点内容,考生需要对这些知识点有深入的理解和熟练的应用能力。

在复习过程中,建议通过大量的练习题来巩固知识点,并掌握解题技巧。

同时,注意培养数学思维,提高解题效率。

(完整)文科高考数学考点汇总,推荐文档

(完整)文科高考数学考点汇总,推荐文档

文科高考数学考点汇总考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。

下面是为大家整理的文科高考数学考点,希望对大家有所帮助!文科高考数学考点梳理专题一:集合考点1:集合的基本运算考点2:集合之间的关系专题二:函数考点3:函数及其表示考点4:函数的基本性质考点5:一次函数与二次函数.考点6:指数与指数函数考点7:对数与对数函数考点8:幂函数考点9:函数的图像考点10:函数的值域与最值考点11:函数的应用专题三:立体几何初步考点12:空间几何体的结构、三视图和直视图考点13:空间几何体的表面积和体积考点14:点、线、面的位置关系考点15:直线、平面平行的性质与判定考点16:直线、平面垂直的判定及其性质考点17:空间中的角考点18:空间向量专题四:直线与圆考点19:直线方程和两条直线的关系考点20:圆的方程考点21:直线与圆、圆与圆的位置关系专题五:算法初步与框图考点22:算法初步与框图专题六:三角函数考点23:任意角的三角函数、同三角函数和诱导公式考点24:三角函数的图像和性质考点25:三角函数的最值与综合运用考点26:三角恒等变换考点27:解三角形专题七:平面向量考点28:平面向量的概念与运算考点29:向量的运用专题八:数列考点30:数列的概念及其表示考点31:等差数列考点32:等比数列考点33:数列的综合运用专题九:不等式考点34:不等关系与不等式考点35:不等式的解法考点36:线性规划考点37:不等式的综合运用专题十:计数原理考点38:排列与组合考点39:二项式定理专题十一:概率与统计考点40:古典概型与几何概型考点41:概率考点42:统计与统计案例专题十二:常用逻辑用语考点43:简单逻辑考点44:充分条件与必要条件专题十三:圆锥曲线考点45:椭圆考点46:双曲线考点47:抛物线考点48:直线与圆锥曲线的位置关系考点49:圆锥曲线方程考点50:圆锥曲线的综合问题专题十四:导数及其应用考点51:导数与积分考点52:导数的应用专题十五:推理与证明考点53:合情推理与演绎推理考点54:直接证明与间接证明考点55:数学归纳法专题十六:数系的扩充与复数的引入考点56:数系的扩充与复数的引入专题十七:选考内容考点57:几何证明选讲考点58:坐标系与参数方程考点59:不等式选讲看过"文科高考数学考点汇总"的还。

文科高考数学知识点归纳总结

文科高考数学知识点归纳总结

文科高考数学知识点归纳总结数学作为文科高考的一门重要科目,对于考生来说有着重要的意义。

在备考过程中,系统地总结和归纳数学知识点是非常必要的。

本文将对文科高考数学知识点进行归纳总结,以帮助考生更好地复习备考。

一、函数与方程1. 一元二次函数- 函数定义及性质- 二次函数的图像- 顶点坐标与对称轴方程- 函数的增减性与极值点- 二次函数与一元二次方程的关系2. 指数与对数函数- 指数函数和对数函数的定义与性质- 指数函数与对数函数的图像和性质- 对数运算的基本性质与常用公式- 指数与对数方程的解法3. 复数- 复数的定义与表示- 复数的运算法则- 复数的共轭与模- 复数在平面直角坐标系中的表示与性质- 复数方程的解法二、概率与统计1. 概率- 随机事件与概率的定义- 事件的运算与性质- 概率的计算方法(频率方法、几何方法、古典概型) - 条件概率与独立事件- 排列与组合2. 统计- 数据的收集与整理- 数据的频数分布与频率分布- 平均数、中位数与众数- 方差与标准差- 相关系数与回归直线三、数列与数列的和1. 等差数列- 等差数列的定义与通项公式- 等差数列的性质与运算- 等差数列的前n项和与等差中项2. 等比数列- 等比数列的定义与通项公式- 等比数列的性质与运算- 等比数列的前n项和3. 常数项数列- 常数项数列的定义与性质- 常数项数列的前n项和与通项公式四、立体几何1. 三角形与圆- 三角形内角和- 三角形的中线与高线- 圆的定义与性质- 弧长、扇形面积与弓形面积- 圆锥与圆台2. 空间几何体- 直线与平面的交线- 空间几何体的体积与表面积- 空间几何体间的距离和角五、解析几何1. 平面几何- 点、直线、向量与平面的关系- 直线与平面的距离- 直线与平面的夹角2. 圆锥曲线- 椭圆、双曲线与抛物线的定义与性质 - 圆锥曲线的标准方程- 圆锥曲线的参数方程六、数理逻辑1. 命题与谓词逻辑- 命题与命题的联结词- 命题公式与真值表- 谓词逻辑的概念与表示2. 推理与谬误- 推理的基本形式与规律- 谬误的分类与辨析综上所述,文科高考数学知识点的归纳总结涵盖了函数与方程、概率与统计、数列与数列的和、立体几何、解析几何以及数理逻辑等多个重要内容。

文科高等数学重要知识点汇总

文科高等数学重要知识点汇总

第一章函数与极限一、内容提要1.函数是微积分研究的对象,定义域、对应法则构成其两要素。

2.极限分成数列极限与函数极限,是微积分学的基础,以后的内容绝大多数与此紧密相关。

3.无穷小与无穷大是两个特殊的变量,为了更精细的研究它们之间的关系,必须讨论它们之间比较时产生的阶的关系。

4.求极限的方法有多种,本章主要有利用极限运算法则及两个极限存在法则方法,并利用后者得到两个重要极限。

5.利用极限来描述连续这种直观现象是用极限对函数研究的第一次应用,并得到了初等函数的连续性。

作为连续函数,当其在闭区间上时具有特殊的性质。

二、重要结论1.lim an =a的定义为:∀ε>0,∃N>0,∀n>N,满足an−a<ε。

n→∞2.lim f (x)=A的定义为:∀ε>0,∃δ>0,∀x∈U(x,δ),满足f(x)−A<ε。

x→x0lim+f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x,x+δ),满足f(x)−A<ε。

x→xlim−f(x)=A的定义为:∀ε>0,∃δ>0,∀x∈(x−δ,x),满足f(x)−A<ε。

x→xlim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。

x→∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x>X时,成立f(x)−A<ε。

x→+∞lim f(x)=A的定义为:∀ε>0,∃X>0,∀x满足x<−X时,成立f(x)−A<ε。

x→−∞3.数列极限或函数极限若存在则必唯一。

4.收敛数列必为有界数列,函数极限存在有局部有界性。

5.函数极限若存在,则有局部保号性。

6.lim f (x)=A,当n→∞时,xn与上极限中的x有相同的变化趋势,则lim f(xn)=A。

n→∞7.lim f(x)=A⇔f(x)=A+o(1)。

文科数学高考常考知识点总结归纳

文科数学高考常考知识点总结归纳

文科数学高考常考知识点总结归纳高考文科数学必考7大题型第一,函数与导数主要考点:利用函数单调性比较大小、分段函数、函数周期性、函数奇偶性、函数单调性、函数零点和利用导数求值。

第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

主要考向量的运算、应用等题型。

第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。

主要考求数列通项、数列求或一些相关应用题型。

第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

主要考不等式的解法、不等式的证明、不等式的应用等题型。

第五,概率和统计这部分和我们的生活联系比较大,属应用题,主要出一些基础题或中档题,难度不是很大。

主要考线性回归、抽样方法、二项分布等题型。

第六,空间向量与立体几何空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

主要考察对定理的熟悉程度、运用程度。

主要考空间向量及其运算和空间向量的应用等题型。

第七,解析几何几何是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

主要考直线方程、圆的方程、圆锥曲线和对称性问题等题型。

高考文科数学必背公式函数、导数1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosAsin(A+B)=sinCsin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2tan2A=2tanA/[1-(tanA)2](sinA)2+(cosA)2=1常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot (2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα高考文科数学答题技巧1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

高中文科数学公式及知识点总结大全(精华版).doc

高中文科数学公式及知识点总结大全(精华版).doc

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧=⎨-<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

文科高考数学必背知识点

文科高考数学必背知识点

文科高考数学必背知识点
一、数学基础知识点
1.关系和映射:包括函数、多项式函数、指数函数、对数函数、三角函数等基本关系和映射的概念、性质和图像。

2.数列和数列的通项公式:包括等差数列、等比数列、等差数列的通项公式、等比数列的通项公式等。

3.平面几何:包括平面点的坐标、平面上的图形的性质、平面几何中的相似性质和等角性质等。

4.立体几何:包括空间点的坐标、直线和平面的方程、立体几何中的交线、投影和旋转等。

5.概率与统计:包括概率的基本原理、离散型概率分布、连续型概率分布、统计学中的抽样和参数估计等。

二、解题技巧
1.分析题目:理解题目的意思,明确要求解的问题。

2.掌握解题方法:根据题目中的条件和要求,选择合适的解题方法。

3.引入辅助条件:对于复杂的问题,可以引入适当的辅助条件来简化问题的求解过程。

4.整理思路:将题目中给出的条件和要求进行整理和归类,有助于更好地理解问题的本质和解题思路。

5.分步求解:对于较复杂的问题,可以采用分步求解的方法,逐步推进,确保每一步都是正确的。

6.变量替换:对于一些特殊的问题,可以采用变量替换的方法,将问题转化为更简单的形式。

7.画图辅助:对于几何题目,可以通过画图来辅助解题,有助于直观地理解问题的条件和解题的过程。

(完整)高考文科数学知识点总结汇总,推荐文档

(完整)高考文科数学知识点总结汇总,推荐文档

高中数学 必修1知识点第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称记号意义性质示意图交集A BI{|,x x A ∈且}x B ∈(1)A A A =I(2)A ∅=∅I (3)A B A ⊆I A B B ⊆I BA并集A BU{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅I ð 2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.yxo⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤; (2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a表示;当n 是偶数时,正数a 的正的n 次方根用符号na 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a没有n 次方根.②式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n na a =;当n 为奇数时,n n a a =;当n 为偶数时, (0)|| (0)n n a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m naa a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R 值域(0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a =-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O•ab x 2-=0)(>k f kxy1x 2x O•a b x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O•ab x 2-=k 0)(>k fxy1x 2x O•ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O•kxy1x 2x O•k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a-≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用 一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

文科高考数学必考知识点

文科高考数学必考知识点

文科高考数学必考知识点高考对数学的要求并不像理科那样严苛,但作为一个文科生,熟练掌握数学知识也是非常重要的。

下面将介绍文科高考数学必考的知识点。

一、代数与函数代数与函数是文科高考数学中最基础也是最重要的知识点之一。

在代数方面,需要熟练掌握各类代数式的展开与因式分解,以及一些常见的代数运算法则。

在函数方面,需要理解函数的定义与性质,并能够应用在各种实际问题中。

二、数列与数与等差数列、等比数列和特殊数列是文科高考数学中常见的数列。

必须掌握它们的定义、性质和一些典型的应用题。

另外,需要再了解二项式定理、排列组合和概率,这些内容有时也会涉及到数列的概念。

三、几何几何是文科高考数学中相对困难的部分,但也是必考的知识点。

重点在于掌握各种几何图形的性质,如三角形、四边形和圆的性质等。

此外,需要掌握各种几何定理的证明方法。

在解题中,还需要熟练运用几何知识解决实际问题。

四、概率与统计概率与统计是文科高考数学中相对简单的部分。

概率方面,需要了解事件的定义,熟练掌握概率计算的方法,并能够应用到实际问题中。

统计方面,需要熟悉统计数据的处理和分析方法,能够计算各种统计指标,并能够对实际问题进行统计推断。

五、数论数论在文科高考数学中比较偏重理论,但也是必考的知识点。

数论是研究整数的性质和规律的学科,在高考中常涉及到素数、因子、最大公约数、最小公倍数等概念。

需要理解和掌握这些概念的定义、性质和应用。

六、不等式不等式在文科高考数学中的地位也非常重要。

需要熟练掌握各种不等式的性质和解法,能够运用自己的知识解决实际问题。

总之,文科高考数学必考知识点包括代数与函数、数列与等差数列、几何、概率与统计、数论和不等式等内容。

熟练掌握这些知识点对于提高数学成绩至关重要。

在备考过程中,建议多做一些相关的习题,通过反复练习来巩固知识。

此外,还要灵活运用数学知识解决实际问题,提高自己的应用能力。

只有在理论与实践相结合的基础上,才能取得理想的成绩。

高考文科数学必考知识点归纳

高考文科数学必考知识点归纳

高考文科数学必考知识点归纳精选全国高考文科数学必考知识点一、基本概念1.函数与曲线:定义函数与曲线,二次函数方程;二次曲线函数表达式;参数方程的图形;定义域和值域;一次函数与l2函数的性质;反函数的求解;函数和曲线变换;极坐标函数图形;求值点;联系函数和曲线。

2.三角函数:三角函数基本性质;弧度和角度的关系;周期性特点;正弦定理、余弦定理及其应用;正弦曲线以及余弦曲线的性质;三角函数变换;三角函数的值的计算。

3.解析几何:定义几何图形,平面直角坐标系;圆的性质;椭圆及其性质;双曲线的特点;点、直线、圆及其几何关系;不等式的图形表示;空间几何图形;解析几何方法解决几何问题;锐角三角形内角和外角的关系;三角函数与角度;等腰三角形及其特殊性质;空间三角形和其内角和外角关系;四边形面积;六边形面积;新结构和性质;特殊定点定理和性质。

4.统计:统计的基本概念;概率的含义;概率的计算;分类资料的相互关系;抽样分析;概率的判断;统计数据的分类;统计数据的计算;统计图的制作及其应用;回归分析;误差估计。

二、代数与方程1.代数:定义多项式;解题步骤和算法;系数;根;因式分解;乘法定理;互异因数;无穷序列求和;除号自由把法;十二项式;因式定理;求取代数方程的根;多项式的因式分解;代数的性质;多项式的奇偶性;分数的运算;平方根运算。

2.方程:定义方程;一元二次方程的求解;整式化简;同余方程;不等式及其解法;定义不等式;不等式解法;二元一次方程组;合并算法;解法及应用;三元一次方程组;连立方程解法;恒等变换;解三元一次方程组。

三、推理与证明1.数学推理:数学推理的基本概念;式子、条件、命题、证明;直觉猜想;演绎推理;证明方式和思路;言语推理;判断推理;数列的构造;数列的求和及其性质;模式推理;推理与逻辑;数学归纳法;归纳证明;归纳定理;反证法的应用;数论。

2.证明方法:数论的基本概念;数论的证明方法;数学分析的基本任务;证明的步骤和思路;数学初步证明;假设证明法;特例法;反证法;常数项法;例证法;椭圆函数的性质;变量分离法。

文科数学高考重点总结归纳

文科数学高考重点总结归纳

文科数学高考重点总结归纳一、函数与方程在文科数学高考中,函数与方程是一个非常重要的部分。

其中,常见的函数类型包括一次函数、二次函数、指数函数、对数函数、三角函数等。

在解题过程中,需要熟练掌握函数的性质、图像的变化规律以及函数的应用问题。

二、概率与统计概率与统计是文科数学中另一个重点内容。

在高考中经常出现的问题包括样本空间、随机事件、频率和概率等。

在解题过程中,需要运用概率的基本原理与方法,进行事件的计算和分析;同时,需要理解并掌握统计的基本概念和统计图表的绘制与解读。

三、数列与数列的应用数列在文科数学中也是一个重要的考点。

要求学生熟练掌握等差数列和等比数列的概念、性质和应用。

掌握常数列的通项公式和前n项和公式。

在解题中要能灵活运用数列的相关知识,解决实际问题。

四、立体几何立体几何是数学中比较抽象且复杂的一部分,也是文科数学高考的重点之一。

主要包括正方体、长方体、棱锥、棱台等几何体的性质和计算。

学生需要熟悉立体几何的基本定理和公式,掌握解答与立体几何相关的问题的方法和技巧。

五、解析几何解析几何是文科数学的一大难点,也是高考中比较重要的一部分。

解析几何主要包括平面解析几何和空间解析几何。

学生需要熟练掌握平面坐标系和空间坐标系的建立与应用,了解曲线与曲面的性质和方程求解方法。

六、导数与微分导数与微分也是文科数学中的重点内容。

学生需要掌握导数的基本定义、性质与运算法则;熟练运用导数的计算方法、判别极值的条件以及应用问题的解决方法。

七、积分与定积分积分与定积分是文科数学中的难点,也是高考中的重点内容。

学生需要熟练掌握积分的基本定义与性质,掌握常见函数的积分公式和基本的积分方法;能够运用定积分求解几何问题、物理问题等。

综上所述,文科数学高考的重点内容主要包括函数与方程、概率与统计、数列与数列的应用、立体几何、解析几何、导数与微分以及积分与定积分等。

掌握这些内容,对于考生来说能够更好地应对文科数学的高考,取得理想的成绩。

(精品word)高考文科数学知识点总结(良心出品必属精品)

(精品word)高考文科数学知识点总结(良心出品必属精品)

集合与简易逻辑知识回顾:(一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用2. 集合的表示法:列举法、描述法、图形表示法集合元素的特征:确定性、互异性、无序性.3⑴①一个命题的否命题为真,它的逆命题一定为真.否命题二逆命题.②一个命题为真,则它的逆否命题一定为真.原命题=逆否命题.(二)含绝对值不等式、一元二次不等式的解法及延伸1. 含绝对值不等式的解法(1)公式法:ax+bcc,与ax + bAC(c〉O)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.特例①一元一次不等式ax>b解的讨论;2ax +bx+c=O (a =0)的解集 旬 X C 乂1或乂 AX 2 }R2ax +bx+c" (a >0)的解集旬 % v x <x 2 }(三)简易逻辑1、 命题的定义:可以判断真假的语句叫做命题2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是 简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

(1)“非p ”形式复合命题的真假与F 的真假相反;(2)“ p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;(3)“ p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真. 4、四种命题的形式: 原命题:若P 则q ;逆命题:若q 则p ;否命题:若「P 则「q ;逆否命题:若「q 则「p 。

6、如果已知p= q 那么我们说,p 是q 的充分条件,q 是p 的必要条件 若p= q 且q= p,则称p 是q 的充要条件,记为p? q. 函数构成复合命题的形式:p 或q (记作 q ” ) ; p 且 q (记作“ p A q ” ) ; 非q ”)。

逆命题 若q 则p■■互 否 逆否命题 若「q 则互逆 互逆------ > 否逆知识回顾:(一)映射与函数1. 映射与一一映射2. 函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(二)函数的性质1. 函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1,X2⑴若当X1<X2时,都有f(x i)<f(x 2),则说f(x)在这个区间上是增函数;⑵若当X1VX2时,都有f(x i)>f(x 2),则说f(x)在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2. 函数的奇偶性鹤函数的定义:如果对的定文域內任童仆都有f卜掘冃但),那么函数率)就叫做偶函数.奇函数的定义,如果对干函数耳養)的定义域内枉意一个鶯,祁有n-x)=j(x)T ju么就叫做奇嚼数.他是奇鹹UM T闵3 3+加M o樂二-1(/(1)* 0)4.判断函数单调性(定义),例如:f(xj — f (x2) =\:斤巾2 -巾2 =3指数函数与对数函数指数函数及其性质Xy=a (a>O,a 工1)〔二)a>1定义域:R值域:(0, +乂)性过定点(0, 1),即x=0时,y=1质0<a<1图像分布在一、二象限,与有y轴相交,落在轴的上方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学核心考点总结高考文科数学核心考点考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、充要关系、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是新热点题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

考点六:解析几何一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。

考点七:算法复数推理与证明高考对算法的考查以选择题或填空题的形式出现,或给解答题披层外衣.考查的热点是流程图的识别与算法语言的阅读理解. 算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。

对于理科,数学归纳法可能作为解答题的一小问.考点八:概率与统计概率:由于文理选修内容的不同,有关概率内容在高考中所占比重不大,试题中具有一定的灵活性、机动性。

重点以互斥事件、古典概型的概率计算为主,以实际应用形式出现的多以选择题、填空题为主。

对于理科,结合选修中排列、组合的知识对随机事件进行考察,多以解答题的形式出现。

几何概型是近年来新增考察内容之一,题目难度不大,但需要准确理解题意,利用图形分析问题,在高考中多以选择题、填空题形式出现。

统计:随机抽样、用样本估计总体是基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生应用基础知识、解决实际问题的能力,热点问题是分层抽样、系统抽样、频率分布直方图和用样本的数字特征估计总体的数字特征,文科试题中会出现解答题.概率与统计(理):重点以随机变量及其分布列的概念和基本计算为主,题型以选择、填空为主,有时也以解答题形式出现,即以实际情景为主,建立合适的分布列,通过均值和方差解释实际问题;统计案例:主要包括回归分析、独立性检验的基本思想和初步应用,是教材新增内容,高考中必须在试题之前给出公式后作为选择或填空题.高考文科数学复习资料一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

高考文科数学学习方法一、学习问题自我评价每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。

对学习问题可主要从如下几方面进行自我评价:l.时间安排问题学习不良者应该反省下列几个问题:(1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。

(2)学习是否常常没有固定的时间安排。

(3)是否常拖延时间以至于作业都无法按时完成。

(4)学习计划是否是从来都只能在开头的几天有效。

(5)一周学习时间是否不满10小时。

(6)是否把所有的时问都花在学习上了。

2.注意力问题(1)注意力完全集中的状态是否只能保持10至15分钟。

(2)学习时,身旁是否常有小说、杂志等使我分心的东西。

(3)学习时是否常有想入非非的体验。

(4)是否常与人边聊天边学习。

3.学习兴趣问题(1)是否一见书本头就发胀。

(2)是否只喜欢文科,而不喜欢理科。

(3)是否常需要强迫自己学习。

(4)是否从未有意识地强化自己的学习行为。

4.学习方法问题(1)是否经常采用题海战来提高解题能力。

(2)是否经常采用机械记忆法。

(3)是否从未向学习好的同学讨教过学习方法。

(4)是否从不向老师请教问题。

(5)是否很少主动钻研课外辅助读物。

一般而言,回答上述问题,肯定的答案(回答是)越多,学习的效率越低。

每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。

例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。

这位学生的病一列出来,我们就能够采取有效的治疗措施了。

二、自我改进法1.SQ3R法罗宾生(Robinson)提出的SQ3R法是提高学习效率的一种好方法。

SQ3R是由Survey,Question,Read,Recite,Review几个单词的第一个字母缩写成的。

(1)概览(Survey):即概要性地阅读。

当你要读一本书或一段文章时,你必须借助标题和副标题知道大概内容,还要抓住开头,结尾及段落问承上启下的句子。

这样一来,你就有了一个比较明确的目标有利于进一步学习。

(2)问题(Question):即在学习时,要把注意力集中到人物、事件、时间、地点、原因等基本问题上,同时找一找自己有哪些不懂的地力。

如果是学习课文,预习中的提问可增加你在课堂上的参与意识。

要是研究一个课题时你能带着问题去读有关资料,就能更有的放矢。

(3)阅读(Read):阅读的目的是要找到问题的答案,不必咬文嚼字,应注重对意思的理解。

有些书应采用快速阅读,这有助于提高你的知识量,有些书则应采用精该法,反复琢磨其中的含义。

(4)背诵(Recite):读了几段后,合上书想想究竟前面讲了些什么,可以用自己的语言做一些简单的读书摘要,从中找出关键的表达词语,采用精炼的语言把思想归纳成几点,这样做既有助于记忆、背诵或复述,又有助于提高表达能力,且使思维更有逻辑性。

相关文档
最新文档