2018年全国2卷数学试卷及参考答案

合集下载

2018年高考理科数学新课标全国2卷逐题解析

2018年高考理科数学新课标全国2卷逐题解析

2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及稿本纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。

1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年考研数学二真题及答案解析

2018年考研数学二真题及答案解析

2018全国研究生入学考试考研数学二试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若1)(lim 212=++®x bx ax e xx,则()(A )1,21-==b a (B )1,21--==b a (C )1,21==b a (D )1,21-==b a 2.下列函数中,在0=x 处不可导的是(A )x x x f sin )(=(B )x x x f sin )(=(C )xx f cos )(=(D )xx f cos)(=3.设函数îíì³-=010,1)(x x x f ,<,ïîïíì³--£-=0,01,1-,2)(x b x x x x ax x g <<,若)()(x g x f +在R 上连续,则(A )1,3==b a (B )2,3==b a (C )1,3-==b a (D )2,3-==b a 4.设函数)(x f 在[]1,0上二阶可导,且ò=1)(dx x f ,则(A )0)(<x f ¢时,0)21(<f (B )0)(<x f ¢¢时,0)21(<f (C )0)(>x f ¢时,0)21(<f (D )0)(>x f ¢¢时,0)21(<f 5.设dx x x M ò-++=22221)1(pp ,dx e x N x ò-+=221pp ,dx x K ò-+=22)cos 1(pp ,则(A )KN M >>(B )N K M >>(C )NM K >>(D )MN K >>6.=-+-òòòò----dy xy dx dy xy dxxxxx1201222)1()1((A )35(B )65(C )37(D )677.下列矩阵中,与矩阵÷÷øöççèæ100110011相似的为相似的为(A )÷÷÷øöçççèæ1001101-11 (B )÷÷÷øöçççèæ1001101-01 (C )÷÷÷øöçççèæ1000101-11 (D )÷÷÷øöçççèæ1000101-01 8.设A ,B 为n 阶矩阵,记)(x r 为矩阵X 的秩,)(Y X 表示分块矩阵,则(A ))() (A r AB A r =(B ))() (A r BA A r =(C ){})(),(max ) (B r A r B A r =(D ))() (TTB A r B A r =二、填空题:9~14小题,每小题4分,共24分. 9.]arctan )1[arctan(lim 2x x x x -++¥®= 。

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案1.已知复数 $\frac{1+2i}{1-2i}=\frac{-43}{55}$,求其值。

2.已知集合 $A=\{(x,y)|x+y^2\leq 3,x\in Z,y\in Z\}$,求$A$ 中元素的个数。

3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为什么样子?4.已知向量 $a,b$ 满足 $|a|=1$,$a\cdot b=-1$,求 $a\cdot (2a-b)$ 的值。

5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为 $3$,求其渐近线方程。

6.在$\triangle ABC$ 中,$\cos A=\frac{4}{5}$,$BC=1$,$AC=5$,求 $AB$ 的值。

7.设计一个程序框图来计算 $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{100}$。

8.XXX猜想是“每个大于 $2$ 的偶数可以表示为两个素数的和”,在不超过 $30$ 的素数中,随机选取两个不同的数,其和等于 $30$ 的概率是多少?9.在长方体 $ABCD-A_1B_1C_1D_1$ 中,$AB=BC=1$,$AA_1=3$,求异面直线$AD_1$ 和$DB_1$ 所成角的余弦值。

10.若 $f(x)=\cos x-\sin x$ 在 $[-a,a]$ 上是减函数,求$a$ 的最大值。

11.已知 $f(x)$ 是定义域为 $(-\infty,+\infty)$ 的奇函数,满足 $f(1-x)=f(1+x)$,且 $f(1)=2$,求$f(1)+f(2)+f(3)+\cdots+f(50)$ 的值。

12.已知 $F_1,F_2$ 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点,$A$ 是椭圆的左顶点,点 $P$ 在过 $A$ 且斜率为 $3$ 的直线上,$\triangle PF_1F_2$ 是等腰三角形,且 $\angleF_1PF_2=120^\circ$,求椭圆的离心率。

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

2018年全国硕士研究生入学统一考试数学二真题及标准答案

2018年全国硕士研究生入学统一考试数学二真题及标准答案
2018年全国硕士研究生入学统一考试数学二真题
(总分:150.00,做题时间:180分钟)
一、单项选择题
选择题:1?8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(总题数:8,分数:32.00)
1. (分数:4.00)
A.a=1/2,b=-1
(1) 求f(x1,x2,x3) = 0 的解
(2) 求f(x1,x2,x3) 的规范型(分数:11.00)
__________________________________________________________________________________________
正确答案:(

解析:
12.曲线 对应点处的曲率为__________。(分数:4.00)
填空项1:__________________ (正确答案:
2/3

解析:
13.设函数z = z(x,y)由方程l __________。
(分数:4.00)
填空项1:__________________ (正确答案:
1/4

正确答案:(
)
解析:
19.将长为2m的铁丝分成三段,依次围城圆、正方形与正三角形,三个图形的面积之和是否存 在最小值?若存在,求出最小值。
(分数:10.00)
__________________________________________________________________________________________
2

解析:
三、解答题
解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

2018年全国硕士研究生入学考试数学二真题及答案

2018年全国硕士研究生入学考试数学二真题及答案

2
2
(C)当 f (x) 0 时, f (1) 0 (D)当 f (x) 0时, f (1) 0
2
2
【答案】( D )
【解析一】有高于一阶导数的信息时,优先考虑“泰勒展开”。从选项中判断,展开点为 x0
1 2

将函数
f
( x) 在
x0
1
处展开,有
2
f (x) f (1) f (1)(x 1) f ( ) (x 1)2 ,其中 1 x 。
1
ex ax2 bx1
ex ax2 bx1
x2
elim x0
ex
ax2 bx1 x2

x0
因此,
lim
ex
ax2
bx
1
0
lim
x
1 2
x2
ax2
bx
(x2 )
0
x0
x2
x0
x2
lim
x0
(1 2
a)x2
(1 x2
b)x
(x2)
0
1 2
a
0,1
b
0
或用“洛必达”: lim x0
ex
ax2 x2
x b 1, x 0
则 F(1) 1 a, F(0) 1 b, F(1 0) 2, F(0 0) 1,
因为函数连续,所以极限值等于函数值,即1 a 2,1 b 1 a 3,b 2 ,
故选 (D).
4.
设函数
f
(
x)

[0,1]
上二阶可导。且
1
0
f
( x)dx
0 ,则
()
(A)当 f (x) 0 时, f (1) 0 (B)当 f (x) 0 时, f (1) 0

2018年高考理科数学全国卷2(含答案解析)

2018年高考理科数学全国卷2(含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页,考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1212ii+=- 43. 55A i -- 43. 55B i -+ 34. 55C i -- 34. 55D i -+2.已知集合(){}22,3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为. 9A. 8B . 5C . 4D3.函数2()x xe ef x x--=的图象大致为4.已知向量,a b 满足1,1a a b =⋅=-,则()2a a b ⋅-=. 4A . 3B . 2C . 0D5.双曲线()222210,0x y a b a b-=>>的离心率为3,则其渐近线方程为. 2A y x =± . 3B y x =± 2. 2C y x =± 3. 2D y x =±6.在ABC ∆中,5cos ,1,5,25C BC AC ===则AB = . 42A . 30B . 29C. 25D 7.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入. 1A i i =+ . 2B i i =+ . 3C i i =+ . 4D i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23. 在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是1.12A 1. 14B 1. 15C 1. 18D 9.在长方体1111ABCD A B C D -中,11,3,AB BC AA ===则异面直线1AD 与1DB 所成角的余弦值为1. 5A5. 6B 5. 5C 2.2D 10.若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是.4A π.2B π3.4C π .D π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________11.已知()f x 是定义域为(),-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=. 50A -. 0B . 2C . 50D12.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F ∆为等腰三角形,12120F F P ∠=,则C 的离心率为2. 3A 1. 2B 1. 3C 1. 4D二、填空题(本题共4小题,每小题5分,共20分)13.曲线2ln(1)y x =+在点()0,0处的切线方程为_____________.14.若,x y 满足约束条件250,230,50,x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩则z x y =+的最大值为________.15.已知sin cos 1,cos sin 0αβαβ+=+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA 、SB 所成角的余弦值为78,SA 与圆锥底面所成角为45.若SAB ∆的面积为则该圆锥的侧面积为__________.三、解答题(共70分。

2018年高考(四川省)真题数学(理)试题及答案解析

2018年高考(四川省)真题数学(理)试题及答案解析

2018年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段。

2018全国高考新课标2卷文科数学试题(解析版)

2018全国高考新课标2卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=( )A.3-2i B.3+2i C.-3-2i D.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2的图像大致为( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)= e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( ) A.4 B.3 C.2 D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3解析:选D 5人选2人有10种选法,3人选2人有3中选法。

6.双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( )A.y=±2x B.y=±3x C.y=±2 2xD.y=±3 2x解析:选A e= 3 c2=3a2b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2 B.30 C.29 D.2 5解析:选 A cosC=2cos2C2-1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12+13-14+……+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4解析:选B9.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE 与CD所成角的正切值为( )A.22B.32C.52D.72解析:选C 即AE与AB所成角,设AB=2,则BE=5,故选C 10.若f(x)=cosx-sinx在[0,a]是减函数,则a的最大值是( )A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx与f(x)= 2cos(x+π4)的图象关系知a的最大值为3π4。

2018年高考全国2卷文科数学带答案解析

2018年高考全国2卷文科数学带答案解析

2018年普通高等学校招生全国统一考试文科数学本试卷共注意事项:23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

1•答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在 条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔 书写,字体工整、笔迹清楚。

3•请按照题号顺序在各题目的答题区域内作答, 超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4 •作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 项是符合题目要求的。

1. i(2+3i)=A. 3-2iB. 3 2iC. -3 _2iD. -3 2i2.已知集合A=「1,3,5,7 匚 B -「2,3,4,5 [则 A^B =A.「3 ?B.C. :3,5;D. 11,2,3,4,5,7 /3.函数 f(x)e x- e e 2e的图象大致为2 x4.已知向量 a , b 满足 | a |=1 , a b - -1,则 a (2a -b )=A. 0.6B. 0.5C. 0.4D. 0.32 26 •双曲线笃-1( a 0, b 0)的离心率为-3,则其渐近线方程为a bA. y =. 2xB. y = 3xC 占 C ・yx2D. y =二 3x2C7.在"Be 中,co 丁 5, BC=1 ,AC =5,贝U AB =A. 42B. , 30C.29D. 2 5绝密★启用前A. 45•从2名男同学和 B . 3 3名女同学中任选 C. 2 2人参加社区服务,则选中D. 02人都是女同学的概率为A CD&为计算S -1---- —,设计了右侧的程 2 3 499 100序框图,则在空白框中应填入A. i =i 1B. i =i 2C. i =i 3D. i =i 49.在长方体 ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线 AE 与CD 所成角的正切值为 A.二B.二C.」2 2 210 .若f (x) = cosx -sinx 在[0, a ]是减函数,则 a 的最大值是则C 的离心率为f(1) f (2) f(3) Hl • f (50)=二、 填空题:本题共 4小题,每小题5分,共20分。

2018年全国卷理科数学真题及答案

2018年全国卷理科数学真题及答案

一.选择题(共12小题)1.设z=+2i,则|z|=()A.0B.C.1D.【解答】解:z=+2i=+2i=﹣i+2i=i,则|z|=1.故选:C.2.已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入37%×2a﹣60%a=14%a>0,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故B项正确.C项,建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故C项正确.D项,建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故D项正确.因为是选择不正确的一项,故选:A.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.5.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,f(﹣x)=﹣f(x),﹣x3+(a﹣1)x2﹣ax=﹣(x3+(a﹣1)x2+ax)=﹣x3﹣(a﹣1)x2﹣ax.所以:(a﹣1)x2=﹣(a﹣1)x2可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.6.在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,=﹣=﹣=﹣×(+)=﹣,故选:A.7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.8.设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.8【解答】解:抛物线C:y2=4x的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•=(0,2)•(3,4)=8.故选:D.9.已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a 的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【解答】解:如图:设BC=2r1,AB=2r2,AC=2r3,∴r12=r22+r32,∴SⅠ=×4r2r3=2r2r3,SⅢ=×πr12﹣2r2r3,SⅡ=×πr32+×πr22﹣SⅢ=×πr32+×πr22﹣×πr12+2r2r3=2r2r3,∴SⅠ=SⅡ,∴P1=P2,故选:A.11.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6×=.故选:A.二、填空题(4题)13.若x,y满足约束条件,则z=3x+2y的最大值为6.【解答】解:作出不等式组对应的平面区域如图:由z=3x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大,最大值为z=3×2=6,故答案为:614.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n﹣1=2a n﹣1+1,②,由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣6315.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:1616.已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x=或cos x=﹣1,可得此时x=,π或;∴y=2sin x+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.三.解答题(共5小题)17.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC 折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE=,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE=,又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.19.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.20.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f(p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.21.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x +,(0<x<1),其中h(1)=0,求导得h′(x )=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.四、选做题22.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k=或0,当k=0时,不符合条件,故舍去,同理解得:k=或0经检验,直线与曲线C2.有两个交点.故C1的方程为:.23.已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].。

2018年高考全国卷2理科数学真题附含答案解析

2018年高考全国卷2理科数学真题附含答案解析

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018新课标全国2卷(理数)

2018新课标全国2卷(理数)

2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

1.(5分)(2018•新课标Ⅱ)=()A.i B. C. D.2.(5分)(2018•新课标Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z),则A中元素的个数为()A.9 B.8 C.5 D.43.(5分)(2018•新课标Ⅱ)函数f(x)=的图象大致为()A.B.C.D.4.(5分)(2018•新课标Ⅱ)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)(2018•新课标Ⅱ)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)(2018•新课标Ⅱ)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.27.(5分)(2018•新课标Ⅱ)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+48.(5分)(2018•新课标Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)(2018•新课标Ⅱ)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.10.(5分)(2018•新课标Ⅱ)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)(2018•新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.5012.(5分)(2018•新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年考研数学二真题及答案解析

2018年考研数学二真题及答案解析

2018全国研究生入学考试考研数学二试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若1)(lim 212=++→x bx ax e xx ,则()(A )1,21-==b a (B )1,21--==b a (C )1,21==b a (D )1,21-==b a 2.下列函数中,在0=x 处不可导的是(A )x x x f sin )(=(B )x x x f sin )(=(C )xx f cos )(=(D )xx f cos)(=3.设函数⎩⎨⎧≥-=010,1)(x x x f ,<,⎪⎩⎪⎨⎧≥--≤-=0,01,1-,2)(x b x x x x ax x g <<,若)()(x g x f +在R 上连续,则(A )1,3==b a (B )2,3==b a (C )1,3-==b a (D )2,3-==b a 4.设函数)(x f 在[]1,0上二阶可导,且⎰=10)(dx x f ,则(A )0)(<x f '时,0)21(<f (B )0)(<x f ''时,0)21(<f (C )0)(>x f '时,0)21(<f (D )0)(>x f ''时,0)21(<f 5.设dx x x M ⎰-++=22221)1(ππ,dx e xN x ⎰-+=221ππ,dx x K ⎰-+=22)cos 1(ππ,则 (A )KN M >>(B )N K M >>(C )NM K >>(D )MN K >>6.=-+-⎰⎰⎰⎰----dy xy dx dy xy dx x xx x1201222)1()1((A )35(B )65(C )37(D )677.下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为(A )⎪⎪⎪⎭⎫⎝⎛1001101-11(B )⎪⎪⎪⎭⎫⎝⎛1001101-01(C )⎪⎪⎪⎭⎫ ⎝⎛1000101-11(D )⎪⎪⎪⎭⎫ ⎝⎛1000101-018.设A ,B 为n 阶矩阵,记)(x r 为矩阵X 的秩,)(Y X 表示分块矩阵,则(A ))() (A r AB A r =(B ))() (A r BA A r =(C ){})(),(max ) (B r A r B A r =(D ))() (TTB A r B A r =二、填空题:9~14小题,每小题4分,共24分. 9.]arctan )1[arctan(lim 2x x x x -++∞→=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为( )A .2y x =±B .3y x =±C .2y x =±D .3y x =±6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =( ) A .42B .30C .29D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15B C D .210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题。

每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。

17.(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,153-=S . (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型②:9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 19.(12分)设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A B ,两点。

8AB =. (1)求l 的方程;(2)求过点A B ,且与C 的准线相切的圆的方程. 20.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值. 21.(12分)已知函数()2x f x e ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在()0+∞,只有一个零点,求a .(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一部分计分。

22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x l a y l a =+⎧⎨=+⎩(l 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为()12,,求l 的斜率. 23.【选修4-5:不等式选讲】(10分) 设函数()52f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学参考答案一、选择题4262+c a ,二、填空题13. x y 2= 14. 9 15.21- 16.π24016.设母线长为a,a a a 22OA 8055ASB sin 21S 22ABS ==⇒=∠=∆,所以 三、填空题17.解:(1)由153-=S 可得:15331-=+d a ,所以2=d ,所以92-=n a n(2)16-S 4,82)(n 21取最小值时,当=-=+=n n n na a S n n 18.解:(1)①1.22619*5.134.30y ^=+-=,5.2569*5.1799y ^=+=(2)对于模型①,当年份为2016年时,1.19917*5.134.30y ^=+-=对于模型②,当年份为2016年时,5.2217*5.1799y ^=+=比较而言,②的准确度高,误差较小,所以选择②19.解:(1)∵F (1,0),设直线)1(-=x k y ,联立0)42()1(422222=++-⇒⎩⎨⎧-==k x k x k x k y xy ⎪⎩⎪⎨⎧=+=+142212221x x k k x x ,∵82AB 21=++=x x ,∴k=1,所以直线方程01=--y x (2)设AB 的中点为N (N N y x ,),设圆心为M (a,b ),所以圆的半径r=a+1因为⎪⎪⎩⎪⎪⎨⎧=+==+=22322121y y y x x x N N ,所以MN 的方程为2)3(1+--=x y ,即05=-+y x所以22222-b 3-a MN )()()(a x -=+=,由垂径定理:2222AB ⎪⎪⎭⎫ ⎝⎛+=MN r 即:()2232161)(-+=+a a 解得:113==a a 或所以圆的方程为:16)2()3(22=-+-y x 和144)6()11(22=++-y x 20.证明:连接BO ,因为AB=BC ,则BO ⊥AC ,所以BO=2又因为在△PAC 中,PA=PC=4,所以PO ⊥AC ,且32PO =,因为222PB OB PO =+,所以PO ⊥BO ,从而PO ⊥平面ABC ;(2)以为x 轴,以为y 轴,以为z 轴,设B C B M λ=,B (2,0,0),C (0,2,0)A (0,-2,0) P (0,0,32),设M (x,y,0),所以)0,2,2(,0,,2B M -=-=BC y x )(,所以)(0,2,2-2M λλ 设平面PAC 的法向量为)0,0,1(1=n ,设平面MPA 的法向量为),,(1112z y x n =,),(),,,(0,2-2-2-232-2-0λλ==所以⎪⎪⎩⎪⎪⎨⎧=-=---=⇒⎪⎩⎪⎨⎧=⋅=⋅331330022222z y x n n λλ 因为二面角M PA C --为30︒,所以2330cos 0==得=λ31设PC 与平面PAM 所成角为θ,所以43sin ==θ 21解:(1)当a=1,2)(,2)(,)('''2-=-=-=xxx e x f x e x f x e x f当单调递增单调递减,)(,2ln )(,2ln ''x f x x f x ><,所以02ln 22)2(ln )(''>-=≥f x f所以是单调递增在),0[)(+∞x f ,所以1)0()(=≥f x f(3)令00)(2=-⇒=a x e x f x ,令a x e x g x -=2)(,32)(x x e x g x)(‘-=当单调递减时,)(,0)(2'x g x g x <<,单调递增时,)(,0)(2'x g x g x >>所以a e g x g -==4)2()(2min①当无零点时,)(,0)(4min 2x g x g e a >< ②当只有一个零点时,)(,0)(4min 2x g x g e a == ③0)(4min 2<>x g e a 时, 22.(1)曲线C 的直角坐标方程:116422=+y x 直线L 直角坐标方程:2)1(tan +-=x y α(2) 联立116422=+y x 与1cos 2sin x l ay l a =+⎧⎨=+⎩所以2tan ,0sin cos 4sin 4cos 8022221-=∴=++=+ααααα得t t 23.(1)当1a =时,⎪⎩⎪⎨⎧≥-<<--≤+=2,2621,21,42)(x x x x x x f ,所以不等式()0f x ≥的解集为{}32≤≤-x x(2)若()1f x ≤,则42≥-++x a x ,因为22+≥-++a x a x 所以只需要6242-≤≥⇒≥+a a a 或 综上:a 的取值范围为{}26≥-≤a a a 或。

相关文档
最新文档