人教版数学八年级上册12.3《角的平分线的性质》第二课时参考教案
人教版八年级上册12.3角的平分线的性质2)教学设计
3.引入新课,明确学习目标。
-介绍本节课将学习角的平分线的性质及其应用。
-强调掌握这一性质对于解决几何问题的重要性。
(二)讲授新知
1.系统讲解角的平分线的定义。
-解释角的平分线是“将一个角平均分成两个相等的角的线段”。
-通过动态演示,让学生直观理解角的平分线的概念。
2.能够运用数学符号和语言表达角的平分线性质,形成严密的逻辑推理能力。
-学生能够用数学语言描述角的平分线性质,如“角的平分线上的任意一点到角的两边的距离相等”。
-学生能够通过几何证明,运用逻辑推理证明角的平分线性质的准确性。
3.能够在综合问题中,灵活运用角的平分线性质,解决多步骤几何问题。
-学生能够将角的平分线性质与其他几何知识综合应用,解决复合几何问题。
-对于基础较好的学生,设计具有挑战性的问题和证明任务,提高他们的逻辑推理能力。
3.探索实践,促进深度学习。
-组织学生进行小组讨论和合作探究,共同解决角的平分线性质的相关问题。
-鼓励学生动手实践,通过尺规作图等方式,加深对性质的理解。
4.精讲精练,提高教学效率。
-教学过程中,教师应精讲性质的本质和证明的关键步骤,避免冗长的解释。
-将学生分成小组,针对角的平分线性质进行讨论。
-鼓励学生提出问题,分享解题思路,共同解决疑惑。
2.教师巡回指导,给予反馈。
-在小组讨论过程中,教师观察学生的讨论情况,适时给予指导和鼓励。
-针对不同层次的学生,提出不同难度的问题,引导他们深入思考。
3.小组汇报,分享成果。
-每个小组选派代表汇报讨论成果,展示解题过程。
-通过展示几何图形的美,让学生体会数学的和谐与对称美。
2024年八年级数学上册 角平分线的性质教案
2024年八年级数学上册角平分线的性质教案一、教学目标1.让学生理解角平分线的定义及性质。
2.培养学生运用角平分线性质解决问题的能力。
3.培养学生的逻辑思维和空间想象能力。
二、教学重难点重点:角平分线的性质及运用。
难点:角平分线性质的证明和应用。
三、教学准备1.教学课件2.直尺、圆规、三角板等绘图工具四、教学过程(一)导入新课1.复习角的定义和表示方法。
2.提问:什么是角平分线?(二)探究新知1.引导学生观察图形,发现角平分线的性质。
2.学生尝试用语言描述角平分线的性质。
(三)性质证明1.引导学生运用全等三角形的知识证明角平分线的性质。
2.学生分组讨论,尝试给出证明过程。
3.教师选取优秀学生的证明过程进行讲解。
证明过程:设∠AOB为任意角,OC为∠AOB的角平分线,点P在OC上。
要证明:点P到OA、OB的距离相等。
证明:(1)作PE⊥OA,PF⊥OB,垂足分别为E、F。
(2)因为OC是∠AOB的角平分线,所以∠AOC=∠BOC。
(3)在ΔOPE和ΔOPF中,∠OPE=∠OPF(直角),PE=PF(作图),OP=OP(公共边)。
(4)根据全等三角形的性质,ΔOPE≌ΔOPF。
(5)由全等三角形的性质,OE=OF。
(6)因为PE⊥OA,PF⊥OB,所以PE=OE,PF=OF。
(7)所以,点P到OA、OB的距离相等。
(四)应用拓展1.出示练习题,让学生运用角平分线的性质解决问题。
2.学生分组讨论,尝试给出解题过程。
3.教师选取优秀学生的解题过程进行讲解。
练习题:已知:如图,AC平分∠BAD,BD平分∠ABC,点E在AB上,点F 在AC上。
求证:∠AEF=∠BEF。
解题过程:(1)因为AC平分∠BAD,所以∠BAC=∠DAC。
(2)因为BD平分∠ABC,所以∠ABD=∠DBC。
(3)在ΔABE和ΔBDE中,∠ABE=∠DBE(公共角),∠BAC=∠DAC (角平分线性质),AB=BD(公共边)。
(4)根据全等三角形的性质,ΔABE≌ΔBDE。
《 角的平分线的性质(第二课时)》精品教案 2022年公开课一等奖
教学过程设计角平分线的判定定理的应用:多媒体展示:〔1〕现有一条题目,两位同学分别用两种方法证明,问他们的做法正确?那一种方法好? :, CA ⊥OA 于A ,BC ⊥OB 于B ,AC=BC求证: OC 平分∠AOBB AO C证法1:∵CA ⊥OA ,BC ⊥OB ∴∠A=∠B 在△AOC 和△BOC 中⎩⎨⎧==BC AC OCOC ∴△AOC ≌△BOC 〔HL 〕∴∠AOC=∠BOC ∴OC 平分∠AOB 证法2:∵ CA ⊥OA 于A ,BC ⊥OB 于B , AC=BC ∴OC 平分∠AOB 〔角平分线判定定理〕〔2〕:如图,AD 、BE 是△ABC 的两个角平分线,AD 、BE 相交于O 点求证:O 在∠C 的平分线上三、课堂训练多媒体展示:、1.如图,DB ⊥AN 于B ,交AE 于点O ,OC ⊥AM 于点C ,且OB=OC ,假设∠OAB =25°,求∠ADB 的度数.想及证明,归纳角平分线的判定定理。
学生明确在一定条件下,证角平分线不再用证三角形全等后再证角相等得出,可直接运用角平分线判定定理。
教师引导学生分析,思考,写出证明过程。
教师标准书写格式。
学生应用角的平分线判定定理解题。
概括能力。
使学生明确角平分线判定定理的作用。
稳固角的平分线的性质与判定的应用,培养学生分析问题、解决问题的能力。
稳固本节所学。
BD MC N E A G板 书 设 计2.如图,AB =AC ,DE ⊥AB 于E , DF ⊥AC 于F ,且DE =DF . 求证:BD =DC 四、小结归纳1.角平分线判定定理及期作用;2.在一定条件下,证角平分线不再用三角形全等后角相等得出,可直接运用角平分线判定定理。
3.三角形三个内角平分线交于一点,到三角形三边距离相等的点是三条角平分线的交点。
五、作业设计1.教材习题11.3第3、4题;2.补充作业:如图,ABC ∆的外角∠CBD 、∠BCE 的平分线相交于点F 。
人教版八年级上册12.3《角的平分线的性质》优秀教学案例
一、案例背景
本节内容为人教版八年级上册12.3《角的平分线的性质》。在之前的学习中,学生已经掌握了角的概念、分类以及角的计算方法,了解了直线、射线、线段的基本性质。在此基础上,学习角的平分线的性质,既是对已有知识的巩固,也是为后续学习几何图形的对称性、角的平分线定理等知识打下基础。
4.结合学生的评价和反思,教师总结本节课的教学效果,对后续教学进行调整和改进,以提高教学质量和学生的学习效果。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入角的平分线概念。例如,展示一张图片,图片中有一辆汽车在转弯处,转弯处的角被一条线段平分,使学生感受到角的平分线在现实生活中的应用。
2.引导学生回顾已学过的角的概念、分类以及角的计算方法,为新课的学习打下基础。
2.采用小组讨论、合作交流的方式,让学生在探讨中思考,培养团队合作能力和自主学习能力。
3.利用几何画图工具,让学生动手实践,加深对角的平分线性质的理解和运用。
4.设计不同难度的题目,针对不同程度的学生进行针对性训练,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探索数学奥秘的热情。
3.教师提出问题:“你们认为角的平分线有什么特殊性质?”,让学生思考并发表自己的观点。
(二)讲授新知
1.介绍角的平分线的定义:角的平分线是将一个角平分成两个相等角的线段。
2.讲解角的平分线的性质,如:角的平分线上的任意一点,到角的两边的距离相等;角的平分线与角的两边垂直等。
3.结合几何画图工具,如直尺、圆规等,演示角的平分线的画法,让学生直观地理解角的平分线的性质。
4.通过示例题,讲解如何运用角的平分线性质解决实际问题,如在几何图形中,如何找到一点,使这点到图形两边的距离相等。
八年级数学上册高效课堂(人教版)12.3.2角的平分线的判定(第二课时)优秀教学案例
(一)导入新课
1.利用现实生活中的实例,如建筑设计中角的平分线应用,引入新课。
2.提出问题:如何判断一个线段是角的平分线呢?引发学生思考,激发学习兴趣。
3.引导学生回顾已学的角平分线的判定方法,结合几何画板软件动态展示,让学生直观地感受知识的发生和发展过程。
3.学生通过自主学习、探究学习,提高发现问题、分析问题、解决问题的能力。
(三)情感态度与价值观
1.学生在解决实际问题的过程中,体验到数学知识的实用性和趣味性,增强学习数学的兴趣。
2.学生在探究角的平分线的过程中,培养勇于尝试、坚持不懈的精神,增强自信心。
3.学生通过小组合作,学会尊重他人、倾听他人意见,培养良好的团队合作精神。
(一)情景创设
1.利用现实生活中的实例,创设有趣、富有挑战性的问题情景,激发学生的学习兴趣和探究欲望。
2.利用几何画板软件,动态展示角的平分线与角的两边垂直的性质,让学生直观地感受知识的发生和发展过程。
3.设计具有层次性的问题,引导学生从不同角度、不同层次去观察、思考问题,培养学生全面考虑问题的习惯。
这些亮点体现了本节课的人性化教学理念,关注学生的个体差异,培养学生的自主学习能力、团队协作能力和问题解决能力。在教学过程中,教师运用了多种教学方法和手段,使学生在轻松、愉快的氛围中学习,提高了学习效果。
在教学案例中,我以一个现实生活中的问题为导入:在画一个等边三角形的一个内角平分线时,如何判断这个线段确实是该角的平分线呢?这个问题引发了学生的思考,激发了他们的学习兴趣。接着,我引导学生通过观察、操作、猜测、推理、交流等环节,探索角的平分线的判定方法。
在教学过程中,我注重启发学生思考,引导学生发现角的平分线与角的两边垂直的性质。通过几何画板软件的动态展示,让学生直观地感受到角平分线与角的两边垂直的性质,从而加深对知识的理解。同时,我还设计了一系列的练习题,让学生在实践中运用所学知识,提高解决问题的能力。
人教版数学八年级上册12.3角平分线的性质教案
2.教学难点
a.角平分线性质的证明过程,尤其是辅助线的添加和全等三角形的运用;
b.理解角平分线性质中“点到角两边距离相等”的含义,并能将其应用于解决问题;
c.解决与角平分线相关的高难度问题,如构造角平分线、解决综合几何问题等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了角平分线的定义、性质和它在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对角平分线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
a.证明角平分线上的任意一点到角的两边的距离相等;
b.应用角平分线的性质解决实际问题;
c.掌握角平分线在实际图形中的应用,如等腰三角形、等边三角形等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过角平分线性质的探究与证明,使学生能够运用几何语言进行逻辑推理,提高论证能力。
2.增强空间观念:通过观察、操作和想象,使学生能够理解角平分线在二维空间中的位置关系,培养空间观念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过一个角的顶点,将角分为两个相等角的直线。(解释概念)它是解决几何问题中关于角的重要工具,有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了角平分线在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂中,我们探讨了人教版数学八年级上册第十二章第三节“角平分线的性质”。通过这节课的教学,我发现以下几点值得反思:
人教版数学八年级上册12.3《角的平分线的性质》第二课时参考教案
§12.3 角的平分线的性质〔二〕教学目标〔一〕教学知识点:角的平分线的性质〔二〕能力训练要求1.会表达角的平分线的性质及“到角两边距离相等的点在角的平分线上〞.2.能应用这两个性质解决一些简单的实际问题.〔三〕情感与价值观要求通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.教学重点:角平分线的性质及其应用.教学难点:灵活应用两个性质解决问题.教学方法:探索、归纳的方法.教学过程一.创设情境,引入新课[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?二.导入新课角平分线的性质即角的平分线,能推出什么样的结论.操作:1.折出如下图的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.问题1:你能用文字语言表达所画图形的性质吗?问题2:〔出示投影片〕能否用符号语言来翻译“角平分线上的点到角的两边的距离相等〞这句话.请填下表:学生通过讨论作出以下概括:事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由事项推出的事项:PD=PE.【师】如何证明?请同学们试一试。
证明:略〔详见课本P49页〕。
于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么,在角的内部到角的两边距离相等的点是否在角的平分线上呢?〔出示投影〕问题3:根据下表中的图形和事项,猜测由事项可推出的事项,并用符号语言填写下表:于是,我们得到角平分线的性质的逆定理:【师】在角的内部到角的两边的距离相等的点在角的平分线上。
【师】你能证明吗?请同学们试一试。
下面请同学们思考一个问题.思考:如下图,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路穿插处500m,这个集贸市场应建于何处〔在图上标出它的位置,比例尺为1:20000〕?分析:1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺为1:20000是什么意思?讨论结果展示:1.应该是用第二个性质.•这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,•这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm•表示实际距离200m的意思.作图如下:作法:第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=,确定C点,C点就是集贸市场所建地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,•使问题简单化.所以假设遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.[例]如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.三.随堂练习1.课本P50页练习.第1、2题。
12.3角的平分线的性质第2课时角平分线的判定教案人教版数学八年级上册
12.3角的平分线的性质第2课时角平分线的判定教学目标:1.探究并证明角平分线的判定方法.2.会用角的平分线的判定解决实际问题.3.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.教学重难点:重点:角平分线的判定.难点:三角形的内角平分线的应用.教学过程:课堂导入我们知道,角的平分线上的点到角的两边的距离相等,反过来,到角的两边的距离相等的点是否在这个角的平分线上呢?这节课我们来对这个问题进行探究.讲授新课知识点1角平分线的判定定理角的内部到角的两边的距离相等的点在角的平分线上吗?也就是交换角的平分线的性质中的已知和结论.下面我们证明这个命题的正确性.已知:如图所示,PD⊥OA,PE⊥OB,PD=PE.求证:点P在∠AOB的平分线上(OP平分∠AOB).证明:因为PD⊥OA,PE⊥OB(已知),所以∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PO=PO,PD=PE,所以Rt△PDO≌Rt△PEO(HL).所以∠POD=∠POE.即点P在∠AOB的平分线上.[归纳]角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.注意:(1)使用该判定定理的前提是这个点必须在角的内部;(2)角的平分线的判定定理是证明两角相等的重要办法.几何语言:如图所示,因为点P 是∠AOB 内的一点,PD ⊥OA,PE ⊥OB,垂足分别为D,E,且PD=PE, 所以点P 在∠AOB 的平分线OC 上.范例应用例1 如图所示,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路和铁路的交叉处500 m.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1∶20 000)? 解:因为图上距离500=120000, 所以图上距离=0.025 m=2.5 cm.如图所示,P 点即为所求.理由:P 点在这个交叉口的角平分线上,所以P 点到公路与铁路的距离相等.知识点2 角的平分线的性质定理与判定定理的关系点在角的平分线上(角的内部)点到角的两边的距离相等.正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.知识点3 三角形三个内角平分线的性质1.如图所示,三角形的三个内角的角平分线已画出,从位置上你能观察出什么结论? 答案:三角形三个内角的平分线的交点位于三角形的内部.2.如图所示,过交点分别作三角形三边的垂线,根据角平分线的性质定理你能得出什么结论? 答案:过交点作的三角形三边的垂线段相等.范例应用例2 如图所示,△ABC 的角平分线AD,BE,:点P 到△ABC 三边AB,BC,CA 的距离相等. 证明:如图所示,过点P 作PM ⊥BC ,PN ⊥AC ,PO ⊥AB ,垂足分别为M ,N ,O.因为AD为△ABC的角平分线,所以PN=PO.因为BE为△ABC的角平分线,所以PM=PO.因为CF为△ABC的角平分线,所以PM=PN.所以PM=PN=PO,即点P到△ABC三边AB,BC,CA的距离相等.课堂训练1.判断题:(1)如图(1)所示,若QM=QN,则OQ平分∠AOB.(×)(2)如图(2)所示,若QM⊥OA于点M,QN⊥OB于点N,则OQ平分∠AOB.(×)2.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(D)处处处处第2题图第3题图3.如图所示,O是△ABC内一点,O到三边AB,BC,CA的距离分别为OF,OD,OE,且OF=OD=OE,若∠BAC=70°,则∠BOC=125°.4.如图所示,:AP平分∠BAC.证明:如图所示,作PQ⊥BC,PM⊥AE,PN⊥AF,垂足分别为Q,M,N.因为P点在∠CBE和∠BCF的平分线上,所以PM=PQ,PN=PQ.所以PM=PN.又PM⊥AE,PN⊥AF,所以AP平分∠BAC.课堂小结1.三角形的三条角平分线的交点有且只有一个,且一定在三角形的内部.2.证明三线共点的思路:先设其中的两线交于一点,再证明该交点也在第三条直线上.3.在三角形内部,要找一点到三边距离相等时,只要作出两个角的平分线,其交点即是.4.角平分线的判定与性质的关系:由角平分线的判定方法知这个结论的逆命题也是正确的,即在三角形内,到三角形三边的距离相等的点是三角形三条角平分线的交点.板书设计第2课时角平分线的判定角平分线的判定{学会用添加辅助线的方法解题判定定理——角的内部到角的两边的距离相等的点在角的平分线上应用——综合利用角的平分线的性质和判定来解决实际问题教学反思本课时教学应重视以下几点:(1)由定理得到它的逆命题,并证明它的正确性,把两个定理正确地运用;(2)尽力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.(3)课堂中,可采用口答、动手做等方式组织学生比赛,教师依据具体情形予以点评指点,查缺补漏,使学生从本质上理解知识.。
新版新人教版八年级数学上册12.3角的平分线的性质第2课时角的平分线的判定学案15(教学案)
第2课时角的平分线的判定1.掌握角平分线的判定.2.熟练运用角的平分线的判定及性质解决问题.阅读教材P50,完成预习内容.知识探究1.到角的两边距离相等的点在________________.所以,如果点P到∠AOB两边的距离相等,那么射线OP是________________.2.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么________________________;(2)如果一个点到角的两边的距离相等,那么________________________;(3)综上所述,角的平分线是____________________的集合.3.(1)三角形的三条角平分线相交于______点,它到______________.(2)三角形内,到三边距离相等的点是____________.利用角平分线的判定证角平分线比证全等要简便得多.自学反馈如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为( )A.60°B.45°C.30°D.75°活动1小组讨论例1已知:如图,△ABC.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:(提示)作三个内角平分线交于一点P,点P即为所求作的点.例2如图,在△ABC中,外角∠CBD和∠BCE的平分线BF、CF相交于点F.求证:点F也在∠BAC的平分线上.证明:过点F作FM⊥BC于点M,FG⊥AB于点G,FH⊥AC于点H,∵BF、CF是∠CBD和∠BCE的平分线,∴FG=FM,FH=FM.∴FG=FH.∴点F也在∠BAC的平分线上.过点F作AD、BC、AE的垂线段FG、FM、FH,然后证FG=FH.活动2跟踪训练1.已知:如图,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.2.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.角平分线的性质与判定通常是交叉使用.活动3课堂小结角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用辅助线之一.【预习导学】知识探究1.这个角的平分线上∠AOB的平分线 2.(1)这个点到角两边的距离相等(2)这个点在这个角的平分线上(3)到角两边距离相等的点 3.(1)一三边的距离相等(2)三条角平分线的交点自学反馈1.C【合作探究】活动2跟踪训练1.证明:∵∠1=∠2,OD⊥AB,OE⊥AC,∴OD=OE.在△BDO与△CEO中,∵∠BDO=∠CEO=90°,OD=OE,∠BOD=∠COE,∴△BDO≌△CEO.∴OB=OC. 2.证明:∵OD平分∠POQ,∴∠AOD=∠BOD.在△AOD与△BOD中,∵OA =OB,∠AOD=∠BOD,OD=OD,∴△AOD≌△BOD.∴∠ADO=∠BDC.∵CM⊥AD,CN⊥BD,∴CM=CN.。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形角的平分线的性质(第2课时)教案
第十二章全等三角形12.3角的平分线的性质第2课时一、教学目标【知识与技能】掌握角平分线性质的逆定理,并能利用这些方法解决简单的数学问题和实际问题.【过程与方法】经历探究角平分线性质逆定理的过程,发展学生合情推理能力和演绎推理能力.【情感、态度与价值观】结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】角平分线性质和判定的应用.【教学难点】运用角平分线性质和判定证明及解决实际问题.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是什么?(出示课件2)(二)探索新知1、师生互动,探究角平分线的判定定理教师问1:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺1∶20000)?(出示课件4)师生共同讨论得出答案:这个点应该在角的平分线.教师问2:刚才大家对上述问题进行了讨论,并且得出了做法,我们进而从做法中总结出了新的结论:到角的两边距离相等的点在角的平分线上.这个新结论正确吗?(出示课件5)师生讨论后认为需要证明.问题证明:已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,PD=PE.求证:点P 在∠AOB的平分线上.教师问3:你能证明上边的问题吗?学生小组讨论并回答:(出示课件7)证明:作射线OP,∵PD⊥OA,PE⊥OB.∴∠PDO=∠PEO=90°,在Rt△PDO和Rt△PEO中,OP=OP(公共边),PD=PE(已知),∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP(全等三角形的对应角相等).∴点P在∠AOB的平分线上.教师讲解:由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.总结点拨:(出示课件8)判定定理:角的内部到角的两边的距离相等的点在角的平分线上.应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.教师问4:这个结论与角的平分线的性质在应用上有什么不同?学生讨论得出结论:叫的判定定理可以判定角的平分线,而角的平分线的性质可用来证明线段相等.教师问5:让我们回到刚上课时的问题:怎样找到集贸市场所在点?师生共同解答如下:1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500m处.(出示课件9)2.在纸上画图时,我们经常以厘米为单位,而题中距离是以米为单位,这就涉及一个单位换算问题.1m=100cm,所以比例尺为1∶20000,其实就是图中1cm 表示实际距离200m的意思.如图:第一步:尺规作图作出夹角的角平分线OC.第二步:在射线OC上截取OD=2.5cm,确定D点,D点就是集贸市场所建地了.总结点拨:根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点.教师总结:应用角平分线的性质,可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1:如图,BE⊥AC,CF⊥AB,BE与CF交于点D,DE=DF,连接AD.求证:(1)∠FAD=∠EAD;(2)BD=CD.师生共同解答如下:证明:(1)∵BE⊥AC,CF⊥AB,DE=DF,∴AD是∠BAC的平分线,∴∠FAD=∠EAD.(2)∵△ADF与△ADE是直角三角形,DE=DF,AD=AD,∴Rt△ADF≌Rt△ADE(HL),∴∠ADF=∠ADE,∵∠BDF=∠CDE,∴∠ADF+∠BDF=∠ADE+∠CDE,即∠ADB=∠ADC,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴BD=CD.总结点拨:要证明一点在角平分线上,只要证明这点到角两边的距离相等即可.2.师生讨论,探究三角形内角平分线的性质教师问6:我们在学习三角形时,知道三角形的三条内角平分线有怎样的特征吗?学生回答:都在三角形的内部并且交于一点.教师问7:请同学分别画出锐角三角形、直角三角形和钝角三角形的三条内角平分线,看是否交于一点呢?(出示课件11)学生做图后回答:三角形的三条角平分线相交于一点.教师问8:分别过交点作三角形三边的垂线,用刻度尺量一量,每组垂线段,你发现了什么?学生测量后回答:过交点作三角形三边的垂线段相等.(出示课件12)教师问9:你能证明这个结论吗?师生共同解答如下:(出示课件13)已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.教师问10:点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?学生回答:点P在∠A的平分线上.教师问11:如何证明呢?学生口答证明过程.结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.(出示课件14)总结点拨:(出示课件17)1.应用角平分线性质:存在角平分线条件涉及距离问题2.联系角平分线性质:距离面积S=12ch周长例2:如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为()(出示课件18)师生共同解答如下:解析:由已知,O到三角形三边的距离相等,即三条角平分线的交点,AO,BO,CO 都是角平分线,所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180°-40°=140°,∠OBC+∠OCB=70°,∠BOC=180°-70°=110°.故选A.总结点拨:(出示课件19)由已知,O 到三角形三边的距离相等,得O 是三角形三条内角平分线的交点,再利用三角形内角和定理即可求出∠BOC 的度数.归纳总结:(出示课件20)角平分线的性质角的平分线的判定图形已知条件OP 平分∠AOB PD⊥OA 于DPE⊥OB 于E PD=PE PD⊥OA 于D PE⊥OB 于E结论PD=PEOP 平分∠AOB (三)课堂练习(出示课件23-27)1.如图,某个居民小区C附近有三条两两相交的道路MN,OA,OB,拟在MN上建造一个大型超市,使得它到OA,OB的距离相等,请确定该超市的位置P.2.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.3.如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE 的平分线上.4.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置.l1l3l2参考答案:1.解答如下图:2.解:AD平分∠BAC.理由如下:∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.3.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.4.答案如下图:(四)课堂小结今天我们学了哪些内容:角的平分线的性质(2)性质:角的内部到角的两边距离相等的点在角的平分线上.(五)课前预习预习下节课(13.1.1)的相关内容。
人教版八年级数学上册12.3第2课时角的平分线的判定及性质的应用
上,且DC=EF,△BCD与△BEF的面积相等.求证: 4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
例2 如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD. (3)若BC=12,AD=13,求S△AMD.
1 2
S梯形ABCD.
∵S梯形ABCD=12 (CD+AB)·BC=12 ×13×12=78,
∴S△AMD=12 ×78=39.
ห้องสมุดไป่ตู้ 练习
1.教材P50 练习第2题. 2.如图,点P是∠MON内一点,PA⊥ON于点A, PB⊥OM于点B,且PA=PB.若∠MON=50°,C为OA 上一点且∠OPC=30°,则∠PCA的度数为( B ) A.50° B.55° C.60° D.80°
AB平分∠CAF. (3)若BC=12,AD=13,求S△AMD.
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论;
∴∠BFD=∠CED=90°.
证∴ 明D如C证·下BM:=明过点EM:F作·BMN过E. ⊥A点D于点BE.作BM⊥AC于点M,BN⊥AF于点N.
(3) 我们能不能证明上面的结论?
(1)若连接AM,则AM是否平分∠BAD?请证明你的结论; 3-5,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m,这个集贸市场应建于何处(在图上
标如出图它 12又的. 位∵置,比M例尺E为⊥1:200A00)D? ,∠B=90°,∴AM平分∠BAD;
∵S梯形ABCD= (CD+AB)·BC= ×13×12=78,∴S△AMD= ×78=39.
4.如图,B是∠CAF内一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.
八年级数学上册 12.3 角的平分线的性质 第2课时 角的平分线的判定教学设计 (新版)新人教版
八年级数学上册 12.3 角的平分线的性质第2课时角的平分线的判定教学设计(新版)新人教版一. 教材分析《角的平分线的性质》是人教版八年级数学上册第12.3节的内容,这部分内容是学生在学习了角的概念、角的运算、垂线的性质等知识的基础上进行学习的。
角的平分线是数学中的一个重要概念,它在几何学习中有着广泛的应用。
本节内容主要介绍了角的平分线的性质,包括角的平分线上的点到角的两边的距离相等,角的平分线垂直于角的对边等。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对角的概念、角的运算、垂线的性质等有一定的了解。
但是,学生对角的平分线的性质的理解可能还不够深入,需要通过实例来帮助学生理解和掌握。
三. 教学目标1.理解角的平分线的性质,能够运用角的平分线解决一些几何问题。
2.培养学生的逻辑思维能力,提高学生解决问题的能力。
四. 教学重难点1.角的平分线的性质的理解和运用。
2.角的平分线与垂线的性质的联系和区别。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,引导学生通过观察、思考、讨论、实践等方式来学习和理解角的平分线的性质。
六. 教学准备1.准备相关的几何图形和实例。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过提问的方式引导学生回顾角的概念、角的运算、垂线的性质等知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用多媒体展示角的平分线的定义和性质,引导学生观察和思考,通过实例来帮助学生理解和掌握角的平分线的性质。
3.操练(10分钟)学生分组进行练习,教师给出一些有关角的平分线的问题,学生通过合作解决问题,巩固对角的平分线的性质的理解和运用。
4.巩固(10分钟)教师给出一些有关角的平分线的问题,学生独立解答,教师进行讲解和指导,帮助学生巩固对角的平分线的性质的理解和运用。
5.拓展(10分钟)教师给出一些有关角的平分线和垂线的性质的问题,学生进行思考和讨论,通过实例来理解角的平分线和垂线的性质的联系和区别。
2024~2025学年度八年级数学上册第2课时 角的平分线的判定教学设计
第2课时角的平分线的判定教学步骤师生活动拓展:(1)几何画板动态演示角平分线的判定定理:提出这些概念,学生只教学目标课题12.3第2课时角的平分线的判定授课人素养目标探索并证明角平分线的判定定理:角的内部到角两边距离相等的点在角的平分线上,感受互逆的数学思想,发展学生的推理能力和解题能力.教学重点探索并证明角平分线的判定定理及其运用教学难点区别角的平分线的性质定理和判定定理并灵活运用.教学活动教学步骤师生活动活动一:创设情境,新课引入设计意图结合实际情境提出问题,为引入角平分线的判定定理做铺垫.【情境引入】思考如图,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处(在图上标出它的位置)?聪明的你是否已经猜想到,集贸市场应建在公路和铁路夹角的平分线上呢?这是为什么呢?让我们赶快进入新课,你的疑问就能迎刃而解了.【教学建议】学习了角的平分线的性质之后,学生可能会猜想到答案,无形中将要学的判定定理与性质定理建立了联系,对进入新课的学习起到了推动作用.活动二:合作交流,新知探究设计意图使学生经历探索证明角的平分线的判定定理的过程,感受知识的产生可以来自于数学本身.学会区别角的判定定理与性质定理,并运用判定定理解决问题.探究点1角的平分线的判定问题1:我们知道,角的平分线上的点到角的两边的距离相等,如果交换这个命题的条件和结论,你能得到什么新结论?答:新结论:到角的两边的距离相等的点在角的平分线上.问题2:这个新结论成立吗?请按照上节课总结的证明几何命题的一般步骤,自己证一证这个结论.答:这个结论成立.证明过程如下:如图,P 为∠AOB 内部一点,PD⊥OA 于点D,PE⊥OB 于点E,且PD=PE.求证:点P 在∠AOB 的平分线上.证明:如图,经过点P 作射线OC.∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△PDO 和Rt△PEO 中,OP=OP,PD=PE.∴Rt△PDO≌Rt△PEO (HL).∴∠AOC=∠BOC.∴点P 在∠AOB 的平分线上.概念引入:【教学建议】衔接活动一的思路继续引导,通过逆向思维将角的平分线的性质的题设和结论交换位置,并引导学生利用三角形全等证明这个结论,这就得到了角的平分线的判定定理.这个过程中结合了推理证明,可使学生进一步感受数学知识的系统性和逻辑性.角平分线的实质是符合某种条件的动点的集合,因此利用教具、投影或计算机演示动点运动的过程和规律,更能直观显示其形成过程,有利于学生自己观察,探索新知识,发挥学习的主动性.角的平分线的性质定理和判定定理是互逆定理,教学中不必对学生(2)角的平分线的性质及判定的关系:特别提醒:角的平分线的性质是证两条线段相等的依据,角的平分线的判定是证两角相等的依据,在应用时不要混淆.问题3:根据上述结论,请找到活动一中集贸市场的具体位置.答:集贸市场应建在S 区内,公路和铁路夹角的平分线上,且在图上距离公路和铁路交点处500÷200=2.5个单位长度的位置,如图中点P 所示.【对应训练】如图,已知BE⊥AC,CF⊥AB,垂足分别为E,F,BE,CF 相交于点D.若BD=CD,求证:AD 是∠BAC 的平分线.证明:∵BE ⊥AC ,CF ⊥AB ,∴∠BFD =∠CED =90°∴△BDF≌△CDE(AAS),∴DF=DE.又DF⊥AB,DE⊥AC,∴AD 是∠BAC 的平分线.需认识到这两个定理的条件和结论是相反的,体会互逆的特点并能够加以区别即可.【教学建议】学过角的平分线的判定定理后,自然对于活动一的问题进行了解释,这里要注意比例尺的换算不要出错.教师可引导学生交流探讨,完成后续设置的练习,有利于进一步加强学生对于新知的理解和应用.设计意图使学生经历探究三角形三条角平分线交于一点,且这一点到三条边的距离相等的过程,为运用这个结论打好理论基础.探究点2三角形三条角平分线的关系例1(教材P50例题)如图,△ABC 的角平分线BM ,CN 相交于点P.求证:点P 到三边AB ,BC ,CA 的距离相等.证明:过点P 作PD ,PE ,PF 分别垂直于AB ,BC ,CA ,垂足分别为D ,E ,F.∵BM 是△ABC 的角平分线,点P 在BM 上,∴PD =PE.同理PE =PF.∴PD =PE =PF.即点P 到三边AB ,BC ,CA 的距离相等.问题:想一想,点P 在∠A 的平分线上吗?这说明三角形的三条角平分线有什么关系?答:由于点P 在∠A 的内部,而且PD =PF ,所以点P 在∠A 的平分线上.这说明三角形的三条角平分线交于一点.归纳总结:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.【对应训练】教材P50练习第2题.【教学建议】学生自主完成例1的解题过程,教师进行点评,并提出后面的问题,这也是这个探究点的核心意义——证明了三角形三条角平分线交于一点,这里隐含将三角形的面积与周长之间建立联系.在第十一章学生曾经画图猜想过三角形三条角平分线的特点,在这里就综合利用了角的平分线的性质和判定定理对这个猜想进行了严格证明,体现了数学证明的逻辑性与严密性.九年级上册中还将进一步说明这个交点的意义:它是三角形内切圆的圆心,叫做三角形的内心.教学步骤师生活动内一点,DE⊥AB,DF⊥AC=CD.“随堂小练”册子相应课时随堂训练.师生一起回顾本节课所学主要内容,并请学生回答以下问题:角的平分线的判定定理是什么?你能证明吗?能运用角的平分线的判定定理解题吗?【作业布置】1.教材P51~52习题12.3第1,3,7题.2.《创优作业》主体本部分相应课时训练.第2课时角的平分线的判定1.角的平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.2.三角形三内角的平分线交于一点,并且这一点到三条边的距离相等.解题大招一与角的平分线的判定有关的计算角的平分线的判定定理为得到角平分线又增加了一种思路,可利用角的平分线的判定定理对说理过程进行简化,不必再通过证三角形全等来进行说明.而三角形三条角平分线交于一点在本课时通过角的平分线的判定定理进行了严格证明,过这个交点分别对三角形三条边作垂线,可得到三条相等的垂线段(设长为h),从而可利用面积法得到三角形的面积S 与周长C 之间的关系:S =12Ch.例1如图,AD ⊥DC ,AB ⊥BC ,若AB =AD ,∠BCD =60°,求∠DAC 的度数.解:∵AB ⊥BC ,AD ⊥DC ,且AB =AD ,∴CA 平分∠BCD.∴∠ACD =12∠BCD =12×60°=30°.又∠ADC =90°,∴∠DAC =90°-∠ACD =90°-30°=60°.例2如图,在Rt △ABC 中,∠C =90°,AP 平分∠BAC ,BD 平分∠ABC ,AP ,BD 交于点O ,过点O 作OM ⊥AC 于点M.若OM =4,△ABC 的周长为32,求△ABC 的面积.解:如图,连接OC ,过点O 分别作OE ⊥AB 于点E ,ON ⊥BC 于点N.∵AP 平分∠BAC ,BD 平分∠ABC ,AP ,BD 交于点O ,∴点O 是△ABC 三条角平分线的交点,∴OE =ON =OM =4.S △ABC =S △AOC +S △BOC +S △AOB=12AC·OM +12BC·ON +12AB·OE =12OM·(AC +BC +AB)=12×4×32=64.解题大招二角的平分线的判定定理的实际应用在确定到三角形三边距离相等的点的位置时,易受到“三角形三条内角平分线的交点到三边的距离相等”的思维定式的影响,误认为这样的点只有一个,且存在于三角形内部.事实上,若题中不存在限制条件,这样的点还有3个,它们是三角形相邻的两个外角(不在同一顶点处)的平分线的交点.例3如图,三条公路l 1,l 2,l 3两两相交于A ,B ,C 三点,现计划修建一个超市,要求这个超市到三条公路的距离相等,可选择的地方有多少处?请画出图形并在图中标示出来.分析:解:可选择的地方有4处.如图:(1)作出△ABC 两个内角的平分线,取其交点为O 1;(2)分别作出△ABC 相邻的两个外角(不在同一顶点处)的平分线,取其交点分别为O 2,O 3,O 4.故可选择的地方有4处,即点O 1,O 2,O 3,O 4.解题大招三角的平分线的性质与判定的综合应用与角的平分线有关的常见的添加辅助线的方法:若OP 为∠AOB 的平分线或要证OP 为∠AOB 的平分线,则可以用下面的方法:例4如图,CB =CD ,∠D +∠ABC =180°,CE ⊥AD 于点E.(1)求证:AC 平分∠DAB ;(2)若AE =10,DE =4,求AB 的长.(1)证明:如图,过点C 作CF ⊥AB 的延长线于点F.∵CE ⊥AD ,CF ⊥AB ,∴∠DEC =∠F =90°.∵∠D +∠ABC =180°,∠CBF +∠ABC =180°,∴∠D =∠CBF.在△CDE 和△CBF ∠DEC =∠F ,∠D =∠CBF ,CD =CB ,∴△CDE ≌△CBF(AAS ),∴CE =CF.又CE ⊥AD ,CF ⊥AF ,∴AC 平分∠DAB.(2)解:由(1)可得△CDE ≌△CBF ,∴BF =DE =4.在Rt △ACE 和Rt △ACF AC =AC ,CE =CF ,∴Rt △ACE ≌Rt △ACF(HL ),∴AF =AE =10,∴AB =AF -BF =10-4=6.培优点与角的平分线的判定定理有关的探究题例(类比探究)如图①,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是△ABC 的角平分线,AD ,CE 相交于点F.(1)请你判断并写出DF 与EF 之间的数量关系,并说明理由.(2)如图②,如果∠ACB 不是直角,其他条件不变,(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.分析:解:(1)DF =EF.理由如下:如图①,过点F 分别作FM ⊥BC 于点M ,FN ⊥AB 于点N ,连接BF ,则∠DMF =∠ENF =90°.∵△ABC 的三条角平分线交于一点,AD ,CE 是△ABC 的角平分线,∴BF 平分∠ABC.∴FM =FN.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =90°-∠ABC =30°,∴∠DAC =12∠BAC =15°,∴∠CDA =90°-∠DAC =75°.又∠ACE =12∠ACB =45°,∴∠NEF =∠BAC +∠ACE =30°+45°=75°,∴∠NEF =∠MDF.在△DMF 和△ENF ∠MDF =∠NEF ,∠DMF =∠ENF ,FM =FN ,∴△DMF ≌△ENF(AAS ),∴DF =EF.(2)DF=EF仍然成立.证明如下:如图②,过点F分别作FM⊥BC于点M,FN⊥AB于点N,连接BF,则∠DMF=∠ENF=∠BNF=90°.∵△ABC的三条角平分线交于一点,AD,CE是△ABC的角平分线,∴BF平分∠ABC.∴FM=FN.由双内角平分线模型可知∠AFC=90°+12∠ABC=90°+30°=120°,∴∠DFE=∠AFC=120°.又∠MFN=360°-∠DMF-∠BNF-∠ABC=360°-90°-90°-60°=120°,∴∠MFN=∠DFE.∴∠MFN-∠DFN=∠DFE-∠DFN,即∠DFM=∠EFN.在△DMF和△ENF DMF=∠ENF,=FN,DFM=∠EFN,∴△DMF≌△ENF(ASA),∴DF=EF.。
最新人教版初中八年级上册数学《角的平分线的判定》精品教案
第2课时角的平分线的判定【知识与技能】1.掌握角的平分线的判定.2.会利用三角形角平分线的性质.【过程与方法】通过学习角的平分线的判定,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】角平分线的判定.【教学难点】三角形的内角平分线的应用.一、情境导入,初步认识问题1我们知道,角的平分线上的点到角的两边的距离相等.到角的两边的距离相等的点是否在角的平分线上呢?【教学说明】如图所示,已知PD⊥OA于D,PE⊥OB于E,PD=PE,那么能否得到点P在∠AOB的角平分线上呢?事实上,在Rt△OPD和Rt△OPE中,我们利用HL可得到Rt△OPD≌Rt△OPE.所以∠AOP=∠BOP,即点P在∠AOB的角平分线上.二、思考探究,获取新知三角形内角平分线是角平分线的延伸,那如何利用它来解题呢?例1 如图O是△ABC内的一点,且O到三边AB、BC、CA 的距离OF=OD=OE.若∠A=70°,求∠BOC的度数.【分析】由OD=OE=OF,且OD⊥BC、OE⊥AC、OF⊥AB知,O是△ABC的三角平分线的交点,所以∠1=∠2、∠3=∠4.要求∠BOC的度数,只要求出∠1+∠3的度数,即只要求出2(∠1+∠3)=∠ABC+∠ACB 的度数即可,在△ABC中,运用三角形的内角和定理,即可得出∠BOC的度数.解:∵OF⊥AB,OD⊥BC,且OF=OD,∴BO平分∠ABC,即∠1=∠2,同理可得∠3=∠4.∴∠BOC=180°-(∠1+∠3)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A=125°.【教学说明】求三角形中角的度数,要善于运用角平分线的性质.例2如图①,D、E、F是△ABC的三条边上的点,且CE=BF,S△DCE =S△DBF,求证:AD平分∠BAC.【分析】由已知条件可知△DCE和△DBF的两底CE=BF,且它们的面积相等,所以这两底上的高应该相等.因此过点D作DM⊥AB,DN⊥AC,垂足分别为M和N,则DM=DN.由角平分线的判定定理可知,AD平分∠BAC.【证明】如图②,过点D作DM⊥AB于点M,作DN⊥AC于点N.∵S△DCE =S△DBF,即12CE·DN=12BF·DM.又∵CE=BF,∴DN=DM,∴点D在∠BAC的平分线上,即AD 平分∠BAC.例3 如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE⊥BD并交BD的延长线于点E,又AE=12BD.求证:BD是∠ABC的平分线.【分析】要证明BD是∠ABC的平分线,即证明∠1=∠2,可构造全等三角形,延长AE、BC交于F,根据条件证明△ABE≌△FBE即可.【证明】延长AE、BC交于点F.∵AE⊥BD,∠ACB=90°,∴∠2+∠F=∠FAC+∠F=90°,即∠2=∠FAC.在△BDC与△AFC中,290FAC BC ACBCD ACF ∠=∠=∠=∠=︒⎧⎪⎨⎪⎩, ∴△BDC ≌△AFC(ASA), ∴BD=AF. 又∵AE=12BD,∴AE=12AF, ∴AE=EF.在△ABE 和△FBE 中,90AE EFAEB FEB BE BE =∠=∠=︒=⎧⎪⎨⎪⎩, ∴△ABE ≌△FBE(SAS).∴∠1=∠2. 即BD 是∠ABC 的平分线.例4 (青海西宁中考)八年级(1)班同学上数学活动课,利用角尺平分一个角(如图所示),设计了如下方案:方案一:∠AOB 是一个任意角,将角尺的直角顶点P 置于射线OA,OB 之间.移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN,过角尺顶点P 的射线OP 就是∠AOB 的平分线.方案二:∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON,将角尺的直角顶点P 介于射线OA ,OB 之间,移动角尺使角尺两边相同的刻度与M ,N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(1)方案一、方案二是否可行?若可行,请证明;若不可行,请说明理由; (2)方案一中,在PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA,PN ⊥OB.此方案是否可行?请说明理由.解:(1)方案一不可行,理由:缺少三角形全等的条件.方案二可行. 证明:在△OPM 和△OPN 中,,,,PM PN OP OP OM ON ===⎧⎪⎨⎪⎩∴△OPM ≌△OPN(SSS). ∴∠AOP=∠BOP.∴OP是∠AOB的平分线.(2)此方案可行.理由:∵PM=PN,且PM⊥OA,PN⊥OB,∴P在∠AOB的角平分线上,∴OP是∠AOB的平分线.三、运用新知,深化理解1.如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=________.第1题图第2题图2.如图,以△ABC的两边AB,AC为边分别向外作等边△ABD和等边△ACE,连接BE,CD交于点O,求证:OA平分∠DOE.【答案】1.150°2.证明:过点A分别作AM⊥DC于点M,AN⊥BE于点N.∵△ABD、△ACE是等边三角形,∴AD=AB,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,∴△DAC≌△BAE,∴DC=BE,又∵S△DAC =S△BAE,∴AM=AN.又∵AM⊥DC,AN⊥BE,∴OA平分∠DOE.四、师生互动,课堂小结1.三角形的三条角平分线的交点有且只有一个,且一定在三角形的内部.2.证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点也在第三条直线上.3.在三角形内部,要找一点到三边距离相等时,只要作出两个角的角平分线,其交点即是.4.角平分线的判定与性质的关系:由角平分线的判定方法知这个结论的逆命题也是正确的,即在三角形内,到三角形三边的距离相等的点是三角形三条角平分线的交点.1.布置作业:从教材“习题12.3”中选取部分题.2.完成练习册中本课时的练习.本课时教学应重视以下几点;1.努力体现数学与生活的联系,从实际中学习新知,使学生认识这种学习方法.2.课堂中,可采用口答、动手做做等方式组织学生比赛,教师依据具体情形予以点评指点,查漏补缺,使学生全方位从本质上理解知识.作者留言:非常感谢!您浏览到此文档。
角的平分线的性质人教版数学八年级上册教案
角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。
人教版数学八年级上册12.3角的平分线的性质(第2课时)优秀教学案例
3.组织小组竞赛,激发学生的团队精神和竞争意识,提高课堂活力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习方法和经验,提高自主学习能力。
2.教师对学生的学习情况进行评价,关注学生的知识掌握程度和能力提高。
3.鼓励学生相互评价,培养学生的评价能力和团队意识。
4.教学内容的系统性与连贯性:教师在教学过程中,既有对角的平分线概念及基本性质的回顾,又有对新知识的讲解和应用。这种教学方式使得学生能够在新旧知识之间建立起联系,形成系统的知识结构,提高学习效果。
5.多元化的教学评价:教师采用过程性评价与终结性评价相结合的方式,关注学生在课堂中的表现,及时给予反馈和指导。这种多元化的教学评价方式,既有助于教师了解学生的学习情况,又能够激发学生的学习动力,提高教学质量。
本节课的教学内容主要包括两个方面:一是角的平分线的性质及其推论;二是运用角的平分线解决实际问题。在教学过程中,我注重引导学生通过观察、操作、思考、讨论等方式,发现角的平分线的性质,培养学生独立思考和合作交流的能力。同时,我还将利用多媒体课件展示角的平分线的性质,以激发学生的学习兴趣,提高课堂效果。
在教学评价方面,我将采用过程性评价与终结性评价相结合的方式,关注学生在课堂中的表现,及时给予反馈和指导,以确保每个学生都能在课堂上得到有效的学习和提高。通过本节课的教学,我希望学生能够掌握角的平分线的性质,提高解决问题的能力,为后续学习奠定坚实的基础。
(二)问题导向
1.设计一系列由浅入深的问题,引导学生通过对问题的思考,发现角的平分线的性质。
2.鼓励学生提出问题,培养学生的批判性思维和问题意识。
3.引导学生运用角的平分线性质解决实际问题,提高学生运用所学知识解决实际问题的能力。
八年级数学上册-人教版八年级上册数学12.3角平分线的性质12.3角的平分线的性质教案
12.3角的均分线的性质1.能够利用三角形全等,证明角均分线的性质和判断.知识与技术 2.会用尺规作已知角的均分线.3.能利用角均分线性质进行简单的推理,解决一些实质问题.教课目的过程与方法经历研究、猜想、证明的过程,进一步发展学生的推理证明意识和能力.在商讨作角的均分线的方法及角的均分线的性感情态度价值观质的过程中,培育学生研究问题的兴趣,加强解决问题的信心,获取解决问题的成功体验,逐渐培育学生的理性精神教课要点角均分线画法、性质和判断.教课难点角的均分线的性质的研究教课准备均分角的仪器 ( 自制 ) 三角尺、多媒体课件等.教课过程(师生活动)设计理念1. 在纸上随意画一个角,用剪刀剪下,用折纸的方法,怎样确立角的均分线?复习旧知识,回2.有一个简略均分角的仪器(如图),此中忆角的均分线的定义AB=AD,BC=DC,将 A 点放角的极点, AB和 AD沿 AC画让学生体验利用证明一条射线AE,AE 就是∠ BAD的均分线,为何?三角形全等的方法来创建情境,对画法做出说明.导入新课要修业生能说明所作的射线是角均分线的原因.研究 1.(1)从上边对均分角的仪器的研究中,能够得出作已知角的均分线的方法。
已知什么?求作什么?【已知:∠ AOB求作:∠ AOB的均分线】研究新知,成立模型从实验中抽象出几何模型, 明确几何作图的基本思路和方法 .(2) 把简略均分角的仪器放在角的两边. 且均分角的仪器两边相等, 从几何角度怎么画?【以点O 为圆心,适合长为半径画弧,交OA 于点 M,交 OB于点 N. 】(3) 简略均分角的仪器 BC=DC,从几何角度怎样画【分别以点 M , N 为圆心,大于二分之一MN 长为半径画弧,两弧在角的内部交于点C.(4)OC 与简略均分角的仪器中,AE 是同一条射线吗 ?【是】(5) 你能说明 OC 是∠ AOB 的均分线吗 ?【提示:利用全等的性质】研究 2.(1) 在已画好的角的均分线 OC 上随意找一点 P, 过 P点分别作 OA 、OB 的垂线交 OA 、O 于 M 、N, PM 、PN 的长度是∠ AOB 的均分线上一点到∠ AOB 两边的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§12.3 角的平分线的性质(二)
教学目标
(一)教学知识点:角的平分线的性质
(二)能力训练要求
1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.
(三)情感与价值观要求
通过折纸、画图、文字一符号的翻译活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣.
教学重点:角平分线的性质及其应用.
教学难点:灵活应用两个性质解决问题.
教学方法:探索、归纳的方法.
教学过程
一.创设情境,引入新课
[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?
二.导入新课
角平分线的性质即已知角的平分线,能推出什么样的结论.
操作:
1.折出如图所示的折痕PD、PE.
2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.
画一画:
按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?
拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的.
问题1:你能用文字语言叙述所画图形的性质吗?
问题2:(出示投影片)
能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:
学生通过讨论作出下列概括:
已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.
由已知事项推出的事项:PD=PE.
【师】如何证明?请同学们试一试。
证明:略(详见课本P49页)。
于是我们得角的平分线的性质:
在角的平分线上的点到角的两边的距离相等.
[师]那么,在角的内部到角的两边距离相等的点是否在角的平分线上呢?(出示投影)
问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:。