半导体异质结物理(虞丽生编著)思维导图
《半导体物理学》【ch09】 半导体异质结构 教学课件

半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图 在以上所用的符号中, 一般都把禁带宽度较小的半导体材料写在前面。 研究异质结的特性时, 异质结的能带图起着重要的作用。在不考虑两种半导体交界面处的界面态 的情况下,任何异质结的能带图都取决于形成异质结的两种半导体的电子亲和能、禁带宽度及功 函数, 但是其中的功函数是随杂质浓度的不同而变化的。 异质结也可以分为突变型异质结和缓变型异质结两种。如果从一种半导体材料向另一种半导体材 料的过渡只发生于几个原子距离范围内,则称为突变型异质结。如果发生于几个扩散长度范围内, 则称为缓变型异质结。由于对于后者的研究工作不多,了解很少,因此下面以突变型异质结为例 来讨论异质结的能带图。
集成电路科学与工程系列教材
第九章
半导体异质结构
半导体物理学
半导体异质结构
导入
第6 章讨论的pn 结是由导电类型相反的同一种半导体单晶材料组成的,通常也称为同质结,而 由两种不同的半导体单晶材料组成的结则称为异质结。虽然早在1951 年就已经提出了异质结的 概念, 并进行了一定的理论分析工作,但是由于工艺技术存在困难, 一直没有实际制成异质结。 自1957 年克罗默指出由导电类型相反的两种不同的半导体单晶材料制成的异质结比同质结具有 更高的注入效率之后,异质结的研究才比较广泛地受到重视。
半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图
半导体异质结及其能带图
01 半导体异质结的能带图
9. 1. 1 半导体异质结的能带图 (2 )突变同型异质结的能带图 图9-4(a)为均是n 型的两种不同的半导体材料形成m 异质结之前的平衡能带图;图9-4(b)为形成 异质结之后的平衡能带图。当这两种半导体材料紧密接触形成异质结时, 因为禁带宽度大的n 型 半导体的费米能级比禁带宽度小的n 型半导体的费米能级高,所以电子将从前者向后者流动。结 果在禁带宽度小的n 型半导体一边形成了电子的积累层,而另一边形成了耗尽层。这种情况和反 型异质结不同。对于反型异质结,两种半导体材料的交界面两边都成为耗尽层;而在同型异质结 中,一般必有一边成为积累层。式(9-4)、式( 9-5)和式( 9-6)在这种异质结中同样适用。 图9 5 为pp 异质结在热平衡状态时的平衡能带图,其情况与nn 异质结类似。
《半导体光电子学课件》下集2.1 异质结及其能带图

Ec1
F
Ev1
x1
VD VDP VDN
E g1 E g 2
1
VDP
Ec
VDN
Ec 2
Ev
x1 x2
1 2
x1 E g1 x2 E g 2
Ev 2
xp
xn
④ p-n结 p- n: n型和p型样占接触在一起p- n结。 n区电子向p区扩散→n区剩下电离施主,形成带 正电荷区。 p区孔穴向n区扩散→p区剩下电离受主,形成带 负电荷区。 加正向偏压 v f 时,外加电场与内建电场方 向相反,空间电荷相应减少,势垒区宽度减少, 扩散运动超过了漂移运动 qvD q(vD v f ) , 载流子扩散运动超过了漂移运动→成为正向电流。
x1 x2
x1
Ec1
Ev1
E g1
1
Ec
-
+
1 2
x1 E g1 x2 E g 2
1
Ev
2
+ +Biblioteka Ec 2FEv
Ev 2
形成结后能带
三.缓变异质结
1.能带不连续性小时,尖峰、尖谷淡化 2.在外加电场作用下,缓变结与突变结有相同的性 质, Ev 和 Eg有一定的关系 Ec 、
Ev ( Eg 2 x2 ) ( Eg1 x1 )
E g x E g E c
二.突变同型异质结
nN , pP 1.同型异质结由多数载流子相互扩散形成空间电荷区 2.同型异质结性质由多数载流子决定 3.同型异质结材料费米能级有差别 → 扩散 4. Eg: X: 不同, 能带不同 Φ: F:
→n 区电子进入p区成为p区非平衡少数载流子。 →非平衡少数载流子的电注入。 扩散过程中与多子相遇而不断复合→一个扩散长度 后复合完毕。
半导体物理第九章1

N N 1 2 A1 D 2
]1/ 2
T dV 2( N N )(V V )
2 D2
1 A1
D
VD为内建电势,V为偏置电压,正偏为正值,负偏为负值
掺杂浓度越大,势垒宽度越窄,势垒电容越大
C-V特性应用:
1
2( N 1 A1
N )(V
2 D2
D
V)
(C )2
qN N
E
C
1
2
qV qV QV E E 价带顶处:
D
D1
D2
F2
F1
W W
1
2
E (E E ) ( )
v
g2
g1
1
2
V V V
D
D1
D2
突变pN异质结后的热平衡能带图特点2
qV qV QV E E
D
D1
D2
F2
F1
W W
异质结器件的发展:
1948年肖克莱提出HBT概念和获得专利;1960年 制造成功第一个异质结;1969年实现异质结半导 体激光器; 1972年IBM实现HBT器件;1980实 现HEMT器件
异质结制作技术:外延技术—液相、气相、分 子束等。
分子束外延生长
主要内容:
§9.1 异质结及其能带图 §9.2 异质结的电流输运机构 §9.3 异质结在器件中的应用
形成突变pN异质结后的热平衡能带图
VD为接触电势差或内建电势差
qV qV qV E E
D
D1
D2
F2
F1
W W
1
2
V V V
半导体物理学第九章知识点

第9章半导体异质结构第6章讨论的是由同一种半导体材料构成的p-n结,结两侧禁带宽度相同,通常称之为同质结。
本章介绍异质结,即两种不同半导体单晶材料的结合。
虽然早在1951年就已经提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺水平的限制,一直没有实际制成。
直到气相外延生长技术开发成功,异质结才在1960年得以实现。
1969年发表了第一个用异质结制成激光二极管的报告之后,半导体异质结的研究和应用才日益广泛起来。
§9.1 异质结及其能带图一、半导体异质结异质结是由两种不同的半导体单晶材料结合而成的,在结合部保持晶格的连续性,因而这两种材料至少要在结合面上具有相近的晶格结构。
根据这两种半导体单晶材料的导电类型,异质结分为以下两类:(1)反型异质结反型异质结是指由导电类型相反的两种不同的半导体单晶材料所形成的异质结。
例如由p型Ge与n型Si构成的结即为反型异质结,并记为pn-Ge/Si或记为p-Ge/n-Si。
如果异质结由n型Ge 与p型Si形成,则记为np-Ge/Si或记为n-Ge/p-Si。
已经研究过许多反型异质结,如pn-Ge/Si;pn-Si/GaAs;pn-Si/ZnS;pn-GaAs/GaP;np-Ge/GaAs;np-Si/GaP等等。
(2)同型异质结同型异质结是指由导电类型相同的两种不同的半导体单晶材料所形成的异质结。
例如。
在以上所用的符号中,一般都是把禁带宽度较小的材料名称写在前面。
二、异质结的能带结构异质结的能带结构取决于形成异质结的两种半导体的电子亲和能、禁带宽度、导电类型、掺杂浓度和界面态等多种因素,因此不能像同质结那样直接从费米能级推断其能带结构的特征。
1、理想异质结的能带图界面态使异质结的能带结构有一定的不确定性,但一个良好的异质结应有较低的界面态密度,因此在讨论异质结的能带图时先不考虑界面态的影响。
(1)突变反型异质结能带图图9-1(a)表示禁带宽度分别为E g1和E g2的p型半导体和n型半导体在形成异质pn结前的热平衡能带图,E g1 E g2。
第九章 半导体异质结

Ec1
Ev2
Eg1
Ev1
I型
Ec2 Eg2
Ev2 Ec1
I’型
Eg1
Ev1
Ec2 Eg2
Ev2 II 型
一、异质结的分类
3. 按从一种材料向另一种材料过渡的变化程度来分:
(1)突变型异质结: 从一种半导体材料向另一种半导体材料的过渡只发生在几个原
子距离范围内。 (2)缓变型异质结: 从一种半导体材料向另一种半导体材料的过渡发生于几个扩散
即 qVD qVD1 qVD2 EF 2 EF1 显然 VD VD1 VD2
由于两种材料的禁带宽度不同,能带弯曲不连续,出现了“尖峰”和 “凹口”。尖峰阻止了电子向宽带一侧的运动,这就是所谓的“载流子的限制 作用”。
一、不考虑界面态
W1
Ec1 EF Ev1
x1
凹口
Eg1
qVD1
尖峰
qVD
因为: Q2 Q1 QIS
当界面电荷QIS是受主电荷时,即与Q1相同,此时与无界面态电荷QIS时相 比较,显然Q1减小了,而Q2则增大了。
若QIS很小,得到:
Q1
1N AQIS 1NA 2ND
B1
VD
Va
1/ 2
Q2
2 NDQIS 1NA 2ND
B1
VD
Va
1/ 2
式中第一项为由界面态影响在空间电荷区产生的电荷量,第二项为不考虑界 面态时的空间电荷区电荷量。
一、不考虑界面态
形成异质结时,由于n型半导体(B材料)的费米能级高于P型半导体(A材 料),因此电子从n型半导体流向P型半导体,直到两块半导体具有统一的费米 能级。
由于电子与空穴的流动,在n型和P型半导体的交界面附近形成空了间电荷 区,产生自建电场,使电子在空间电荷区中各点的电势分布不同,即有附加电 势能存在,使空间电荷区中的能带发生弯曲。
第9章 金属半导体和半导体异质结

q B q(m )
3
q(m )
EF
高等半导体物理与器件
当金属与金属半导体紧密接触时,两种半体导不同材料EV的费米能级在热平
衡时应相同,此外,真空能级也必须连续。这两项要求决定了
(a) 热平衡情形下,一独立金属靠近一独立 n 型半导体的能带图
1
两种器件的输运机制不同:肖特基二极管-多数载流子通过热电
子发射跃过内建电势差,pn结二极管-少数载流子扩散运动。
J sT
AT
2
exp
eBn
kT
Js
eDp pn0 Lp
eDnnp0 Ln
• 两者间有两点重要区别:第一是反向饱和电流密度的数量级。
①肖特基二极管的理想反向饱和电流值比pn结大好几个数量级。
• 肖特基二极管电流主要取决于多数载流子流动。
2
高等半导体物理与器件
(1)性质上的特征
真空能级
em
EF
e e B0
es
Ec EF
金属
Ev 半导体
(a)热平衡情形下,一独立金属靠近一独立 n 型半导体的能带图
➢ 真空能级作为参考能级。
➢ 功函数为费米能级和真空能级之差。金属功函数m,半导体
功函数s。此处,m>s。
匹配。
18
高等半导体物理与器件
(2)能带图
• 根据带隙能量的关系,异质结有3种可能:跨骑(图 (a))、交错(图(b))、错层(图(c))。
• 根据掺杂类型的不同,有4种基本类型的异质结:
– 反型异质结:掺杂类型变化,例nP结、Np结 – 同型异质结:掺杂类型相同,例nN结、pP结 – 其中,大写字母表示较宽带隙的材料
半导体物理异质结解析PPT课件

界面量子阱中二维电子气的势阱和状态密度
第14页/共30页
电子的能量:
二维电子气的状态密度
k空间原胞的面积:
k空间k-k+dk圆环的面积: E-k关系: 状态密度:
第15页/共30页
低维半导体材料及其状态密度
Bulk
QW
QD
3D
2D
0D
DD((EE))
DD((EE))
D(E)
E
• qVD = qVD1 + qVD2 = EF2 - EF1 = W1 - W2
半导体物理学
第7章 金第属4页和/半共导30体页的接触
SCNU 光电学院
4
突变反型异质结的能带特征
• n型半导体的能带弯曲量为qV2,且导带底在交界面处形成一个向
上的“尖峰”。
• p型半导体的能带弯曲量为qV1,且导带底在交界面处形成一个向
第2页/共30页
pn结的能带图
qVD E Fn EFp
第3页/共30页
突变反型异质结的能带图
• 形成异质结时电子从n型半导体流向p型半导体,空穴的流动方向相反。
• 达到平衡时,两块半导体具有统一的费米能级。
• 在异质结界面的两边形成空间电荷区,产生内建电场和附加电势能,使 空间电荷区中的能带发生弯曲。
EE
EE
Modification of density of states by confining carriers
第16页/共30页
双异质结间的单量子阱结构
第17页/共30页
双异质结间的单量子阱结构
势阱形状: 波函数分离变量: 波函数分离变量: 薛定谔方程:
第18页/共30页
半导体物理 第九章 第十章

其中,Eg1、Eg2分别为两种半导体材料的禁带宽度(Eg2>Eg1), χ1、χ2分别为两种半导体材料的电子亲和势(χ1>χ2)。而 且有:
∆Ec + ∆Ev = E g 2 − E g1
以上三式对所有突变异质结普遍适用 普遍适用。 普遍适用
14
异质结能带边失调值不仅与半导体材料固有结构有关, 还与两种半导体界面态、界面的晶向有关,这一切又往 往与制备工艺有关; 由于各种原因,使实际得到的异质结能带边失调值常有 很大差异,再加上实验测量方法的误差,也很难用实验 测量值来检验能带边失调值的理论计算的正确性; 通常需要对实验测量值进行严格的挑选,挑选那些界面 晶格结构非常完整,界面晶向是非极性界面的,并采用 最可靠实验测量方法(例如光电子谱 光电子谱测量方法)得到的 光电子谱 实验数据去与理论计算值进行比较。
34
9.6.2 双异质结激光器
该激光器在1970年制成。 年制成。 该激光器在 年制成
一、 结构
或n-GaAs
x值范围为 值范围为 0.1~0.5
该结构中由AlxGa1-xAs和GaAs 界面构成波导的两个壁
35
二、 四层材料的禁带宽度和折射率
36
三、 能带图
37
优点:比单异质结激光器的阈值更低, 四、 优点:比单异质结激光器的阈值更低,效率更 高,寿命更长
形成p-n异质结之前和之后的理想平衡能带图 形成 异质结之前和之后的理想平衡能带图
10
电荷区(即势垒区或耗尽区)。n型半导体一边为正空间电 荷区,p型半导体一边为负空间电荷区,由于不考虑界面 态,所以在势垒区中正空间电荷数等于负空间电荷数。正 负空间电荷间产生电场,也称为内建电场,方向n→p,使 结区的能带发生弯曲。 (2) “尖峰”和“尖谷” 尖峰” 尖谷” 由于组成异质结的两种半导体材料的介电常数 介电常数不同, 介电常数 各自禁带宽度不同,因而内建电场在交界面是不连续的, 导带和价带在界面处不连续 不连续,界面两边的导带出现明显的 不连续 “尖峰”和“尖谷”,价带出现断续,如上图所示。这是 异 质 结与同质结明显不同之处。
半导体物理北交经典课件考研必备-第九章 半导体异质结构解读

二维电子气
GaAs
EF
n+-AlxGa1-xAs
E
在GaAs近结处 形成电子的势阱
调制掺杂异质结界面处能带图
V(z)
0
z
调制掺杂异质结势阱区内电子势能函数
GaAs的导带底位于布里渊区中心 k = 0, 导带底附近电子的 m* 各向同性
h 2 * x, y, z V ( z ) x, y, z E x, y, z 2m
9.3.2 双异质结间的单量子阱结构 1. 导带量子阱中电子的能态 单量子阱结构的形成 在AlxGa1-xAs上异质外延极薄的GaAs, 再异质外延较厚的AlxGa1-xAs。
qVD qVD1 qVD 2 EF 2 EF1
VD VD1 VD 2
VD 称为接触电势差(内建电势差、扩散电势)
VD W1 W2
VD1: p型半导体的内建电势差
VD2: n型半导体的内建电势差 qVD1: n型半导体的导带底或价带顶的弯曲量 qVD2: p型半导体的导带底或价带顶的弯曲量
形成异质结前
p型半导体的费米能级的位置
EF1 EV 1 n1
n型半导体的费米能级的位置
EF 2 EC 2 n2
形成异质结后,平衡时,有统一的费米能级
EF EF1 EF 2
EC
qVD2
2
EV
x1 x0 x2 形成突变pn异质结后的平衡能带图
突变反型异质结平衡时
统一的费米能级 界面两边形成空间电荷区,正=负 内建电场,在界面处不连续 空间电荷区的能带发生弯曲,不连续 两边均为耗尽层 能带总的弯曲量
1 dN 2m Di E 2 2 L dE h
第九章半导体异质结结构(12.8)

p型半导体:
EF1Ev11 (9-1)
n型的半导体
EF2Ec22 (9-2)
当这两块导电类型相反的半导体材料紧密接触形成异质结 时,由于n型半导体的费米能级位置高,电子将从n型半导 体流向p半导体,同时空穴在与电子相反的方向流动,直 至两块半导体的费米能级相等为止。
的悬挂键密度
图9.6 产生悬挂键的示意图
如图9.7所示
因此对于晶格常数分别为a1、 a2的两块半导体形成的异质 结,以(111)晶面为交界 图9.7 金刚石结构(111)面内的键数
面的时悬挂键密度为
Ns
43aa2212aa2212
(9-8)
同理(110)晶面,悬挂键密度为
Ns
42aa2212aa2212
突变型异质结: 从一种半导体材料向另一种半导体材料得 过渡只发生于几个原子范围内。 缓变形异质结: 过渡发生于几个扩散长度范围内,则称为 缓变形异质结。
1.不考虑界面态时的能带图 (1)突变反型异质结能带图
有下标“1”者为禁带宽度小的半导体材料的物理参数,有下标“2”者为禁带宽 度大的半导体材料的物理参数。
9.5半导体超晶格
2
9.1图
根据两种半导体单晶材料的导电类型,异质结分为两类:
1.反型异质结: 导电类型相反的两种不同的半导体单晶材 料所形成的异质结
N
P
P
N
2.同型异质结: 导电类型相同的两种不同的半导体单晶材料 所形成的异质结。
N
N
P
P
有结区的材料的变化分为: :
在异质结中,晶格失配是不可避免的由于晶格失配,在两
种半导体材料的交界面处产生了悬挂键,引入了表面态。