电光调制器的偏振控制系统设计
电光调制器,强度调制器,相位调制器,EOM原理..

• 根据调制参量的不同,可以分为相位调制器和强度调制器。
相位调制器 相位调制器是电光波导调制器中最简单的器件,选择合适的晶体取向以 切,表示的是基片取向, 便获得最大电光系数 r33(为获得最大调制深度,一般取 Z方向为电场方 如z切,即表示晶体的z 向),选取合适的波导和电极结构,然后在调制电压信号的作用下,电 轴垂直于晶体光滑表面, 光晶体的折射率发生相应的改变,晶体中o光和e光经过不同的光程,产 生附加相位。 如下图所示,电场分量沿水平方向(x切y晶体)或者垂直方向(y切x晶体) 加在铌酸锂基片上,光波导传输的模式应为TE模(水平偏振),即晶 体中的e光。产生的附加相位为 n L 2L n V G
0.7 mf 7 0.44 0.11 0.02
c
m
6 m
角度调制波的频谱
1
显然, 若调制信号不是单频正弦波, 则其频谱将更加复杂。另外, 当角度调制系数较小(即m<<1)时,其频谱与调幅波有着相同的 形式。
强度调制
强度调制是光载波的强度(光强)随调制信号规律而变化的激
光振荡。 激光调制通常多采用强度调制形式,这是因为接收器(探测 器)一般都是直接地响应其所接收的光强度变化的缘故。 激光的光强度定义为光波电场的平方,其表达式为(光波电 场强度有效值的平方):
ct k f a(t )dt c ct k f ( Am cos mt )dt c
其中 m f
k f Am
m
m
称为调频系数,kf 称为比例系数。
则调制波的表达式为: e(t ) Ac cos(ct mf sin mt c ) 同样,相位调制就是相位角不再是常数,而是随调制信 号的变化规律而变化,调相波的总相角为:
一种电光调制器的偏压控制电路系统

一种电光调制器的偏压控制电路系统
电光调制器是一种用于调制光信号的设备,常见于光通信和光学传感应用中。
它通常由一个电光调制器和一个偏压控制电路系统组成,以实现光信号的调制。
以下是电光调制器的偏压控制电路系统的一般构成和工作原理:
1.电光调制器(EOM):电光调制器通常是一种具有特殊材料的光
学器件,如锂钌酸铌(LiNbO3)晶体或硅光子芯片。
这种器件
在外部电场的作用下可以改变其折射率,从而调制通过它的光
信号。
2.光输入和输出接口:电光调制器通常有光输入和输出接口,光
信号通过这些接口传输到调制器中并从中输出。
3.偏压控制电路:偏压控制电路负责提供电场偏压,以在电光调
制器中引起折射率的变化。
这个电场的强度由偏压电源控制,
它是调制器的控制参数。
4.驱动信号源:通常,电光调制器需要一个来自驱动信号源的调
制信号。
这个信号决定了光信号的调制方式,例如强度调制或
相位调制。
5.反馈控制回路:一些电光调制器系统包括反馈控制回路,以确
保输出的光信号稳定和精确。
这可以通过监测输出信号并根据
需要调整偏压电场来实现。
电光调制器的偏压控制电路系统的工作原理是,通过调整偏压电场的强度和驱动信号,可以使光信号的属性(如强度或相位)发生变
化,从而进行调制。
这种调制方法用于光通信、光传感和其他光学应用中,以传输信息或测量光信号的特性。
电光调制器的性能和稳定性取决于偏压控制电路的精确性和稳定性。
电光调制实验课程设计

电光调制实验课程设计一、课程目标知识目标:1. 学生能理解电光效应的基本原理,掌握电光调制的概念。
2. 学生能描述电光调制过程中各物理量的变化及其影响。
3. 学生能了解不同类型电光调制器的结构和工作原理。
技能目标:1. 学生能通过实验操作,掌握使用示波器、激光源和电光调制器等仪器的基本技能。
2. 学生能够运用数据分析方法,处理实验数据,得出结论。
3. 学生能够运用所学知识,设计简单的电光调制实验。
情感态度价值观目标:1. 学生在实验过程中,培养严谨的科学态度,增强实验操作的规范性和安全性意识。
2. 学生通过小组合作,培养团队协作能力和沟通能力,增强合作意识。
3. 学生能够认识到电光调制技术在现代通信领域的应用价值,激发对科学技术的兴趣。
课程性质分析:本课程为物理学科实验课程,旨在帮助学生将理论知识与实际应用相结合,提高学生的实验操作能力和科学素养。
学生特点分析:初三学生已具备一定的物理知识基础,对实验课程有较高的兴趣,动手能力强,但需加强实验规范和安全意识。
教学要求:1. 结合学生特点,注重理论知识与实验操作的有机结合,提高学生的实践能力。
2. 强化实验过程中的安全意识,培养学生的责任感。
3. 注重培养学生的团队协作能力和沟通能力,提高学生的综合素质。
二、教学内容1. 理论知识:- 电光效应基本原理- 电光调制概念及其分类- 电光调制器结构和工作原理2. 实验操作:- 示波器、激光源和电光调制器等仪器的使用方法- 电光调制实验操作步骤- 实验数据的收集、处理和分析3. 教学大纲:- 第一课时:导入新课,讲解电光效应基本原理,介绍电光调制概念。
- 第二课时:分析电光调制器结构和工作原理,学习实验操作步骤。
- 第三课时:实验操作,观察电光调制现象,收集和处理数据。
- 第四课时:总结实验结果,讨论实验中发现的问题,进行拓展延伸。
4. 教材章节:- 《物理》课本第三章第七节:电光效应- 《物理》实验手册第四章第二节:电光调制实验5. 教学内容安排与进度:- 理论知识教学:2课时- 实验操作教学:2课时- 课后总结与拓展:1课时教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,培养学生实验操作能力和科学素养。
电光调制

x2 y 2 z 2 + 2 + 2 =1 2 n1 n2 n3
为介质的主轴方向, 1.x,y,z为介质的主轴方向,在晶体内沿着主轴方 是互相平行的; 向的电位移D和电场强度E是互相平行的; 方向的折射率(主折射率) 2. n1、n2、n3为折射率椭球x,y和z方向的折射率(主折射率)。 折射率椭球方程可以描述光波在晶体中的传播特性。 折射率椭球方程可以描述光波在晶体中的传播特性。AeFra bibliotekiωc t
入射光的强度为
Ii =E E ∗ = Ex (0) + Ey (0) =2A 2
2
的晶体后,由于电光效应,Ex’和Ey’间就产 当光通过长度为L的晶体后,由于电光效应,Ex’和Ey’间就产 生了相位差 ∆ϕ ,用复数表示为
Ex ' ( L) = A E y ' ( L) = A exp(−i∆ϕ )
T =
∗
π V =2A sin 2 Vπ
2 2
调制器的透过率为
15
π V I out ∆ϕ ) = sin 2 = sin 2 ( Ii 2 2 Vπ
电光调制的基本原理及公式推导-强度调制
强度调制图
16
电光调制的基本原理及公式推导-强度调制
调制器的透过 率与外加电压 呈非线性关系 若调制器工作 在非线性电压 部分,调制光 将发生畸变
3
电光调制的基本原理及公式推导
n KDP为四方晶系,负单轴晶体, KDP为四方晶系,负单轴晶体, 1 = n2 = n0, n3 = ne 为四方晶系 电光张量为
KDP晶体独立的电光系数只有 KDP晶体独立的电光系数只有 γ 41和γ 63
4
电光调制的基本原理及公式推导
偏振光实验报告

实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o 光,通过e 光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图1、图2所示:图1中靠近光源的偏振片1P 为起偏器,设经过1P 后线偏振光振幅为0A (图2所示),光强为I 0。
2P 与1P 夹角为θ,因此经2P 后的线偏振光振幅为θcos 0A A =,光强为θθ20220cos cos I A I ==,此式为马吕斯定律。
实验数据及图形:P 1 P 2 线偏光 单色自然光 线偏光 图1 P 1 P 2A 0 A 0cos θ θ 图2从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o 光)和非常光(e 光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M 和N 是两个偏振片,C 是波片,单色自然光通过M 变成线偏振光,线偏振光在波片C 中分解为o 光和e 光,最后投影在N 上,形成干涉。
考虑特殊情况,当M ⊥N 时,即两个偏振片的透振方向垂直时,出射光强为:)cos 1)(2(sin 420δθ-=⊥I I ;当M ∥N 时,即两个偏振片的透振方向平行时,出射光强为:M N图3 分振动面干涉装置I 0 波片 偏振片 偏振片单色自然光)cos cos sin 2cos sin 21(222220//δθθθθ+-=I I 。
其中θ为波片光轴与M 透振方向的夹角,δ为o 光和e 光的总相位差(同波晶片的厚度成正比)。
基于表面等离激元的偏振不灵敏型电光调制器的理论研究

基于表面等离激元的偏振不灵敏型电光调制器的理论研究靳琳;宋世超;文龙;孙云飞【摘要】由于受到表面等离激元(SPP)固有偏振性的影响,基于表面等离激元的波导型调制器只支持横磁模式(TM)传播.本文提出了一种在垂直方向和水平方向上均构建混合(hybrid)波导结构的表面等离激元电光调制器,以实现调制器的低偏振灵敏性.在组合的混合波导中,垂直和水平偏振方向上的表面等离激元被限制在相应的混合波导中.通过调控介质和ITO界面处形成载流子积累层中载流子浓度可实现光吸收调制.在经优化的结构中两个偏振态的消光比差为0.005 dB/μm.通过3D-FDTD 模拟调制器的光场调控,清楚地显示了传统硅波导与偏振不灵敏调制器间的耦合传输特性.两种偏振态下,偏振不灵敏调制器与硅波导之间的耦合效率均达到了74%以上.此项研究将为表面等离激元电光调制器在偏振不灵敏光集成回路中的应用提供解决方案,为其与具有偏振随机态光纤回路的集成奠定了基础.【期刊名称】《光电工程》【年(卷),期】2018(045)011【总页数】7页(P41-47)【关键词】表面等离激元;透明导电氧化物;调制器;偏振性【作者】靳琳;宋世超;文龙;孙云飞【作者单位】中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室,江苏苏州 215123;中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室,江苏苏州 215123;中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室,江苏苏州 215123;苏州科技大学电子与信息工程学院,江苏苏州 215009【正文语种】中文【中图分类】O436.3随着光通信应用的发展,光子集成电路(photonic integrated circuits, PICs)在过去的几十年里取得了显著的成效。
调制器作为光子集成电路中光学信号处理的主要器件之一发展尤为迅速[1],例如基于自由载波色散效应(自由载流子等离子体影响材料光学参数的效应)的硅基马赫-曾德尔(Mach-Zenhder)光调节器实现了高达50 GHz的调制速率[2]。
基于DSP的电光调制器最佳偏置点控制系统研究

基于DSP的电光调制器最佳偏置点控制系统研究目录摘要 (I)ABSTRACT ............................................................................................. II 第1章绪论 (1)1.1研究的目的和意义 (1)1.2国内外发展现状 (1)1.2.1国外发展现状 (1)1.2.2国内发展现状 (2)1.3主要研究内容 (2)第2章光强度调制与光调制器 (4)2.1调制方式分类 (4)2.2电光效应 (6)2.3M-Z光强度调制器介绍 (7)2.3.1M-Z光强度调制器基本原理 (8)2.3.2光强度调制器的选择需要考虑的参数 (9)2.4M-Z光调制器最佳偏置点偏移现象 (11)2.5本章小结 (12)第3章最佳偏置点控制系统实现方案 (13)3.1常用的光调制器偏置点控制方法 (13)3.1.1直流分量分析法 (13)3.1.2扰动信号反馈分析法 (13)3.2闭环反馈控制原理 (14)3.3基于DSP的光调制器最佳偏置点控制方案设计 (14)3.3.1最佳偏置点控制系统理论分析 (14)3.3.2最佳偏置点控制系统的实现原理图 (17)3.4本章小结 (18)第4章最佳偏置点控制系统硬件整体设计 (19)4.1基于DSP的系统设计开发流程 (19)4.2控制系统总体结构设计 (19)4.3控制系统的硬件电路设计 (21)4.3.1光电探测电路设计 (21)4.3.2带通滤波器的设计 (22)4.3.3DSP处理器硬件开发 (23)4.3.4D/A转换电路 (27)4.3.5微扰信号发生电路 (28)III 万方数据4.3.6加法器电路 (29)4.3.7最佳偏置点控制系统硬件实物图 (30) 4.4本章小结 (31)第5章最佳偏置点控制系统的软件设计 (32) 5.1软件开发平台及设计流程 (32)5.2最佳偏置点控制系统主程序运行流程 (33) 5.3基于DSP的FIR数字低通滤波器设计 (33) 5.3.1FIR滤波器的基本工作原理 (33)5.3.2FIR数字低通滤波器的设计 (34)5.3.3FIR数字低通滤波器软件实现 (35)5.4基于DSP的基2FFT谐波分析设计 (36) 5.4.1基2FFT算法设计 (36)5.4.2序列倒序处理 (38)5.4.3DSP的基2FFT算法软件实现 (39)5.5基于DSP的数字PID控制器设计 (41) 5.5.1数字PID和模拟PID控制器 (41)5.5.2数字PID控制器设计原理 (42)5.5.3数字PID控制器的软件实现流程 (43) 5.5.4PID控制器的参数整定 (45)5.5.5数字PID控制器的测试验证 (46)5.6本章小结 (48)第6章系统实验测试结果及分析 (49)6.1实验系统搭建 (49)6.2工作点锁定测试 (49)6.3最佳偏置点控制系统性能测试 (51)6.3.1工作在Min点的性能测试 (51)6.3.2工作在+Quad点的性能测试 (52)6.4本章小结 (53)第7章总结与展望 (54)7.1总结 (54)7.2展望 (54)参考文献 (55)作者简介及科研成果 (57)致谢 (58)IV 万方数据第1章绪论第1章绪论现代社会是一个不断创新的信息化社会,随着社会的不断进步,关键领域的研究也有了新的进展。
第五章 电光调制器

电光调制
电光调制:将电信息加载到光载波上,使光参量随着电参量的 对光场的幅度、频率、相位等参数,均可进行调制。 性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低 电光调制器的主要参数有:半波电压、特性阻抗、调制带宽、
改变而改变。光波作为信息的载波。
的偏置电压。
调制深度(调制效率)、透过率、消光比、插入损耗、品质因数
ቤተ መጻሕፍቲ ባይዱ
光开关
13
电光调制
电光调制是利用某些晶体材料在外加电场作用 下折射率发生变化的电光效应而进行工作的。 根据加在晶体上电场的方向与光束在晶体中传 播的方向不同,可分为纵向调制和横向调制。
纵向电光调制:电场方向与光的传播方向平行。
横向电光调制:电场方向与光的传播方向垂直。
电光调制
由于纵向调制电光器件需要透明电极,器件工艺复杂、 加工成本大,因此常用的电光器件大多采用横向调制设计。
横向电光调制器
由此可知, x 轴与 z 轴的综合电光效应使光波通过 晶体后的相位差包括两项:
第一是与外加电场无关的晶体本身的自然双折射引起的相
位延迟,这对调制器的工作没有贡献,而且会因温度变化引
起折射率的变化而导致相位差漂移,进而使调制光发生畸变, 甚至使调制器不能正常工作,应设法消除或补偿双折射现象;
横向电光调制器
优点: 半波电压低、驱动功率小,应用较为广泛。
缺点:
存在自然双折射引起的相位延迟,这意味着在没有外加电场 时,通过晶体的线偏振光的两偏振分量之间就有相位差存在,
当晶体因温度变化而引起折射率的变化时,两光波的相位差发
电光调制

为实现线性调制,可引入固定的π /2相位延迟,使调制器 的电压偏置在T=50%的工作点上(B点)
17
电光调制的基本原理及公式推导-强度调制
改变工作点的常用方法 1 在调制晶体上除了施加信号电压之外,再附加一个半波电压,但此法增 加了电路的复杂性,而且工作点的稳定性也差。 2 在调制器的光路上插入一个1/4波片,使其快慢轴与晶体主轴x成45角, 从而使 Ex’和Ey’二分量间产生π /2的固定相位差。
n1 n2 n0, n3 ne KDP为四方晶系,负单轴晶体, 电光张量为
KDP晶体独立的电光系数只有 41和 63
4
电光调制的基本原理及公式推导
KDP的纵向运用
外加电场的方向平行于Z轴,即
折射率椭球方程为
Ex Ey 0
x2 y 2 z 2 2 2 2 63 xyEz 1 2 n0 n0 ne
2 2
调制器的透过率为
15
I out 2 2 V T sin ( ) sin Ii 2 2 V
电光调制的基本原理及公式推导-强度调制
强度调制图
16
电光调制的基本原理及公式推导-强度调制
调制器的透过 率与外加电压 呈非线性关系 若调制器工作 在非线性电压 部分,调制光 将发生畸变
Z m 1/ c(1/ CC0 )1/ 2
式中:c为真空中的光速 C为电极每单位长度的电容 C0为用空气代替所有波导材料的电极每单位长度电容。 要获得好的特性阻抗就要减小电极和波导材料的电容。
24
电光调制器的技术参数
调制器在微波系统里是一个负载,它有自己的特性阻抗,通常 微波输入端的匹配阻抗是50Ω ,如果两者不相等,即阻抗不匹 配,会在调制器电极的输入端引起微波反射,驱动功率并不能 完全进入调制器。微波驱动功率与进入调制器的功率之间的关 系是 2
电光调制器自适应偏振控制系统设计与实现

监测 E O M 输 出光 功率 , 而且 能保 持 其 输 出光 功 率 最 大 ; 与激 光 器和 E O M 输入 端 直接 用保 偏 光 纤 连
接 时相 比 , P I D偏 振 控 制 下 E O M 输 出平 均 功 率提 高 了 3 . 0 8 d B, P D 输 出电 压 标 准 差 由 0 . 1 2 1 4降 至 1 . 2 3 7 5 x 1 0 - 4 , 稳 定控 制状 态 下偏 振 态矫 正 时 间在 ms 量级 。
he t p e r f o r ma nc e o f EOM c o n n c wd d i r e c t l y t o a n a r r o w b n d a l a s e r wi h t a p o l a r i z a i t o n ma i n t a i n i n g f ib e r ,
c o n t r o l me t h o d b a s e d o n p r o p o r t i o n a l — i n t e g r a l - d e dv a i f v e ( P I D) a lg o r i t h m wa s p r o p o s e d .T h e o r e t i c l a
电光调制器工作原理是什么

电光调制器工作原理是什么————————————————————————————————作者:————————————————————————————————日期:电光强度调制器的设计一、电光强度调制利用晶体的电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,可控制光在传播过程中的强度。
强度调制是使光载波的强度(光强)随调制信号规律变化的激光振荡,如图下图所示。
光束调制多采用强度调制形式,这是因为接收器一般都是直接响应其所接收的光强变化。
1、电光强度调制装置示意图及原理它由两块偏振方向垂直的偏正片及其间放置的一块单轴电光晶体组成,偏振片的通振方向分别与x,y轴平行。
根据晶体光学原理,在电光晶体上沿z 轴方向加电场后,由电光效应产生的感应双折射轴'x 和'y 分别与x,y 轴成45°角。
设'x 为快轴,'y 为慢轴,若某时刻加在电光晶体上的电压为V ,入射到晶体的在x 方向上的线偏振激光电矢量振幅为E ,则分解到快轴'x 和慢轴'y 上的电矢量振幅为'x E ='y E =E/2。
同时,沿'x 和'y 方向振动的两线偏振光之间产生如下式表示的相位差V 63302γμλδπ=0μ-晶体在未加电场之前的折射率63γ-单轴晶体的线性电光系数,又称泡克尔系数从晶体中出射的两线偏振光在通过通振方向与y 轴平行的偏振片检偏,产生的光振幅如下图分别为y E x'、y E y',则有y E x'=y E y'=E/2,其相互间的相位差为()πδ+。
此二振动的合振幅为()()()δδπδcos 121cos 2141cos 22222''2'2'2'-=-+=+++=E E E E E E E E E y y y x y y y x因光强与振幅的平方成正比,所以通过检偏器的光强可以写成令比例系数为1:2sin 2sin 20222'δδI E E I ===即 V I I λγπμ633020sin= 显然,当晶体所加电压V 是一个变化的信号电压时,通过检偏器的光强也随之变化。
电光调制实验实验报告

电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。
在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。
放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。
再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。
2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。
3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。
光强调到最大,此时晶体偏压为零。
这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。
如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。
如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。
如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。
如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。
这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。
二、依据晶体的透过率曲线(即T-V曲线),选择工作点。
电控高精度偏振控制器的制作流程

本技术新型提出了一种电控高精度偏振控制器,包括光纤以及基座,基座上转动安装有第一叶桨及第二叶桨,第一叶桨通过第一转动连接器连接有第一伺服电机,第二叶桨通过第二转动连接器连接有第二伺服电机;基座上设有位于第一伺服电机一侧的第一穿纤座,以及位于第二伺服电机尾端的第二穿纤座;光纤穿过第一穿纤座及第一伺服电机后,于第一叶桨与第二叶桨上进行环绕,并穿过第二伺服电机及第二穿纤座;改善了现有的光纤偏振器采用手动方式调节造成调节精度降低的情况。
技术要求1.一种电控高精度偏振控制器,包括光纤(1),其特征在于:包括基座(2),所述基座(2)上转动安装有第一叶桨(3)及第二叶桨(4),所述第一叶桨(3)通过第一转动连接器(5)连接有第一伺服电机(6),所述第二叶桨(4)通过第二转动连接器(7)连接有第二伺服电机(8);所述基座(2)上设有位于第一伺服电机(6)一侧的第一穿纤座(9),以及位于第二伺服电机(8)尾端的第二穿纤座(10);所述光纤(1)穿过第一穿纤座(9)及第一伺服电机(6)后,于第一叶桨(3)与第二叶桨(4)上进行环绕,并穿过第二伺服电机(8)及第二穿纤座(10)。
2.根据权利要求1所述的一种电控高精度偏振控制器,其特征在于:所述第一叶桨(3)与第二叶桨(4)之间的相对夹角范围为0~270°。
3.根据权利要求2所述的一种电控高精度偏振控制器,其特征在于:所述第一叶桨(3)、第二叶桨(4)均包括穿线座(11)以及固接在穿线座(11)上的缠绕盘(12),所述缠绕盘(12)内设有用于缠绕光纤(1)的环形架;所述缠绕盘(12)上还设有可拆卸的压盖(13),所述压盖(13)通过锁紧螺帽(14)锁紧在缠绕盘(12)上。
4.根据权利要求3所述的一种电控高精度偏振控制器,其特征在于:所述光纤(1)于第一叶桨(3)上的缠绕圈数为3圈。
5.根据权利要求3所述的一种电控高精度偏振控制器,其特征在于:所述光纤(1)于第二叶桨(4)上的缠绕圈数为2圈。
电光调制实验报告(1)

光电工程学院2013 / 2014学年第 2 学期实验报告课程名称:光电子基础实验实验名称:电光调制实验班级学号1213032809学生姓名丁毅指导教师孙晓芸日期: 2014年5月07日电光调制实验【实验目得】1、掌握晶体电光调制得原理与实验方法;2、学会用实验装置测量晶体得半波电压,绘制晶体特性曲线,计算电光晶体得消光比与透射率。
【实验仪器及装置】电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。
实验系统由光路与电路两大单元组成,如图3、1所示:图3、1 电光调制实验系统结构一、光路系统由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加得减光器(P1)与λ/4波片(P2)等组装在精密光具座上,组成电光调制器得光路系统.二、电路系统除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。
图3、2电路主控单元前面板注:•本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其她激光源时,需另加与其配套得电源。
•激光强度可由半导体激光器后背得电位器加以调节,故本系统未提供减光器(P1)。
•本系统未提供λ/4波片(P2)即可进行实验,如有必要可自行配置。
图3、2为电路单元得仪器面板图,其中各控制部件得作用如下:•电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。
•晶体偏压开关用于控制电光晶体得直流电场。
(仅在打开电源开关后有效)•偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场得大小。
•偏压极性开关改变晶体得直流电场极性。
•偏压指示数字显示晶体得直流偏置电压。
•指示方式开关用于保持光强与偏压指示值,以便于读数.•调制加载开关用于对电光晶体施加内部得交流调制信号.(内置1KHz得正弦波)•外调输入插座用于对电光晶体施加外接得调制信号得插座。
电光调制器强度调制器相位调制器EOM原理课件

THANK YOU
平方电光效应
电场引起的折射率变化与电场 强度的平方成正比。
电光效应的物理机制
与晶体的内部结构、电子云分 布和能带结构有关。
电光调制器的工作原理
01
调制信号输入
将需要调制的信号输入到电光调制 器中。
光学调制
折射率的变化导致光波的相位和振 幅发生变化,从而实现调制。
03
02
电场作用
通过施加电场,改变晶体的折射率 。
04
EOM(电光调制器)原理
EOM的基本结构和工作原理
基本结构
EOM通常由电光晶体和电极组成。电光 晶体具有特殊的电光效应,当施加电压 时,能够改变其折射率,从而改变光的 传播方向或振幅。电极用于施加电信号 。
VS
工作原理
在EOM中,当电信号施加到电光晶体上 时,由于电光效应,电光晶体的折射率发 生变化,导致通过的光的相位或偏振态发 生改变。这种相位或偏振态的变化可以通 过检测器检测,从而实现对光的调制。
相位调制器的应用
光纤通信系统
相位调制器在光纤通信系统中有着广泛的应用。通过将信息编码为光波的相位变化,可以实现高速、 大容量的光纤通信系统。相位调制器可以提高通信系统的传输速率和传输距离,同时降低噪声和干扰 的影响。
光学干涉仪
相位调制器在光学干涉仪中也有着重要的应用。通过将光波的相位变化引入干涉仪中,可以实现对光 波干涉图样的控制和测量。相位调制器可以提高干涉仪的测量精度和稳定性,广泛应用于光学测量、 光学传感等领域。
强度调制器
广泛应用于高速光信号处 理、光强调制、光功率控 制等领域。
相位调制器
广泛应用于光学干涉、光 学成像、量子通信等领域 。
优缺点的比较