中性点直接接地零序保护
中性点直接接地电网中接地短路的零序电流及方向保护

•3I0(1) =
•3E •2 +
•两相接地短路的零序电流为:
•3I0(1,1)=•
•3E +2
•单相接地
•= •+ •+
•故障点的等效零序电势
•故障点的等效正序、负序、零序阻 抗
•
2) 躲开断路器三相触头不同期合闸时所出现的最大 零序电流 ,引入可靠系数
•3I0.unb的计算,一相先合与两相断线情况类同, 两相先合与一相断线情况类同。 •具体可参见电力系统分析之短路计算
•
c. 当系统中发生某些不正常运行状态时(如系统振荡,短时 过负荷等)零序保护不受影响。
d. 在110kV及以上的高压或超高压系统中,单相接地故障占 全部故障的70%-90%,而且其它故障也往往是由单相接 地引起的,故采用零序保护具有显著的优越性。
•缺点:
a. 对于短线路或运行方式变化很大的情况,保护往往不能满 足系统运行所提出的要求。
•
•~
•T1 •A •1
•2•B •T2 •C
•A
•XT10
•系统接线
•X’k0
•X’’k0
•B
•若母线A还
•XT2. 接有中性点
0
接地的变压
器,则零序
阻抗变小,
流过A侧零
序电流增大
。
•T2中性点接地:
•零序等效网络
•= •=
•X’’k0+XT2.0
•X’k0+XT1.0+X’’k0+XT2.
0
•X’k0+XT10
•(c)零序电流变化曲线 中断开,此时
•
• 3)零序Ⅱ段灵敏系数:
•零序Ⅱ段的灵敏系数,应按照本线路 末端接地短路时的最小零序电流来校 验,并应满足Ksen≥1.5的要求。
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成及工作原理(2007-01-07 22:41:40)转载▼分类:工作目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图23所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A 左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~ 158mm ,击穿电压可取63kV(有效值)。
中性点直接接地电网零序电流保护.

动作时间与相间电流保护III段的整定原则相同。
4.零序方向保护的原理和实现 (1)零序电流保护采用方向闭锁的必要性
A T1
M
PD1 1QF 2QF
N
PD2 PD3 3QF
k
PD4 4QF
P
T2
图10 零序电流保护采用方向闭锁的说明图
k点发生接地故障时,对于保护2而言是反方向故障,如果
t 02 t 03
N侧的零序电流为
" ' I0 I k0 I 0 I k0
' Z k0 Z T1 0 ' " Z k0 Z T1 0 Z k0 Z T2 0
结论:零序电流是由故障点零序电压产生的,零序电流的大 小和分布,主要取决于输电线路的零序阻抗和中性点接地变压 器的零序阻抗及其所处位置,零序电流仅在中性点接地的电网 中流通。
②反方向故障分析
M N
PD1
ZM0
k
Zk0 Rg +
Zl0
ZN0
+ _
. U
. U
. I
. U
M0
. = I
0
(ZN0+Zl0)
0
M0
k0
_
k0
. I
0
图6 反方向接地短路故障时的零序网络图及向量图
结论:反方向接地短路故障时,零序电压超前零序电 流700~800
二、中性点直接接地电网的零序电流保护 1.零序电流的获取方法 根据数据采集系统得到的三相电流值再用软件进行相加得 到3I0值或外接3I0 。
Kaper ——非周期分量系数,t=0s时取1.5~2,t=0.5 s时取1;
K ss ——TA同型系数。TA型号相同时取0.5、型号不同时取1;
中性点直接接地系统接地短路的零序电流及方向保护

7 2・
科技 论坛
中性点直接接地系统接地短路的零序电流方向保护
徐 永 峰
( 国网哈 尔滨供 电公 司 , 黑 龙 江 哈 尔滨 1 5 0 o o o )
摘
要: 本文对 中性 点直接接地 系统接地短路的零序 电流及方向保护进行介绍 , 通过 分析 零序 电流速断保护 的构成 , 可 以减 少系统
一
,
接的关系 , 还与零序电流的分布有着较大的 关系 , 零序电流的大小与分 求整定。按此原则
布影响着电网线路的零序阻抗 ,还影响着中性点接地变压器的零序阻 整 定 的灵 敏 I 段 不 在单相 自动重合闸时 , 自动将灵敏 抗。下面笔者对 中J l 生 点直接接地系统变压器 『 生 点的接地原则进行简 能躲过非全相振荡出现的零序电流 , 单的分析。 I 段闭锁,需待恢复全相运行时在重新投入。通过设置两个零序电流 I 1 . 1 如果发电厂的低压侧存在 电源变压器 , 并且电网中只有单台变 段环保 ,解决了全相与非全相运行下保护灵敏f 生和选择之间产生的矛 压器运行 , 则可以采用中I 『 生 点接地运行的方式 , 这种运行方式可以避免 盾。零序电流保护 I 段的保护最小范围要求不小 于保护线路长度 的 不接地系统的工频出现过电压。 1 5 v /  ̄2 0 %, 其整定的动作延时为 0 。 1 . 2对于存在 自耦变压器 ,并且有着绝缘要求的变压器存在时, 可 3 . 2 带时限零序电流速断保护。根据整定的零序 I I 段的动作电流不 能躲开非全相运行时的零序电流 , 则装有综合 自动重合闸的线路 出现 以采用中性点接地的方式运行。 1 . 3 采用 T形式接人线路的变压器, 一般采用的是不接地的运行方 非全相运行时应将该保护退出工作。 或者装设两个零序 I I 段保护 , 其中 式, 如果 T接变压器 的低压侧存在电源 , 为了避免不接地系统出现工频 不灵敏的零序 I I 段保护按躲过非全相运行时的最大零序电流整定。当 过 电压现象 , 应采取有效的防治措施 , 在故 障发生时 , 对小电源进行解 线路 在单相 自动 重 和 闸过 程 中和非 全相 运行 时不 退 出工作 ,灵 敏 的零 序I I 段保护按与相邻线路零序保护配合的条件整定 ,在线路进行单相 裂。 1 - 4 为 了减少 操作 过 电压 的出现 , 可 以采用 临 时变压 器 中性点 接地 重和闸过程中和非全相运行时退出工作。 3 . 3 零序过 电流保护。零序过电流保护主要作为本线路零序 I 段和 的运行方式 , 在操作完成后, 在断开变压器。 1 . 5 为了加强对系统的保护, 在制定保护措施时, 应从整体 出发, 对 零序 I I 段 的近后备保护和相邻线路 、 母线 、 变压器节点短路的远后备保 在中陛点直接接地电网中的终端线路上 , 也可以作为接地短路的主 变压器 中. 陛点的接地运行方式进行调整 ,设计人员应采用同一发 电厂 护。 或者变电站零序阻抗不变 的原则 , 当系统存在两台及以上变压器时 , 可 保护。它的动作电流整定计算应当遵循以下原则。 以将其中一台变压器采用 中. f 生点接地的方式运行 ,如果这一变压器停 3 . 3 . 1 躲过相邻线路始端三相短路时, 流过保护的最大不平衡电流 , 止运行, 则需要将另外 的一台变压器进行中性点直接接地运行 , 这两台 即 叩 I =础 , 变压 器不 能出现 在 同一 条母 线上 。 式 中 — — 可靠 系数 ,一般 取 1 . 2—1 , 3 ; 2 零序 电流保 护 的构成 3 . 3 . 2 与相邻线路零序 I I I 段保护进行灵敏 『 生 配合, 以保证动作 的选 2 . 1 零序电流滤过器的不平衡 电流。 零序电流滤过器是零序电流保 I I 段的保护范 围不能超过相邻线路 I I I 段的 护的重要构成 , 利用这一装置, 可以获得零序电流 。如果零序电流保护 择 陛,即本级线路的零序 I 零序 I I I 段的动作电流必须进行逐级配合。 出现相间短路 , 并且短路电流含有较大的非周期分量 , 则会对滤过器造 保护范围。为此 , 当该保护作近后备保护时,检验 在被保护线路末端 ,灵敏 系数 成l 生 能影 响, 电流互感器的铁芯会 出现饱和, 铁芯的磁化 陛能会发生变 杠 ‘ n ≥I . 3—1 . 5 ; 当该保护作远后备保护时 ,检验| 在相邻线路末 化。励磁 电流存在较大的差异 , 从而出现了不平衡电流。这种不平衡电 丘。 要 求灵敏 系数 K ≥1 . 2 流影响了系统的稳定运行 , 为了减少故障的发生, 需要在系统中加入保 端 , 结束 语 护 装置 , 对不 平衡 电流 进行 调 整 , 并减 少不 平衡 电流 的 出现 。设计 人员 零序电流方向保护装置可以保证 中性点直接接地系统 的稳定运 可 以选择磁化籽l 生 相同的零序 电流滤过器 , 减少二次负荷的出现 实现 行, 为了降低系统出现故障的概率 , 设计人员应合理利用保护装置 , 确 负荷的均衡 I 生。 定零序电流的大小。本文对 中. f 生 点直接接地系统变压器中J 眭点接地原 2 . 2 零序电流保护的接线 。 零序电流保护接线也是其重要的组成之 对零序电流保护的构成进行了介绍 , 还对三段式零序电 在接地系统中, 多采用的是三段式零序电流保护, I 段是无时限电流 则进行了分析 , 希望对相关设计人员提供一定帮助 , 保证电 速断保护 , I I 段是带时限零序 电流速断保护 , I I I 段是零序过流保护。三 流 的保护方式进行了探讨 , 力 系统 的稳定 运行 。 段式 零序 电流保 护原 理接 线图如 图 1 所示。 参考 文献 零序电流继 电器 1 K A Z 、 中间继电器 K M、 信号继电器 1 K S构成零 1 】 袁兆强, 刘辉冲 性点直接接地电网的 自适应零序 电流速 断保护【 J J . 高 序I 段 电流保护 ; 2 K A Z 、 1 K T和 2 K S构成零序 I I 段 电流保护 ; 3 K A Z 、 【 电压技术 , 2 0 o 7 ( 9 ) . 2 K T 、 3 K S 构成零序 I I I 段电流保护。 f 2 1 赵志学. 浅谈 1 1 0 k V变压器中性点接地方式与零序保护配置叨. 科技 3 三段式 零序 电流保 护 3 . 1 无时限零序电流速断保护。在装有管型避雷器的线路上 , 为避 致 富 向导 , 2 mo ( 9 ) . 3 ] 刘永红. 电力 系统 中性点接地 方式及其零序保护【 J J . 科技 资讯 , 2 0 0 8 免在避雷器放电动作时引起保护误动作 ,可在无时限电流速断保护接 [ 线中装有带小延时的中间继电器,这样可以在时间上躲过继电器三相 f 3 o 1 .
变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成

变压器中性点直接接地零序电流保护和中性点间隙接地保护的构成目前大电流接地系统普遍采用分级绝缘的变压器,当变电站有两台及以上的分级绝缘的变压器并列运行时,通常只考虑一部分变压器中性点接地,而另一部分变压器的中性点则经间隙接地运行,以防止故障过程中所产生的过电压破坏变压器的绝缘。
为保证接地点数目的稳定,当接地变压器退出运行时,应将经间隙接地的变压器转为接地运行。
由此可见并列运行的分级绝缘的变压器同时存在接地和经间隙接地两种运行方式。
为此应配置中性点直接接地零序电流保护和中性点间隙接地保护。
这两种保护的原理接线如图E-127所示中性点直接接地零序电流保护:中性点直接接地零序电流保护一般分为两段,第一段由电流继电器1、时间继电器2、信号继电器3及压板4组成,其定值与出线的接地保护第一段相配合,0.5s切母联断路器。
第二段由电流继电器5、时间继电器6、信号继电器7和8压板9和10等元件组成,。
定值与出线接地保护的最后一段相配合,以短延时切除母联断路器及主变压器高压侧断路器,长延时切除主变压器三侧断路器。
中性点间隙接地保护:当变电站的母线或线路发生接地短路,若故障元件的保护拒动,则中性点接地变压器的零序电流保护动作将母联断路器断开,如故障点在中性点经间隙接地的变压器所在的系统中,此局部系统变成中性点不接地系统,此时中性点的电位将升至相电压,分级绝缘变压器的绝缘会遭到破坏,中性点间隙接地保护的任务就是在中性点电压升高至危及中性点绝缘之前,可靠地将变压器切除,以保证变压器的绝缘不受破坏。
间隙接地保护包括零序电流保护和零序过电压保护,两种保护互为备用。
零序电流保护由电流继电器12、时间继电器13、信号继电器14和压板15组成。
一次启动电流通常取100A左右,时间取0.5s。
110kV变压器中性点放电间隙长度根据其绝缘可取115~158mm,击穿电压可取63kV(有效值)。
当中性点电压超过击穿电压(还没有达到危及变压器中性点绝缘的电压)时,间隙击穿,中性点有零序电流通过,保护启动后,经0.5s延时切变压器三侧断路器。
中性点直接接地系统的零序电流保护汇总

第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。
但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。
图3-31( b )为其短路计算的零序等效网络。
在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。
零序电压的方向采用线路高于大地的电压为正。
这样,A 母线的零序是电压表示为。
11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。
二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。
(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。
当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。
(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。
电力系统中性点接地方式及其零序保护

电力系统中性点接地方式及其零序保护电力系统中性点是指发电机、变压器的中性点且指变压器Y形接线,通常情况下,接地中性点管理方式主要有两种,中性点不接地和中性点接地,而中性点接地根据接地方式不同又可以分为中性点经消弧线圈接地以和中性点直接接地。
本文主要介绍了中性点三种接地方式的特点及其在单相接地故障发生时,常见零序保护方式及其特点。
标签:中性点接地方式;零序保护;电力系统0 前言电力系统中绝大多数故障都是单相接地故障。
为提高其动作灵敏性,均装设专门的接地保护装置。
该装置构成简单,易于实现。
通常反映接地故障时的零序电流和电压,称为零序保护装置。
零序保护装置的装设可以使相间短路的保护接线用电流互感器不完全星形接法来实现,简化了设备。
而中性点不接地、中性点经消弧线圈接地系统在发生单相接地故障时,由于故障电流小,线电压仍然对称,系统还可以持续运行1-2小时,故称为小电流接地系统。
除非有特殊要求,该系统的接地保护才作用于跳闸,否则接地保护只作用于信号,提醒运行人员注意。
下面就本人在工作学习过程中的知识点,做一简单介绍。
1 中性点运行方式及其特点介绍1.1 中性点不接地系统当出现故障时,造成单相接地现象,单向回路短路,造成使故障相动作电压降低为零,同时非故障相电压相对升高,成为高线电压。
而中性点电压由于发生偏移变化,等同于一相电压。
接地点电流也因此产生变化,等同于非故障相对地电容电流的和,而数值也因此成为正常运行时单相对地电容电流的3倍。
虽然出现中性点的偏移导致电相、电压以及电流的变化,但线压仍然以对称的形式存在保证对称供应,可以连续继续运行2小时以上。
此外,由于中性点发生接地现象,导致接地容性电流的产生并且较强,因此导致接地点在一定范围内产生电弧,对周边安全造成影响。
此种方法为小电流接地系统方法,通常针对与电流相对较小的电力系统,如6kV以下系统。
1.2 中性点接地系统1.2.1 中性点经消弧线圈接地系统当采用中性点经消弧线圈接地系统时,其正常运行状态下电压、电流以均衡、对称额形式存在。
中性点直接接地电网的零序电流保护

2.1 单侧电源网络相间短路的电流保护
三、电流速断保护
1、对应于短路电流幅值增大而瞬时动作的电流 保护,称为电流速断保护。 2、以图2-3中线路AB的保护2为例分析 为保证选择性,在相邻线路 BC出口短路时, 保护2瞬时电流速断保护不应起动,为此其动作 电流应躲过线路末端 B 点的最大短路电流,因 此瞬时电流速断保护的动作电流按躲过本线路 末端短路时流过保护的最大短路电流来整定, 即:
III I set .2 I L. max
2.1 单侧电源网络相间短路的电流保护
当相邻元件三相短路故障切除后,负荷自起动时, 保护 2 在最大自起动电流 I ss .max 下应可靠地返回。 所以,保护2的返回电流 I re 应满足:
I ss .max Kss I L.max
引入可靠系数 K rel ,可选择返回电流(一次值)满足:
路的主保护。
2.1 单侧电源网络相间短路的电流保护
六、阶段式电流保护的配合及应用
1、电流保护I段、II段和III段的整定原则 2、主保护、后备保护 3、阶段式电流保护配合实例分析 主要在35KV及以下的电网中使用。缺点是送 电网电网接线及系统运行方式的影响较大。
2.1 单侧电源网络相间短路的电流保护
K I
II I rel set .1
式中
II I set .2
II K rel
I I set .1
—— 限时电流速断的动作电流; —— 可靠系数,取1.1~1.2; —— 下一级线路电流速断的动作电流。
2.1 单侧电源网络相间短路的电流保护
2、限时电流速断保护动作时限
为保证选择性,限时电流速断应有时限,其动作时限 t1. II应比相邻线路瞬时电流速断保护的动作时间 t 2. II (约 0.1s)大一个 t ,即
中性点直接接地系统中的零序电流及方向保护

2.3.6方向性零序电流保护
零序功率方向与正序功率方向相反 故障线路的零序功率方向从线路流向母线。
精选ppt
2.3.7零序电流保护的评价
优点:
(1)同一线路上,零序过电流保护较相间过电流保护 有较小的动作时限。
Y,d接线变压器低压侧的任何故障都不能在高压侧引起零序电流。 零序过电流保护4可以瞬时动作。 反应相间短路的过电流保护4则不能。
(1)故障线路零序功率的方向从线路流向母线。 (2)故障线路零序功率的方向与正序功率的方向相反。
精选ppt
•
•'
UA0 (I0)ZT1.0 A母线上的零序电压
ZT1.0 :变压器T1的零序阻抗
零序电压和零序电流之间的相位差,主要取决于零序电流 流过的零序阻抗。
精选ppt
2.3.2零序电压、电流的获取
精选ppt
(2)零序过电流保护较相间过电流保护灵敏度高
(3)零序过电流保护受系统运行方式变化和线路长短的影响小
(4)不受系统振荡、过负荷等因素(只要三相对称)的影响。 零序过电流保护只反应零序电流
(5)方向性零序保护没有电压死区。因为故障点的零序电压最 高。
缺点: (1)对运行方式变化很大或接地点变化很大的电网,往往不能 满足要求;
2.3 中性点直接接地系统中接地短路的零序电流 及方向保护 2.3.1接地短路时零序电压、电流和功率的分布
中性点直接接地系统(又称大接地系统)中发生短路时,将 出现很大的零序电流和电压。 规定:零序电流的正方向为由母线流向线路;
零序电压的正方向为线路高于大地为正。
精选ppt
(1)零序网络组成:由线路的零序阻抗和中性点直接接地 变压器的零序阻抗。
精选ppt
中性点直接接地系统接地短路的零序电流

前言: 前言: 零序电流保护的组成
分为三段(或四段): 分为三段(或四段): 零序Ⅰ 零序Ⅰ段:无时限零序电流速断保护 零序Ⅱ 零序Ⅱ段:零序电流限时速断保护 零序Ⅲ 零序Ⅲ段:零序过电流保护
一、 无时限零序电流速断保护
动作电流的整定原则 (1)躲开线路末端接地短路时流过保护的最大零 ) IⅠop=Krel· 3I0max 序电流 (2)躲开 三相触头不同时合闸引起的最大零序 )躲开QF三相触头不同时合闸引起的最大零序 IⅠop=Krel· 3I0bt 电流 注:若动作时限大于不同时合闸时限,可不考虑 若动作时限大于不同时合闸时限, 该原则 (3)当线路采用单相重合闸时,应躲开非全相运 )当线路采用单相重合闸时, 行系统得零序电流的方法 (1)零序电流过滤器 )
(2)零序电流互感器(用于电缆线路) )零序电流互感器(用于电缆线路) (3)变压器中性线互感器 )
获得零序电压的方法 (1)零序电压过滤器 ) (2)零序电压互感器 ) (3)加法器 )
新课内容
一、无时限零序电流速断保护 二、零序电流限时速断保护 三、零序过电流保护 四、零序电流保护原理接线图 零序电流保护原理接线图 五、对零序电流保护的评价
二、零序电流限时速断保护
整定原则: 整定原则 1.本线路零序Ⅱ段与下一线路零序Ⅰ配合,即 IⅡop1=Krel· IⅠop2 本线路零序Ⅱ段与下一线路零序Ⅰ配合, 本线路零序 t1Ⅱ= t2Ⅰ+⊿t=0.5(s) ⊿ 灵敏度: 灵敏度: Ksen=3I0min/ IⅡop1≥1.5 2.若灵敏度不满足要求,则本线路零序Ⅱ段与下一线路零序Ⅱ配 若灵敏度不满足要求,则本线路零序Ⅱ段与下一线路零序Ⅱ 若灵敏度不满足要求 合,即 IⅡop1=Krel· IⅡop2 t1Ⅱ= t2Ⅱ+⊿t=1.0(s) ⊿ 3.同时采用 同时采用0.5s的零序Ⅱ段和 的零序Ⅱ 的零序Ⅱ 同时采用 的零序 段和1.0s的零序Ⅱ段。 的零序 保护范围:本线路全长并延伸至下一线路首端部分。 保护范围:本线路全长并延伸至下一线路首端部分。作主保护
中性点直接接地非直接接地系统中接地短路的零序电流及方向保护)分析

中性点直接接地非直接接地系统中接地短路的零序电流及方向保护)分析一、中性点直接接地系统中的接地短路1.零序电流的产生原因当中性点直接接地的系统遭遇接地故障时,故障点会产生电流流入地下,并经过接地电阻返回中性点,形成一个环回电路。
这种环回电路可以产生零序电流。
2.转动方向保护的原理转动方向保护是对中性点直接接地系统中接地短路进行保护的一种方法。
其原理基于电流的方向差异。
当接地短路发生在导线的上游(电源侧),即电流方向从电源经过导线流向接地短路点,由于电流在导线和接地电阻中的阻抗相同,所以阻抗差异不大,无法通过阻抗差异实现保护。
当接地短路发生在导线的下游(负载侧),即电流方向从负载经过导线流向接地短路点,此时导线和接地电阻的阻抗差异很大,可以通过阻抗差异实现保护。
具体步骤如下:(1)对接地电阻进行接地电流测试,得到接地电流的大小和方向。
(2)监测导线上的电流和方向,将其与接地电流进行比较。
(3)如果电流方向一致并且电流大小大于接地电流,则表示发生了接地短路。
以上为中性点直接接地系统中接地短路的零序电流及方向保护方法。
二、中性点非直接接地系统中的接地短路中性点非直接接地系统是指中性点通过绕组或设备间接接地的系统,如通过绕组接地、通过无功补偿设备接地等方式。
在这种系统中,接地短路同样可能导致零序电流的产生。
1.零序电流的产生原因中性点非直接接地系统中接地短路导致的零序电流产生原因与中性点直接接地系统类似,即故障点产生电流流入地下并返回中性点,形成环回电路,产生零序电流。
2.方向保护的原理中性点非直接接地系统中,方向保护的原理相对复杂一些,需要考虑绕组和无功补偿设备的接地情况。
具体步骤如下:(1)通过对接地设备的综合性能测试,得到绕组的阻抗值和接地电流的参考值。
(2)监测绕组的电流和方向,并将其与接地电流进行比较。
(3)如果电流方向一致并且电流大小大于接地电流参考值,则表示发生了接地短路。
需要注意的是,在中性点非直接接地系统中,由于绕组和无功补偿设备的阻抗增加了接地电流的路径,所以接地电流的大小可能会相对较小,需要设置合适的灵敏度来实现准确的接地短路保护。
中性点直接接地变压器的零序电流保护

中性点直接接地变压器的零序电流保护
1.零序电流爱护的配置
(1)中性点直接接地运行变压器零序电流爱护原理接线
(2)中性点直接接地运行变压器零序电流爱护工作原理
零序电流爱护I段作为变压器及母线的接地故障后备爱护,其起动电流和延时t1应与相邻元件单相接地爱护I段相协作,通常以较短延时t1=0.5~1.0S动作于母线解列;以较长的延时t2=t1+Δt有选择地动作于断开变压器高压侧断路器。
零序电流爱护II段作为引出线接地故障的后备爱护,其动作电流和延时t3应与相邻元件接地后备段相协作。
通常t3应比相邻元件零序爱护后备段最大延时大一个Δt,以断开母联断路器或分段断路器,t4=t3+Δt动作于断开变压器高压侧断路器。
2.零序电流爱护的整定计算
(1)零序Ⅰ段起动电流按与相邻元件零序电流Ⅰ段协作整定,即:
(2)零序电流Ⅰ段的动作时限为:
t1=0.5~1.0S
t2=t1+Δt
(3)零序电流Ⅰ段的起动电流按与相邻元件零序后备爱护动作电流协作整定,即:
(4)零序电流Ⅰ段的动作时限为:
t3=tmax+Δt
t4=t3+Δt
3.变压器高压侧断路器帮助接点QF作用
防止变压器与系统并列之前,在变压器高压侧发生单相接地而误将母线联络断路器断开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(d)忽略电阻的向量图
100
Ud 0 I 0
d0
I0
I 0
I 0
(e)计及电阻时的向量图(设d 0 80 )
2.3.2零序电流和电压的获取
(一)零序电压的获取
数字式继电器采集三相电压,按零序电压定义得到
3 u 0 ( k ) u a ( k ) u b ( k ) u c ( k )
特点: 无需专用的零序电压通道 一般不存在极性错误问题 要考虑不平衡输出对保护的影响
2.3.1中性点直接接地系统单相接地故障特征
(一)单相接地故障特征(保护判据的基础)
➢出现较大零序分量
系统正常运行时,电网中仅存在正序分量电流电压和 较小的负序分量(由于负荷及网络不平衡引起)
显然利用零序分量构成接地故障保护具有更高的灵敏 度
2.3.1中性点直接接地系统单相接地故障特征
(一)故障特征(保护判据的基础) 零序分量特点: 电网中所有电源均为正序,因而零序网为无源网络
故障点零序电压最高,零序电压从故障点的最大值 沿零序网逐步降低,至中性点降为零。
A X T 1 0
X d 0
B X d 0
X T 20
I 0
I 0
Ud 0
U A0
(b)零序网络图
Ud0
U B0
(c)零序电压的分布图
2.3.1中性点直接接地系统单相接地故障特征
(一)故障特征(保护判据的基础) 零序电流分布特点: 零序电流分布取决于零序网络结构和故障点位置。 零序网结构取决于接地变压器位置和接线组别。
2.3.2零序电流和电压的获取
(一)零序电压获取方法
模拟式方法
零序电压互感器的不平衡输出及三次谐波问题
A
A
B
B
C
C
Ua
加 3U0
m Ub 法
n Uc
器
Ua Ub Uc
m
n
a bc
mn
(a)用三个单相式电压互感器
(c)接于发电机中性点的 (d))保护装置内部合
(b)用三相五柱式互感器
电压互感器
成零序电压
T1
A1 d (1)
2B
T2
A X T 1 0
(a)系统接线图
X d 0
B X d 0
X T 20
I 0
I 0
Ud 0
(b)零序网络图
2.3.1中性点直接接地系统单相接地故障特征
(一)故障特征(保护判据的基础) 零序电压分布特点:
零序电压是故障点叠加电压产生的,零序分量的分 布取决于故障点位置和变压器接地中性点位置。
(二)零序电流获取方法 模拟式方法之一 零序电流互感器,不受不平衡电流影响
A BC
3I0
TAN 电缆
图 2- 42 零 序 电 流 互 感 器 接 线 示 意 图
2.3.3零序电流保护的整定
零序电流保护同电流保护类似,不能严格区分区内 末端和下级线路出口故障,从选择性和速动性的要求出发, 其整定配合也采用阶段是配合方法,一般也按三段设置。
中性点直接接地系统中接地短路的零序电 流及方向保护
工程背景 为了降低绝缘成本,限制过电压,我国110kV以上电压 等级电网普遍采用中性点直接接地方式。
单相接地故障是最常见的故障类型,约占85%以上。
在中性点直接接地系统发生接地故障时,电流保护也能 起到保护作用,但其灵敏度往往不足。
因此需寻找更为合适的保护方式。
五、方向性零序电流保护
在双侧或多侧电源
网络中,电源处变压器
中性点一般至少有一台
接地,由于零序电流实
际流向是由故障点流向
各个中性点接地的变压
器,因此要考虑零序电
流保护动作方向性问题。
d2
两侧电源处的变压器中性点均直接接地,当 d 1 点短路时, 零序等效网络和零序电流分布如图,按选择性要求,应由保护1
灵敏系数校验,当作为相邻元件的后备保护时,
即应采用相邻元件末端短路时,在本保护安装处的
最小零序电流,电压或功率与功率方向继电器的最
小起动电流,电压或起动功率之比来计算灵敏系数,
并要求
。
Klm 1.5
六、对零序电流保护的评价
优点:
➢ 灵敏度高—相间过电流保护按最大负荷电流整定,零序 过电流保护按不平衡电流整定; ➢ 动作时限较相间保护短 ➢ 受运行方式影响小 ➢ 零序阻抗较正序阻抗大—电流曲线陡,零序Ⅰ段保护范 围大,Ⅱ段灵敏度容易满足 ➢ 不受系统振荡,短时过负荷等的影响 ➢ 单相接地故障占全部故障70%-90%,其它故障往往由单相 接地发展起来的,因此,零序保护具有显著的优越性。
2.3.1中性点直接接地系统单相接地故障特征
(一)故障特征(保护判据的基础) 零序功率和方向特点
电流电压参考方向的选取同电流保护。
正向故障:零序电压滞后电流 180k0 反向故障:零序电压超前电流 k 0
k 0 为系统零序阻抗角,通常80-85°
Ud 0
90 I 0
I 0
I 0
I 0
和2动作切除故障,但是零序电流 I 0d1 流过保护3 时,就可能引
起它的误动作;同样当 护2误动作。
d2
点短路时,零序电流
I
0
d
又可能使保
2
由于越靠近故障点的零序电压越高,因此零序方
向元件没有电压死区。相反,当故障点距保护安装
地点很远时,由于保护安装处的零序电压较低,零
序电流较小,继电器反而可能不动作。
缺点: ➢ 对于短线路或运行方式变化很大时,不能满足运行 要求 ➢ 重合闸动作过程中将出现非全相运行状态,又发生 系统振荡时,出现较大的零序电流,影响正确工作, 从整定上考虑 ➢ 采用自耦变压器联系两个不同电压等级时,任一网 络的接地短路将在另一网络中产生零序电流,使零序 保护的整定配合复杂化,并将增大第Ⅲ段保护的动作 限
图2-39 取得零序电压的接线图Βιβλιοθήκη 2.3.2零序电流和电压的获取
(二)零序电流的获取
数字式继电器采集三相电流,按零序电流定义得到
3 i0 ( k ) ia ( k ) ib ( k ) ic ( k )
特点: 无需专用的零序电流通道 一般不存在极性错误问题 要考虑不平衡输出对保护的影响
2.3.2零序电流和电压的获取