七年级下册第11章《图形与坐标》单元测试卷B卷

合集下载

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

(完整版)初中七年级下册平面坐标系数学附答案培优试卷

一、选择题1.如图,在一单位为1的方格纸上,123345567,,...A A A A A A A A A ∆∆∆,都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形,若123A A A ∆的顶点坐标分别为1A (2,0),2A (1,-1),3A (0,0),则依图中所示规律,2017A 的坐标为( )A .(1010,0)B .(1008,0)C .(2,1008)D .(2,2010) 2.如图,在一单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2020的坐标为( )A .(1010,0)B .(1012,0)C .(2,1012)D .(2,1010) 3.如图所示,一个动点在第一象限内及x 轴、y 轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x 轴,y 轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为( )秒.A .30B .42C .56D .724.对平面上任意一点(a ,b),定义f ,g 两种变换:f(a ,b)=(﹣a ,b),如f(1,2)=(﹣1,2);g(a ,b)=(b ,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=( )A .(5,﹣9)B .(﹣5,﹣9)C .(﹣9,﹣5)D .(﹣9,5) 5.如图,将1、2,3三个数按图中方式排列,若规定(,)a b 表示第a 排第b 列的数,则()8,2与(100,100)表示的两个数的积是( )A .1B .2C .3D .66.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .20207.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P 的坐标是( )A .(2017,0)B .(2017,1)C .(2017,2)D .(2018,0) 8.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A.(46,4)B.(46,3)C.(45,4)D.(45,5)9.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.1510.如图,在平面直角坐标系上有个点P(1,0),点P第一次向上跳运1个单位至P1(1,1),紧接着第二次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(-24,49) B.(-25,50) C.(26,50) D.(26,51)二、填空题11.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(132次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(53…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是_____.12.如图,把图1中的圆A 经过平移得到圆O (如图2),如果图1⊙A 上一点P 的坐标为(m ,n ),那么平移后在图2中的对应点P′的坐标为____13.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.14.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是_______________.15.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______17.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.18.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.19.如图,长方形ABCD 四个顶点的坐标分别为()2,1A ,()2,1B -,()2,1C --,()2,1D -.物体甲和物体乙分别由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是______.20.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.三、解答题21.如图1,在直角坐标系中直线AB 与x 、y 轴的交点分别为(),0A a ,()0,B b ,且满足80a b a b ++-+=.(1)求a 、b 的值;(2)若点M 的坐标为()1,m 且2ABM AOM S S =,求m 的值;(3)如图2,点P 坐标是()1,2--,若ABO 以2个单位/秒的速度向下平移,同时点P 以1个单位/秒的速度向左平移,平移时间是t 秒,若点P 落在ABO 内部(不包含三角形的边),求t 的取值范围.22.在平面直角坐标系中,已知点(3,5)A ,(7,5)B ,连接AB ,将AB 向下平移6个单位得线段CD,其中点A的对应点为点C.(1)填空:点D的坐标为______,线段AB平移到CD扫过的面积为______.(2)若点P是y轴上的动点,连接PD.①如图,当点P在y轴正半轴时,线段PD与线段AC相交于点E,用等式表示三角形PEC的面积与三角形ECD的面积之间的关系,并说明理由.②当PD将四边形ACDB的面积分成1∶3两部分时,求点P的坐标.23.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥2S△PQN,求出点N纵坐标的取值范围.24.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD =2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E (2,0),若F (﹣1,﹣2),则d (E ,F ) ;(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,则t = .(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,则d (P ,Q )= .25.如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别为()03A ,,()10B -,,()40C ,,()53D ,,现将四边形ABCD 经过平移后得到四边形''''A B C D ,点B 的对应点'B 的坐标为()11,.(1)请直接写点'A 、'C 、'D 的坐标;(2)求四边形ABCD 与四边形''''A B C D 重叠部分的面积;(3)在y 轴上是否存在一点M ,连接MB 、MC ,使MBC ABCD S S ∆=四边形,若存在这样一点,求出点M 的坐标;若不存在,请说明理由.26.如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t= 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当点P 运动到CD 上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.27.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接. (1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.28.如图,在平面直角坐标系中,已知(),0A a ,(),0B b ,()0,4C ,a ,b 满足()2240a b ++-=.平移线段AB 得到线段CD ,使点A 与点C 对应,点B 与点D 对应,连接AC ,BD .(1)求a ,b 的值,并直接写出点D 的坐标;(2)点P 在射线AB (不与点A ,B 重合)上,连接PC ,PD .①若三角形PCD 的面积是三角形PBD 的面积的2倍,求点P 的坐标;②设PCA α∠=,PDB β∠=,DPC θ∠=.求α,β,θ满足的关系式.29.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(),0a ,点C 的坐标为()0,b 且a 、b 满足8120a b -+-=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O 的线路移动.(1)点B 的坐标为___________;当点P 移动5秒时,点P 的坐标为___________; (2)在移动过程中,当点P 到x 轴的距离为4个单位长度时,求点P 移动的时间; (3)在O C B --的线路移动过程中,是否存在点P 使OBP 的面积是20,若存在直接写出点P 移动的时间;若不存在,请说明理由.30.如图所示,A (1,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点O 出发,沿OB →BC →CD 移动,若点P 的速度为每秒1个单位长度,运动时间为t 秒,请解决以下问题;①当t 为多少秒时,点P 的横坐标与纵坐标互为相反数;②当t 为多少秒时,三角形PEA 的面积为2,求此时P 的坐标【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】观察图形和三角形点的坐标可以发现规律,下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,由此得到2017A 的坐标.【详解】观察图形可发现:下角标为奇数时,点是在x 轴上,并以(1,0)为中点左右交替且间隔2个单位长度出现,故2017=1+4×504,在(1,0)右边,距离(1,0)是有2×505-1=1009个单位长度,所以2017A 的横坐标为1009+1=2020,即2017A 坐标为(1010,0).故答案为A .【点睛】考查观察图像探究规律的过程,学生要仔细观察图形以及坐标之间的关系,并发现其中规律,找到所求坐标,本题的关键探究规律的过程.2.D解析:D【分析】根据脚码确定出脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,然后确定出第2020个点的坐标即可.【详解】解:观察点的坐标变化发现:当脚码为偶数时的点的坐标,得到规律:当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数,当脚码是4、8、12.…时,横坐标是2,纵坐标为脚码的一半,因为2020能被4整除,所以横坐标为2,纵坐标为1010,故选:D .【点睛】本题考查点坐标的变化规律,根据所要求的点坐标确定类似点的变化规律是解题关键. 3.C解析:C【分析】归纳走到(n ,n )处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n ,n )处,走过的长度单位是2+4+6+…+2n =n (n +1),当n=7时,可得n (n +1)=7×8=56,∴走过的时间为56s.故选:C.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.4.C解析:C【分析】根据f,g两种变换的定义自内而外进行解答即可.【详解】解:由题意得,f(5,﹣9)]=(﹣5,﹣9),∴g[f(5,﹣9)]=g(﹣5,﹣9)=(﹣9,﹣5),故选:C.【点睛】本题考查了新定义坐标变换,根据题意、弄懂两种变换的方法是解答本题的关键.5.C解析:C【分析】观察数列得出每三个数一个循环,再根据有序数对的表示的方法得出每个有序数对表示的数,最后计算积即得.【详解】解:∵前7排共有123456728++++++=个数∴()82,在排列中是第28+2=30个数又∵根据题意可知:每三个数一个循环:1303=10÷∴()82,∵前100排共有()10011001+2+3++100=50502+⋅⋅⋅=个数且5050316831÷=⋅⋅⋅∴(100100),是第1684次循环的第一个数:1.∵1故选:C.【点睛】本题考查关于有序数对的规律题,解题关键是根据特殊情况找出数据变化的周期,得出一般规律.6.C解析:C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A2017的坐标是(-1009,1009).∵点A2017与点A2018的纵坐标相等,∴点A2017与点A2018之间的距离=1010-(-1009)=2019,故选C.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.7.B解析:B【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2017除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2017次运动后点P的横坐标为2017,纵坐标以1、0、2、0每4次为一个循环组循环,∵2017÷4=504…1,∴第2017次运动后动点P的纵坐标是1,∴点P(2017,1),故选B.【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.8.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴∵452=2025∴第2025个点在x 轴上坐标为(45,0)则第2020个点在(45,5)故选:D .【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.9.C解析:C【分析】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),结合图形找出部分a n 的值,根据数值的变化找出变化规律“a n =n ”,再罗列出部分S n 的值,根据数值的变化找出变化规律()12n n n S +=,依次变化规律解不等式()11002n n +≥即可得出结论. 【详解】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),观察,发现规律:a 1=1,a 2=2,a 3=3,…,∴a n =n .S 1=a 1=1,S 2=a 1+a 2=3,S 3=a 1+a 2+a 3=6,…,∴S n =1+2+…+n =()12n n +. 当100≤S n ,即100≤()12n n +,解得:n ≤(舍去),或n ≥∵1413, 故选:C .【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.10.C解析:C【详解】经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100÷2=50;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,依此类推可得到:n P 的横坐标为n÷4+1(n 是4的倍数). 故点100P 的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P 第100次跳动至点100P 的坐标是(26,50).故答案为(26,50).二、填空题11.(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为,0,﹣解析:(1616,﹣2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多40,﹣2,﹣2,00,﹣2,﹣2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,0,﹣2,﹣2,0,第6到100,﹣2,﹣2,0,…第5n+1到5n+50,﹣2,﹣2,0,∵2019÷5=403…4,∴经过2019次运动横坐标为=4×403+4=1616,经过2019次运动纵坐标为﹣2,∴经过2019次运动后,电子蚂蚁运动到的位置的坐标是(1616,﹣2).故答案为:(1616,﹣2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.12.(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(解析:(m+2,n-1)【分析】首先根据圆心的坐标确定平移的方法:向右平移了2个单位,有向下平移1个单位,然后可确定P的对应点P’的坐标.【详解】解:∵⊙A的圆心坐标为(-2,1),平移后到达O(0,0),∴图形向右平移了2个单位,有向下平移1个单位,又∵P的坐标为(m,n),∴对应点P’的坐标为(m+2,n-1),故答案为(m+2,n-1).【点睛】本题主要考查了坐标与图形的变化——平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.14.【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运解析:(45,43)【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0)动点P第24=4×6秒运动到(4,0)动点P第48=6×8秒运动到(6,0)以此类推,动点P第2n(2n+2)秒运动到(2n,0)∴动点P第2024=44×46秒运动到(44,0)2068-2024=44∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位∴第2068秒点P所在位置的坐标是(45,43)故答案为:(45,43)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n的点有n a个(n为正整数),观察图形可得,1a=1,2a=2,3a=3,…,∴n a=n,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.16.或19【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案.【详解】解:点,,中点,,中点恰好位于轴上,且到轴的距离是2,,解得:或,或19;故答案为:或19.【点睛解析:5-或19【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案.【详解】 解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2, ∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩, 5a b ∴-=-或19;故答案为:5-或19.【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.18.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n =500,∴1000A (1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.19.【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=C解析:()1,1--【分析】根据题意可得长方形的边长为4和2,物体乙的速度是物体甲的2倍,进而得出物体甲与物体乙的路程比为1:2,求得每一次相遇的位置,找到规律即可求解.【详解】解:在长方形ABCD 中,AB=CD =4,BC=AD =2,AP=PD =1,由物体乙的速度是物体甲的2倍,时间相同,则物体甲与物体乙的路程比为1:2,根据题意:当第一次相遇时,物体甲和物体乙的路程和为12,物体甲的路程为12×13=4,物体乙的路程为12×23=8,在AB 边上的点(﹣1,1)处相遇; 当第二次相遇时,物体甲和物体乙的路程和为12×2,物体甲的路程为12×2×13=8,物体乙的路程为12×2×23=16,在CD 边上的点(﹣1,﹣1)处相遇; 当第三次相遇时,物体甲和物体乙的路程和为12×3,物体甲的路程为12×3×13=12,物体乙的路程为12×3×23=24,在点P (2,0)处相遇,此时物体甲乙回到原来出发点, ∴物体甲乙每相遇三次,则回到原出发点P 处,∵2021÷3=673……2,∴两个物体运动后的第2021次相遇地点是第二次相遇地点,故两个物体运动后的第2021次相遇地点的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点睛】本题考查点坐标变化规律以及行程问题、坐标与图形,熟练掌握行程问题中的相遇以及按比例分配的运用,通过计算找到变化规律是解答的关键.20.(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n 的共有n 个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.三、解答题21.(1)4a =-,4b =;(2)5m =-或53m =;(3)513t << 【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a ,b 的值;(2)设直线AB 与直线x =1交于点N ,可得N (1,5),根据S △ABM =S △AMN −S △BMN ,即可表示出S △ABM ,从而列出m 的方程.(3)根据题意知,临界状态是点P 落在OA 和AB 上,分别求出此时t 的值,即可得出范围.【详解】(1)∵80a b -+=0,80a b -+≥∴0a b +=,80a b -+=解得:4a =-,4b =(2)设直线AB 与直线1x =交于N ,设()1,N n∵a =−4,b =4,∴A (−4,0),B (0,4),设直线AB 的函数解析式为:y =kx +b ,代入得044k b b =-+⎧⎨=⎩,解得14k b =⎧⎨=⎩∴直线AB 的函数解析式为:y =x +4,代入x =1得()1,5N∵()1,M m∴ABM AMN BMN S S S =-△△△=12×5×|5−m |−12×1×|5−m |=2|5−m |,1422AOM S m m =⨯⨯=△ ∵2ABM AOM S S =∴2522m m -=⨯∴52m m -=或52m m -=-解得:5m =-或53m =,(3)当点P 在OA 边上时,则2t =2,∴t =1,当点P 在AB 边上时,如图,过点P 作PK //x 轴,AK ⊥x 轴交于K ,则KP '=3−t ,KA '=2t −2,∴3−t =2t −2,∴53t = 综上所述:513t <<.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.22.(1)(7,1)-;24;(2)①34PEC ECD SS =;见解析;②170,4P ⎛⎫ ⎪⎝⎭或(0,20)P 【分析】(1)由平移的性质得出点C 坐标,AC =6,再求出AB ,即可得出结论;(2)①过P 点作PF AC ⊥交AC 于F ,分别用CE 表示出两个三角形的面积,即可得到答案;②根据题意,可分为两种情况进行讨论分析:(i )当PD 交线段AC 于E ,且PD 将四边形ACDB 分成面积为1:3两部分时;当PD 交AB 于点G ,PD 将四边形ACDB 分成面积为1:3两部分时;分别求出点P 的坐标即可.【详解】解:(1)∵点A (3,5),将AB 向下平移6个单位得线段CD ,∴C (3,5-6),即:C (3,-1),由平移得,AC =6,四边形ABDC 是矩形,∵A (3,5),B (7,5),∴AB =7-3=4,∴CD =4,∴点D 的坐标为:(7,1)-;∴S 四边形ABDC =AB •AC =4×6=24,即:线段AB 平移到CD 扫过的面积为24;故答案为:(7,1)-;24;(2)①过P 点作PF AC ⊥交AC 于F ,则3PF =,如图:。

《14.3 直角坐标系中的图形》(同步训练)初中数学七年级下册_青岛版_2024-2025学年

《14.3 直角坐标系中的图形》(同步训练)初中数学七年级下册_青岛版_2024-2025学年

《14.3 直角坐标系中的图形》同步训练(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、在直角坐标系中,点P的坐标为(-2, 3)。

那么点P关于x轴的对称点的坐标是()A. (-2, -3)B. (2, 3)C. (-2, 3)D. (2, -3)2、在直角坐标系中,点A(4, 5)和点B(-3, -1)的连线段AB的中点坐标是()A. (1, 3)B. (2, 2)C. (7, 2)D. (5, 3)3、在直角坐标系中,点A(2,3)关于x轴的对称点为:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,6)4、在直角坐标系中,若点P(m,n)在第二象限,则以下选项中正确的是:A. m>0,n>0B. m>0,n<0C. m<0,n>0D. m<0,n<05、在直角坐标系中,点A的坐标是(3,-2),点B的坐标是(-1,3)。

以下哪个选项表示线段AB的中点坐标?A.(1,1)B.(2,1)C.(2,-1)D.(1,-1)6、在直角坐标系中,点C的坐标是(-2,4),点D的坐标是(2,-4)。

如果点E 在第二象限,且点E到点D的距离等于点C到点D的距离,那么点E的坐标可能是:A.(-3,5)B.(-3,-5)C.(3,5)D.(3,-5)7、在直角坐标系中,点A(-2, 3) 和点B(4, -1)之间的距离是多少?A.(√52)B.(√40)C.(√68)D.(√34)8、如果一个正方形的一个顶点位于原点(0, 0),而相对的另一个顶点位于(4, 4),那么这个正方形另外两个顶点的坐标可能是以下哪一对?A. (0, 4), (4, 0)B. (-4, 4), (4, -4)C. (0, 4), (-4, 0)D. (4, 0), (-4, -4)9、在直角坐标系中,点A(-3,2)关于x轴的对称点坐标是:A.(-3,-2)B.(3,-2)C.(-3,2)D.(3,2) 10、在直角坐标系中,点B(4,5)到原点O的距离是:A. 5B. 4C. 3D. 9二、计算题(本大题有3小题,每小题5分,共15分)第一题在直角坐标系中,已知点A(3, 2)、B(-1, 2)和C(-1, -4)。

第十一章 图形的运动数学七年级上册-单元测试卷-沪教版(含答案)

第十一章 图形的运动数学七年级上册-单元测试卷-沪教版(含答案)

第十一章图形的运动数学七年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点A(m,2)在第一象限.若点A关于y轴的对称点B在反比例函数y=- 的图象上,则m的值为( )A.-3B.3C.6D.-62、如图,在平面直角坐标系中点A的坐标为,点B的坐标为,将沿x轴向左平移得到,若点的坐标为,点落在直线上,则k的值为()A. B. C. D.3、如图,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,则重叠部分△AFC的面积为()A.12B.10C.8D.64、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()A. B. C. D.25、点A(2, 6)与点B(-4, 6)关于直线()对称A.x=0B.y=0C.x=-1D.y=-16、已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.7、如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3)。

按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是()。

A.都是等腰梯形B.都是等边三角形C.两个直角三角形,一个等腰三角形D.两个直角三角形,一个等腰梯形8、在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在().A.A点处B.D点处C.AD的中点处D.△ABC三条高线的交点处9、把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°10、在平面直角坐标系中,把△ABC经过平移得到△A′B′C′,若A(1,m),B(4,2),点A的对应点A′(3,m+2),则点B对应点B′的标为()A.(6,5)B.(6,4)C.(5,m)D.(6,m)11、在以下现象中,属于平移的是()①在挡秋千的小朋友;②水平传送带上的物体③宇宙中行星的运动④打气筒打气时,活塞的运动.A.①②B.③④C.②③D.②④12、如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.13、若点M(a,-1)与点N(2,b)关于y轴对称,则a+b的值是( )A.3B.-3C.1D.-114、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是( )A.12B.18C.2+D.2+215、在分割矩形的课外实践活动中,甲、乙两人进行如下操作:甲:将矩形按图1所示分割成四个三角形,然后将四个三角形分别沿矩形的边向外翻折,得到一个面积是原来矩形面积2倍的菱形;乙:将矩形按图2所示分割成四个三角形,然后将四个三角形分别沿矩形的边向外翻折,得到一个面积是原来矩形面积2倍的矩形.对于这两人的操作,以下判断正确的是()A.甲、乙都正确B.甲、乙都错误C.甲错误、乙正确D.甲符合题意、乙错误二、填空题(共10题,共计30分)16、如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于________cm.17、如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是________18、如图,△ABC中,∠ACB=90°,AC=BC=4,点D,E分别是AB、AC的中点,在CD上找一点P,连接AP、EP,当AP+EP最小时,这个最小值是________.19、在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.20、如图,已知,把一张长方形纸片沿折叠后与的交点为G,D、C 分别在M、N的位置上.有以下结论:①平分;②;③;④.其中一定正确的结论有________.(填序号)21、如图,某数学兴趣小组在学完矩形的知识后一起探讨了一个纸片折叠问题:如何将一张平行四边形纸片的四个角向内折起,拼成一个无缝隙、无重叠的矩形.图中,,,表示折痕,折后的对应点分别是.若,,,则纸片折叠时的长应取________.22、点关于坐标轴对称的点坐标是________.23、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E.若∠CBD=32°,则∠ADE的度数为________.24、如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为________.25、如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为________三、解答题(共5题,共计25分)26、如图所示,△ABC平移后得到了△DEF,D在AB上,若∠A=26°,∠E=74°,求∠1,∠2,∠F,∠C的度数.27、在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.28、如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.29、已知点P(2m+1,m-3)关于y轴对称的对称点在第四象限,求m的取值范围。

人教版七年级数学下册《坐标与图形性质》150例题及解析

人教版七年级数学下册《坐标与图形性质》150例题及解析

初一数学下册知识点《坐标与图形性质》150例题及解析题号一二三四总分得分一、选择题(本大题共24小题,共72.0分)1.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A. O1B. O2C. O3D. O4【答案】A【解析】解:如图所示,在平面直角坐标系中,画出点A(-4,2),点B(2,-4),点A,B关于直线y=x对称,则原点在线段AB的垂直平分线上(在线段AB的右侧),如图所示,连接AB,作AB的垂直平分线,则线段AB上方的点O1为坐标原点.故选:A.先根据点A、B的坐标求得直线AB在坐标平面内的位置,即可得出原点的位置.本题主要考查了坐标与图形性质,解决问题的关键是掌握关于直线y=x对称的点的坐标特征:点(a,b)关于直线y=x对称的点的坐标为(b,a).2.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A. 4B. 5C. 6D. 8【答案】C【解析】解:如图,满足条件的点M的个数为6.分别为:(-2,0),(2,0),(0,2),(0,2),(0,-2),(0,).故选:C.分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA 的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.本题考查了等腰三角形的判定,利用数形结合求解更形象直观.3.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. 2B. -4C. -1D. 3【答案】C【解析】【分析】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,-2),B(3,m-1),直线AB∥x轴,∴m-1=-2,解得m=-1.故选:C.4.在平面直角坐标系中,点A(-3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A. 6,(-3,5)B. 10,(3,-5)C. 1,(3,4)D. 3,(3,2)【答案】D【解析】解:依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5-2=3,此时点C的坐标为(3,2),故选D.由AC∥x轴,A(-2,2),根据坐标的定义可求得y值,根据线段BC最小,确定BC⊥AC,垂足为点C,进一步求得BC的最小值和点C的坐标.本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.5.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是()A. (2,2)B. (3,3)C. (3,2)D. (2,3)【答案】C【解析】解:过(-1,2)、(3,-1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.因为(-1,-1)、(-1,2)两点横坐标相等,长方形有一边平行于y轴,(-1,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,过(-1,2)、(3,-1)两点分别作x轴、y轴的平行线,交点为第四个顶点.本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.6.点E与点F的纵坐标相同,横坐标不同,则直线EF与y轴的关系是( )A. 相交B. 垂直C. 平行D. 以上都不正确【答案】B【解析】略7.一个长方形在平面直角坐标系中,若其三个顶点的坐标分别为(-3,-2),(2,-2),(2,1),则第四个顶点为()A. (2,-5)B. (2,2)C. (3,1)D. (-3,1)【答案】D【解析】解:依照题意画出图形,如图所示.设点D的坐标为(m,n),∵点A(-3,-2),B(2,-2),C(2,1),AB=2-(-3)=5,DC=AB=5=2-m=5,解得:m=-3;BC=1-(-2)=3,AD=BC=3=n-(-2),解得:n=1.∴点D的坐标为(-3,1).故选:D.设点D的坐标为(m,n),由长方形的性质可以得出“DC=AB,AD=BC”,由DC=AB 可得出关于m的一元一次方程,由AD=BC可得出关于n的一元一次方程,解方程即可得出点D的坐标.本题考查了坐标系中点的意义以及长方形的性质,解题的关键是分别得出关于m、n的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,依照题意画出图形,再根据图形的性质即可得出结论.8.如图,在平面直角坐标系xOy中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A. (-2,3)B. (2,-3)C. (3,-2)或(-2,3)D. (-2,3)或(2,-3)【答案】D【解析】【分析】此题考查了位似图形的性质有关知识,由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,利用相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比为1:2,又由点B的坐标为(-4,6),即可求得答案.【解答】解:∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面积等于矩形OABC面积的,∴位似比为:1:2,∵点B的坐标为(-4,6),∴点B′的坐标是:(-2,3)或(2,-3).故选D.9.在平面直角坐标系中,A(-2,0),B(-1,2),C(1,0),连接AB,点D为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为()A. 1B.C.D.【答案】C∵A(-2,0),B(-1,2),D是AB中点,∴D(-,1),∵C(1,0),∴直线CD的解析式为y=-x+,直线OB的解析式为y=-2x,由,解得,∴E(-,),∴S四边形ADEO=S△ADC-S△EOC=×3×1-×1×=,故选:C.构建一次函数求出解得E坐标,根据S四边形ADEO=S△ADC-S△EOC,计算即可.本题考查坐标与图象的性质、一次函数的应用等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,属于中考常考题型.10.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为()A. 2B. 4C. 0或4D. 4或-4【答案】D【解析】解:∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=OA•OB=×10|a|=20,解得:a=±4.故选D.根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式结合S△AOB=20即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.本题考查了坐标与图形性质,根据三角形的面积结合S△AOB=20列出关于a的含绝对值符号的一元一次方程是解题的关键.11.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A. -1B. 9C. 12D. 6或12【答案】D本题考查了坐标与图形性质,是基础题,主要利用了平行于x轴的直线上的点的纵坐标相等,需熟记.根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B 为不同的两点确定b的值.【解答】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5-3=2.则a+b=4+8=12,或a+b=2+4=6,故选D.12.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A. 6,(﹣3,4)B. 2,(3,2)C. 2,(3,0)D. 1,(4,2)【答案】B【解析】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选B.由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.13.在平面直角坐标系xOy中,已知点A(t,0),B(t+2,0),M(3,4).以点M为圆心,1为半径画圆.点P是圆上的动点,则△ABP的面积S的范围是()A. 2≤s≤4B. 4≤s≤5C. 3≤s≤5D. 6≤s≤10【答案】C由A(t,0),B(t+2,0)知AB=2,当点P位于点P1(3,3)时,△ABP的面积最小,为×2×3=3,当点P位于点P2(3,5)时,△ABP的面积最大,为×2×5=5,则3≤s≤5,故选:C.根据题意画出图形,结合图形知当点P位于点P1(3,3)时△ABP的面积最小、点P位于点P2(3,5)时△ABP的面积最大,计算可得.本题主要考查坐标与图形的面积,根据题意画出图形是解题的关键.14.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A、B的对应点分别为A',B'.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F'与点F重合,则点F的坐标是()A. (1,4)B. (1,5)C. (-1,4)D. (4,1)【答案】A【解析】【分析】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.先根据点A到A′,B到B′的点的坐标可得方程组;,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F重合得到方程组,解得,即F(1,4).故选A.15.已知点M(3,-2),N(3,-1),则线段MN与x轴()A. 垂直B. 平行C. 相交D. 不垂直【答案】A【解析】解:∵M(3,-2),N(3,-1),∴横坐标相同,∴MN⊥x轴,故选:A.根据横坐标相同即可判断;本题考查坐标与图形性质,具体的是关键是熟练掌握基本知识,属于中考基础题.16.已知点A(3,2),B(3,-2),则A,B两点相距()A. 3个单位长度B. 4个单位长度C. 5个单位长度D. 6个单位长度【答案】B【解析】【分析】本题主要考查了平行于坐标轴的直线上点的坐标特点及两点间的距离公式.熟记平行于坐标轴的直线上点的坐标特点是解题的关键.A、B两点横坐标相等,在平行于y轴的直线上,比较纵坐标即可.【解答】解:∵点A(3,2),B(3,-2)的横坐标相等,∴AB∥y轴,∴AB=2-(-2)=4.故选B.17.过点A(-3,5)和点B(-3,2)作直线,则直线AB()A. 平行于x轴B. 平行于y轴C. 与y轴相交D. 垂直于y轴【答案】B【解析】【分析】本题主要考查了坐标与图形的性质,利用直线平行于y轴上两不同点的特点得出是解题关键.根据直线平行于y轴的特点:横坐标相等,纵坐标不相等进行解答.【解答】解:∵A(-3,5)、B(-3,2),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选B.18.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2017与点A2018之间的距离是()A. 2017B. 2018C. 2019D. 2020【答案】C【解析】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2018次跳动至点的坐标是(1010,1009),第2017次跳动至点A2017的坐标是(-1009,1009).∵点A2017与点A2018的纵坐标相等,∴点A2017与点A2018之间的距离=1010-(-1009)=2019,故选:C.根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2017与点A2018的坐标,进而可求出点A2017与点A2018之间的距离.本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.19.点A(0,-3),以A为圆心,5为半径画圆交y轴负半轴的坐标是()A. (8,0)B. (0,-8)C. (0,8)D. (-8,0)【答案】B【解析】解:∵点A(0,-3),以A为圆心,5为半径画圆交y轴负半轴,∴A为圆心,5为半径画圆交y轴负半轴的长度是:3+5=8,故坐标为:(0,-8),故选:B.首先根据点A(0,-3),以A为圆心,5为半径画圆,可得出圆与y轴负半轴的交点,即可得出答案.此题主要考查了坐标与图形的性质,得出圆心的位置,以及半径的长度是解决问题的关键.20.已知点P到x轴距离为3,到y轴的距离为2,则P点坐标一定为()A. (3,2)B. (2,3)C. (-3,-2)D. 以上答案都不对【答案】D【解析】【分析】本题考查了用坐标描述位置,点P到x轴的距离为3,则这一点的纵坐标是3或-3;到y轴的距离为2,那么它的横坐标是2或-2,从而可确定点P的坐标.【解答】解:∵点P到x轴的距离为3,∴点的纵坐标是3或−3;∵点P到y轴的距离为2,∴点的横坐标是2或−2.∴点P的坐标可能为:(2,3)或(2,−3)或(−2,3)或(−2,−3),故选D.21.已知线段AB平行于x轴,点A的坐标是(1,2),若AB=3,则点B的坐标是()A. (1,5)B. (1,-2)或(1,5)C. (4,2)D. (-2,2)或(4,2)【答案】D【解析】解:∵AB平行于x轴,且A(1,2),∴A、B两点的纵坐标相同,均为2.又∵线段AB的长为3,∴点B的坐标为(-2,2)或(4,2).故选:D.由AB平行于x轴知A、B两点的纵坐标均为2,由线段AB的长为3,分点B在A的左、右两侧分别求之.本题主要考查坐标与图形性质,根据平行于x轴得出纵坐标相等是关键,要注意全面考虑到各种情况.22.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. -1B. -4C. 2D. 3【答案】A【解析】解:∵点A(m+1,-2)和点B(3,m-1),且直线AB∥x轴,∴-2=m-1∴m=-1故选:A.AB∥x轴,可得A和B的纵坐标相同,即可求出m的值.此题主要考查了平行于x轴的坐标特点.23.在平面直角坐标系中,A(m,4),B(2,n),C(2,4-m),其中m+n=2,并且2≤2m+n≤5,则△ABC面积的最大值为()A. 1B. 2C. 3D. 6【答案】B【解析】解:∵B(2,n),C(2,4-m),m+n=2,∴BC=4-m-n=2,∵m+n=2,并且2≤2m+n≤5,BC边上高的最大值是2-0=2,∴△ABC面积的最大值为2×2÷2=2.故选:B.观察三个点的坐标可知BC=4-m-n=2,再由m+n=2,并且2≤2m+n≤5可得0≤m≤3,可得BC边上高的最大值,再根据三角形面积公式即可求解.考查了坐标与图形性质,三角形的面积,关键是得到BC的长和BC边上高的最大值.24.如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O、A、P三点组成的三角形为等腰三角形,则满足条件的点P共有()个.A. 4个B. 6个C. 8个D. 3个【答案】C【解析】解:如图所示,满足条件的点P有8个,故选C作出图形,然后利用数形结合的思想求解,再根据平面直角坐标系得出点P的个数即可.本题考查了等腰三角形的判定,坐标与图形的性质的应用,利用数形结合的思想求解更简便.二、填空题(本大题共46小题,共138.0分)25.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第___________.【答案】3【解析】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出故答案为:3两个排名表相互结合即可得到答案.本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.26.已知AB∥y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为______.【答案】(3,7)或(3,-3)【解析】解:∵AB∥y轴,点A的坐标为(3,2),∴点B的横坐标为3,∵AB=5,∴点B在点A的上边时,点B的纵坐标为2+5=7,点B在点A的下边时,点B的纵坐标为2-5=-3,∴点B的坐标为:(3,7)或(3,-3).故答案为:(3,7)或(3,-3).先确定出点B的纵坐标,再分点B在点A的上边与下边两种情况求出点B的横坐标,从而得解.本题考查了坐标与图形的性质,根据平行线间的距离相等求出点B的纵坐标,求横坐标时要注意分点B在点A的上下两种情况求解.27.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1.根据该材料填空:已知=(2,3),=(4,m),且∥,则m=______.【答案】6【解析】解:由题意:∵=(2,3),=(4,m),且∥,∴2m=12,∴m=6,故答案为6.由题意设=(x1,y1),=(x2,y2),∥,则x1•y2=x2•y1,由此列出方程即可解决问题.本题考查坐标与图形的性质,解题的关键是理解题意,学会构建方程解决问题,属于基础题.28.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是______.【答案】(2,3)【解析】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),故答案为(2,3).先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.此题考查了坐标与图形性质的知识,根据图形得到点A的坐标是解答本题的关键.29.已知点M(3a-9,1-a),将M点向左平移3个单位长度后落在y轴上,则______.【答案】4【解析】【分析】本题考查了坐标与图形变化-平移,y轴上点的坐标特征.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【解答】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.30.已知线段AB=3,AB∥x轴,若点A的坐标为(-2,3),则点B的坐标为______.【答案】(1,3)或(-5,3)【解析】解:∵AB∥x轴,∴点B纵坐标与点A纵坐标相同,为3,又∵AB=3,可能右移,横坐标为-2+3=1;可能左移横坐标为-2-3=-5,∴B点坐标为(1,3)或(-5,3),故答案为:(1,3)或(-5,3).在平面直角坐标系中与X轴平行,则它上面的点纵坐标相同,可求B点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.本题考查了坐标与图形的性质,解决本题的关键是进行分类讨论.31.若点P(-2,a),Q(b,3),且PQ∥x轴,则a ______ ,b ______ .【答案】=3;≠-2的任意实数【解析】【分析】根据与x轴平行的点的坐标之间的关系解答.本题主要考查与坐标轴平行的点的坐标之间的关系,即纵坐标相同,横坐标不同.【解答】解:∵PQ∥x轴,∴P,Q两点的纵坐标相同,横坐标不同,∴a=3,b≠-2.故答案为=3;≠-2的任意实数.32.点A(0,-3),B(0,2),点C在x轴上,如果△ABC的面积为15,则点C的坐标是 .【答案】(6,0)或(-6,0)【解析】略.33.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,则B2016的横坐标为______.【答案】22017.【解析】解:∵A(1,3),A1(2,3),A2(4,3),A3(8,3),2=21、4=22、8=23,∴A n(2n,3),∵B(2,0),B1(4,0),B2(8,0),B3(16,0),2=21、4=22、8=23,16=24,∴B n(2n+1,0),∴B2016的横坐标为22017.故答案为:22017.观察不难发现,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B 系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可.本题考查了坐标与图形性质,观察出点A、B系列的横坐标的变化规律是解题的关键,也是本题的难点.34.在直角坐标系中,点A(-1,2),点P(0,y)为y轴上的一个动点,当y= ______ 时,线段PA的长得到最小值.【答案】2【解析】【分析】本题考查了垂线段最短的性质,坐标与图形性质,作出图形更形象直观.属于基础题. 作出图形,根据垂线段最短可得PA⊥y轴时,PA最短,然后解答即可.【解答】解:如图,PA⊥y轴时,PA的值最小,所以,y=2.35.已知点A(4,0)、B(0,5),点C在x轴上,且△BOC的面积是△ABC的面积的3倍,那么点C的坐标为______.【答案】(3,0)或(6,0)【解析】【分析】本题考查了点的坐标和三角形的面积,能求出符合的所有情况是解此题的关键,用了分类讨论思想.先求出OA=4,OB=5,分为三种情况,画出图形,根据三角形的面积公式得出方程,求出方程的解即可.【解答】解:∵点A(4,0)、B(0,5),∴OA=4,OB=5,设OC=a(a≥0),有三种情况:①当C在x轴的负半轴上时,∵△BOC的面积是△ABC的面积的3倍,∴=3××(4+a)×5,解得:a=-6,不符合a≥0,舍去;②当C在x轴的正半轴上,且在点A的右边时,∵△BOC的面积是△ABC的面积的3倍,∴=3××(a-4)×5,解得:a=6,此时点C的坐标是(6,0),③当C点在O、A之间时,∵△BOC的面积是△ABC的面积的3倍,∴=3××(4-a)×5,解得:a=3,此时点C的坐标是(3,0),所以点C的坐标为(3,0)或(6,0),故答案为(3,0)或(6,0).36.已知点P在第二象限两坐标轴所成角的平分线上,且到x轴的距离为3,则点P的坐标为______ .【答案】(-3,3)【解析】【分析】本题主要考查了坐标与图形,主要利用了角平分线上的点到角的两边的距离相等的性质,第二象限内点的坐标的符号.根据第二象限内点的横坐标是负数,纵坐标都是正数,角平分线上的点到角的两边的距离相等即可得解.【解答】解:设P(x,3).∵点P在第二象限的角平分线上,∴x=-3,点P的坐标为(-3,3).故答案为(-3,3).37.当m =________时,点P(﹣2, m﹣1)、Q(3, 5)在同一条平行x轴的直线上.【答案】6【解析】【分析】本题考查了坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相同.根据平行于x轴的直线上的点的纵坐标相同即可求出m的值.【解答】解:∵点点P(﹣2, m﹣1)、Q(3, 5)在同一条平行x轴的直线上,∴m-1=5,m=6,故答案为6.38.已知点P、Q的坐标分别为、,若点P在第二、四象限的角平分线上,点Q在第一、三象限的角平分线上,则的值为________.【答案】8【解析】【分析】本题主要考查的是坐标与图象的性质,根据点P在第二、四象限的角平分线上各点的横纵坐标互为相反数求解,点Q在第一、三象限的角平分线上各点的横纵坐标相同求解.明确一、三象限的角平分线上各点的横纵坐标相同;第二、四象限的角平分线上个点的横纵坐标互为相反数是解题的关键.【解答】解:∵点P(2 m-5,m -1)在第二、四象限的角平分线上,∴(2 m-5)+(m-1)=0解得:m=2,∴n+2=2n-1,解得:n=3,当m=2,n=3时,∴m n =23=8.故答案为8.39.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为____.(点C不与点A重合)【答案】(2,4)或(-2,0)或(-2,4)【解析】【分析】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C的位置分情况讨论.根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△ABO全等,∴OB=OB=4,OA=OC=2,∴C1(-2,0),C2(-2,4),C3(2,4).故答案为:(2,4)或(-2,0)或(-2,4).40.已知点A(a,5)、B(2,2-b)、C(4,2),且AB平行于x轴,AC平行于y轴,则a+b=________.【答案】1【解析】【分析】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.掌握与坐标轴平行的直线上的点的坐标特征是解决此题的关键.关键与坐标轴平行的直线上的点的坐标特征求出a和b的值,然后计算它们的差即可.【解答】解:∵AB∥x轴,∴2-b=5,解得b=-3,∵AC∥y轴,∴a=4,故答案为1.41.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,-5),A(4,0),则AD•BC=______.【答案】32【解析】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.42.如图,定点A(-2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为______.【解析】解:过A作AD⊥直线y=x,过D作DE⊥x轴于E,则∠DOA=∠OAD=∠EDO=∠EDA=45°,∵A(-2,0),∴OA=2,∴OE=DE=1,∴D的坐标为(-1,-1),即动点B在直线y=x上运动,当线段AB最短时,点B的坐标为(-1,-1),故答案为:(-1,-1).过A作AD⊥直线y=x,过D作DE⊥x轴于E,即当B点和D点重合时,线段AB的长最短,求出∠DOA=∠OAD=∠EDO=∠EDA=45°,OA=2,求出OE=DE=1,求出D的坐标即可.本题考查了等腰直角三角形,垂线段最短,坐标与图形性质的应用,解此题的关键求出符合条件的点的位置.43.如图,在△ABC中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),则B点的坐标是.【答案】(1,4)【解析】【分析】本题主要考查了直角三角形的性质、全等三角形的判定和性质的知识点,解题的关键是做高线各种全等三角形.先过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标,即可解答.【解答】解:如图,过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(-2,0),点A的坐标为(-6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD-OC=4,OE=CE-OC=3-2=1,∴BE=4,∴则B点的坐标是(1,4).故答案为(1,4).44.如图,点A(-1,0),点B(0,3),点C(2,4),点D(3,0),点P是x轴上一点,直线CP将四边形ABCD的面积分成1:2两部分,则P点坐标为____.【答案】(-0.5,0)或(1.25,0).【解析】略45.如图,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为______.【答案】【解析】【分析】本题考查了等腰直角三角形,用到的知识点是等腰直角三角形的性质,全等三角形的判定,能够正确作出辅助线,构造出全等三角形是解题的关键.分别过点A和点B作轴,BD⊥y轴,利用已知条件和等腰直角三角形的性质可证明△ACO≌△BDO,则OD和BD的长可求出,进而得到点B的坐标.【解答】解:分别过点A和点B作轴,轴,∴,∴,∵,∴,∴,在和中,,∴△(AAS),∴,∵点A的坐标为,∴,∴点B的坐标为,故答案为.46.若A(a,b)在第二、四象限的角平分线上,a与b的关系是______.【答案】a=-b【解析】解:∵A(a,b)在第二、四象限的角平分线上,第二象限内点的坐标的符号特征是(-,+),第四象限内点的坐标的符号特征是(+,-),原点的坐标是(0,0),所以二、四象限角平分线上的点的横纵坐标的关系是a=-b.故填a=-b.A(a,b)在第二、四象限的角平分线上,则a与b的值互为相反数,则a=-b.平面直角坐标系中,象限角平分线上的点的坐标特征,一、三象限角平分线上的点的坐标特征是(x,x),二、四象限角平分线上是点的坐标特征是(x,-x).47.如图,在直角坐标系中,,,第一次将变换成,,;第二次将变换成,,,第三次将变换成,则的横坐标为______.【答案】22017.【解析】【分析】本题考查了坐标与图形性质,观察出点A、B系列的横坐标的变化规律是解题的关键,也是本题的难点.观察不难发现,点A系列的横坐标是2的指数次幂,指数为脚码,纵坐标都是3;点B系列的横坐标是2的指数次幂,指数比脚码大1,纵坐标都是0,根据此规律写出即可.【解答】解:∵A(1,3),A1(2,3),A2(4,3),20=1、2=21、4=22,∴A n(2n,3),∵B(2,0),B1(4,0),B2(8,0),2=21、4=22、8=23,∴B n(2n+1,0),∴B2016的横坐标为22017.故答案为22017.48.如图,在平面直角坐标系中,正方形ABOC的顶点A在第二象限,顶点B在x轴上,顶点C在y轴上,若正方形ABOC的面积等于7,则点A的坐标是______.【答案】(-,)【解析】解:∵正方形ABOC的面积等于7,∴正方形ABOC的边长,∵正方形ABOC的顶点A在第二象限,顶点B在x轴上,顶点C在y轴上,∴点A的坐标是(-,).故答案为:(-,).先根据正方形面积公式求出正方形的边长,再根据第二象限点的坐标特征可求点A的坐标.考查了正方形的性质,坐标与图形性质,解题的关键是根据正方形面积公式求出正方形的边长.49.平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是______.【答案】(-2,2)或(8,2)【解析】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3-5=-2,点B在点A的右边时,3+5=8,∴点B的坐标为(-2,2)或(8,2).故答案为:(-2,2)或(8,2).根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.50.点P(2,4),且PQ轴,且线段PQ=6,则Q点坐标为_______________【答案】(2,10)或(2,-2)【解析】【分析】本题主要考查与坐标轴平行的直线上的点,坐标之间的关系,根据平行于y轴的直线坐标特点解答即可.【解答】解:∵PQ∥y轴,则P,Q的横坐标相同,纵坐标不同,点P(2,4),PQ=6,∴Q的坐标为(2,10)或(2,-2).。

最新人教版七年级下册数学第七章平面直角坐标系单元测试题(解析版)

最新人教版七年级下册数学第七章平面直角坐标系单元测试题(解析版)

人教七年级上册数学第7 章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系单元测试题班级姓名得分一、选择题( 4 分× 6=24 分)1.点 A (3,4 )所在象限为()A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限2.点 B (3,0 )在()上A 、 在 x 轴的正半轴上B 、 在 x 轴的负半轴上C 、 在 y 轴的正半轴上D 、 在 y 轴的负半轴上3.点 C 在 x 轴上方, y 轴左边,距离x 轴 2 个单位长度,距离y 轴 3 个单位长度,则点C的坐标为()A 、( 2,3)B 、 (2, 3)C 、 (3,2) D 、(3, 2)4. 若点 P ( x,y )的坐标知足 xy =0,则点 P 的地点是()A 、 在 x 轴上B 、 在 y 轴上C 、 是坐标原点D 、在 x 轴上或在 y 轴上5.某同学的座位号为(2,4 ),那么该同学的所座地点是()A 、第 2排第 4列B 、第4 排第 2列C 、 第 2列第 4排D 、不好确立6.线段 AB 两头点坐标分别为 A ( 1,4 ), B ( 4,1 ),现将它向左平移 4 个单位长度,得 到线段 A 1B 1 ,则 A 1、 B 1 的坐标分别为()A 、A 1(5,0 ), B 1( 8, 3 )B 、 A 1( 3,7 ), B 1( 0,5)C 、 A 1( 5,4 ) B 1( -8, 1)D 、A 1( 3,4 )B 1( 0,1)二、填空题( 1 分× 50=50 分 )7.分别写出数轴上点的坐标:A E CB D -5 -4-3 -2 -10 12 345A ( )B ( )C ( )D ( )E ( )8.在数轴上分别画出坐标以下的点:A( 1) B(2) C (0.5) D( 0) E(2.5) F ( 6)-5-4-3 -2 -10123 4 59. 点 A(3, 4) 在第象限,点 B( 2, 3) 在第象限点 C( 3,4) 在第象限,点 D (2,3) 在第象限点 E( 2,0) 在第象限,点 F (0,3) 在第象限10.在平面直角坐标系上,原点O 的坐标是(), x 轴上的点的坐标的特色是 坐标为 0;y 轴上的点的坐标的特色是 坐标为 0。

人教版七年级数学下册全册单元测试试卷及答案

人教版七年级数学下册全册单元测试试卷及答案

第五章相交线与平行线检测题(时间:120分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中错误的有()A.1个B.2个C.3个D.4个2.点P是直线l外一点,,且PA=4 cm,则点P到直线l的距离()A.小于4 cm B.等于4 cm C.大于4 cm D.不确定3.如图,点在延长线上,下列条件中不能判定的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠D.∠+∠BDC=180°第3题图第4题图第5题图4.如图,,∠3=108°,则∠1的度数是()A.72°B.80°C.82°D.108°5.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对6.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个第6题图第8题图7.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动.属于平移的是()A.①B.①②C.①②③D.①②③④8.如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角(不包括∠EFB)的个数为()A.2个B.3个C.4个D.5个9. 点P是直线l外一点,A、B、C为直线l上的三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线l的距离()A.小于2 cm B.等于2 cmC.不大于2 cm D.等于4 cm10. 两平行直线被第三条直线所截,同位角的平分线()A.互相重合B.互相平行C.互相垂直D.相交二、填空题(共8小题,每小题3分,满分24分)11.如图,直线a、b相交,∠1=,则∠2=.第11题图12.如图,当剪子口∠AOB增大15°时,∠COD增大.第12题图第13题图第14题图13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是.15.如图,D是AB上一点,CE∥BD,CB∥ED,EA⊥BA于点A,若∠ABC=38°,则∠AED= .第15题图第16题图16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= .17.如图,直线a∥b,则∠ACB= .第17题图第18题图18.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= .三、解答题(共6小题,满分46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.第19题图20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)第20题图21.(8分)已知:如图,∠BAP+∠APD =,∠1 =∠2.求证:∠E =∠F.第21题图22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.第22题图23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.第23题图24.(8分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.第24题图第五章检测题答案1.B 解析:①是正确的,对顶角相等;②正确,在同一平面内,垂直于同一条直线的两直线平行;③错误,角平分线分成的两个角相等但不是对顶角;④错误,同位角只有在两直线平行的情况下才相等.故①②正确,③④错误,所以错误的有两个,故选B.2. B 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),所以点P到直线l的距离等于4 cm,故选C.3. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.4. A 解析:∵a∥b,∠3=108°,∴∠1=∠2=180°∠3=72°.故选A.5. C 解析:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB.又∵BE平分∠ABC,∴∠ABE=∠EBC.即∠ABE=∠DEB.所以图中相等的角共有5对.故选C.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. C 解析:①用打气筒打气时,气筒里活塞沿直线运动,符合平移的性质,故属平移;②传送带上,瓶装饮料的移动沿直线运动,符合平移的性质,故属平移;③在笔直的公路上行驶的汽车沿直线运动,符合平移的性质,故属平移;④随风摆动的旗帜,在运动的过程中改变图形的形状,不符合平移的性质;⑤钟摆的摆动,在运动的过程中改变图形的方向,不符合平移的性质.故选C.8. D 解析:如题图,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:根据点到直线的距离为点到直线的垂线段长(垂线段最短),又2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选C.10. B 解析:∵两平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.二、填空题11. 144°解析:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°.又∵∠1=36°,∴∠2=180°36°=144°.12. 15°解析:因为∠AOB与∠COD是对顶角,∠AOB与∠COD始终相等,所以随∠AOB变化,∠COD也发生同样变化.故当剪子口∠AOB增大15°时,∠COD也增大15°.13. 垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 52°解析:∵EA⊥BA,∴∠EAD=90°.∵CB∥ED,∠ABC=38°,∴∠EDA=∠ABC=38°,∴∠AED=180°∠EAD∠EDA=52°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与a相交于D,∵a∥b,∴∠ADC=∠50°.∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 65°解析:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65°.三、解答题19.解:(1)(2)如图所示.(3)∠PQC =60°. ∵ PQ ∥CD ,∴ ∠DCB +∠PQC =180°. ∵ ∠DCB =120°,∴ ∠PQC =180°120°=60°. 20. 解:(1)小鱼的面积为7×6121 ×5×6121 ×2×5121 ×4×2121 ×1.5×121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD . ∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2. 即∠EAP =∠APF . ∴ AEF ∥P . ∴ ∠E =∠F . 22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1, ∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°, ∴ ∠ACB =∠AED =80°. ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°, ∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行同旁内角互补). ∵ ∠B =65°,∴ ∠BCE =115°. ∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°, ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.第六章《实数》水平测试题班级 学号 姓名 成绩一、选择题 (每题3分,共30分。

七年级数学下册 第十一章《图形与坐标》单元测试(A卷)

七年级数学下册 第十一章《图形与坐标》单元测试(A卷)

第十一章《图形与坐标》单元测试A 卷一、选择题(每小题3分,共24分)1、下列各点中,在第二象限的点是( )A 、(2,4) B 、(-2,4)C 、(2,-4)D 、(-2,-4)2、若x+y >0,xy >0,则点(x ,y )在( )象限A 、第一B 、第二C 、第三D 、第四3、若点P (a ,b )的坐标满足ab=0,则点P 在( )A 、原点B 、x 轴上C 、y 轴上D 、x 轴或y 轴上4、在直角坐标系中,点(3,-4)向左平移2个单位长度后的坐标为( )A 、(5,-4)B 、(1,-4)C 、(3,-6)D 、(3,-2)5、某天早晨,小明离家跑步到公园锻炼一会后又回到家里.下面图像中,能反映小明离家的距离 y 和时间x 的函数关系的是( ).6、若点P 在x 轴的上方,且在y 轴的左方,到每条坐标轴的距离均为3,则点P 的坐标为( )A 、(3,3)B 、(-3,-3)C 、(-3,3)D 、(3,-3)7、某蓄水池的横断面示意图如右图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图像能大致表示水的深度h 和放水时间t 之间的关系的是( )8.如图,雷达探测器测得六个目标A B C D E F 、、、、、出现.按照规定的目标表示方法,目标C F 、的位置表示为()()61205210.C F ,°、,°按照此方法在表示目标A B D E 、、、的位置时,其中表示不正确的是( ).A .()530A ,° B. ()290B ,° C. ()4240D ,° D. ()360E ,°二、填空题:(每小题3分,共24分)1、教室里的座位整齐摆放,若四排六号用(4,6)表示,则(5,3)的含义是 。

2、如图在直角坐标系中,矩形ABOC 的边长AB 为3,AC 为2,则图中点A 、点B 、点C 的坐标分别为 、 、 。

初中数学七年级下册-数学:第六章平面直角坐标系单元测试(B卷)(人教新课标七年级下)

初中数学七年级下册-数学:第六章平面直角坐标系单元测试(B卷)(人教新课标七年级下)

数学周末练习(第5周)班级姓名一、填空题1.如图2是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.”2.如果用(7,8)表示七年级八班,那么八年级七班第1题可表示成.3.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;点K在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点.4.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.5.在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是.6.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=______.7.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.8.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成第11题的三角形的面积等于10,则a 的值是______.9.如果p (a +b ,ab )在第二象限,那么点Q (a ,-b ) 在第 象限.10.在平面直角坐标系中,点(-1,2m +1)一定在第 象限. 11.如图,小强告诉小华图中A 、B 两点的坐标分别为(– 3,5)、(3,5),小华一下就说出了C 在同一坐标系下的坐标 .12.点A 在x 轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为 ;点B 在y 轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为 .13.如果点P (3a -9,1-a )是第三象限的整数点(横、纵坐标均为整数),那么点P 的坐标是________.14.三角形A’B’C’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A’(1,-1),则点B (1,1)的对应点B’、点C (-1,4)的对应点C’的坐标分别为 . 二、解答题15.下列各点中,在第二象限的点是( )A .(2,3)B .(2,-3)C .(-2,-3)D .(-2,3)16.将点A(-4,2)向上平移3个单位长度得到的点B的坐标是() A.(-1,2) B.(-1,5) C.(-4,-1) D.(-4,5)17.已知点M(x,y)在第二象限内,且│x│=2,│y│=3,则点M 关于原点的对称点的坐标是()A.(-3,2) B.(-2,3) C.(3,-2) D.(2,-3)18.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上 B.x轴上 C.y轴上 D.坐标轴上三、解答题19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.如图,描出A(– 3,– 2)、B(2,– 2)、C(– 2,1)、D (3,1)四个点,线段AB、CD有什么关系?顺次连接A、B、C、D四点组成的图形是什么图形?21.写出如图中“小鱼”上所标各点的坐标且回答:(1)点B、E的位置有什么特点?(2)从点B与点E,点C与点D的位置,看它们的坐标有什么特点?22.如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?作出相应图案,写出平移后的7个点的坐标。

《第11章平面直角坐标系》单元测试含答案解析

《第11章平面直角坐标系》单元测试含答案解析

第11章 平面直角坐标系一、选择题(共16小题)1.在平面直角坐标系中,已知点P 的坐标是(﹣1,﹣2),则点P 关于原点对称的点的坐标是( )A .(﹣1,2)B .(1,﹣2)C .(1,2)D .(2,1)2.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是( )A .(4,﹣2)B .(﹣4,﹣2)C .(﹣2,﹣3)D .(﹣2,﹣4)3.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a+b 的值为( )A .33B .﹣33C .﹣7D .74.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4,﹣3)B .(﹣4,3)C .(0,﹣3)D .(0,3)5.在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)8.如图,在平面直角坐标系中,点B 、C 、E 、在y 轴上,Rt △ABC 经过变换得到Rt △ODE .若点C 的坐标为(0,1),AC=2,则这种变换可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移3B .△ABC 绕点C 顺时针旋转90°,再向下平移1C .△ABC 绕点C 逆时针旋转90°,再向下平移1D .△ABC 绕点C 逆时针旋转90°,再向下平移39.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是( )A .(,1)B .(1,﹣)C .(2,﹣2)D .(2,﹣2)10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A.(3,﹣1)B.(﹣3,1)C.(﹣1,﹣3) D.(﹣3,﹣1)15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为.21.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.24.点P(5,﹣3)关于原点的对称点的坐标为.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.26.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C 关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.第11章平面直角坐标系参考答案与试题解析一、选择题(共16小题)1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2) D.(2,1)【考点】关于原点对称的点的坐标.【专题】压轴题.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.【解答】解:∵点P关于x轴的对称点坐标为(﹣1,﹣2),∴点P关于原点的对称点的坐标是(1,2).故选:C.【点评】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2) C.(﹣2,﹣3) D.(﹣2,﹣4)【考点】关于原点对称的点的坐标.【专题】几何图形问题.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】关于原点对称的点的坐标.【分析】先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.5.(•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m ﹣n=﹣3,∴m=2,n=5∴点M (m ,n )在第一象限,故选A .【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)【考点】坐标与图形变化-旋转.【分析】需要分类讨论:在把△ABO 绕点O 顺时针旋转90°和逆时针旋转90°后得到△A 1B 1O 时点A 1的坐标.【解答】解:∵△ABO 中,AB ⊥OB ,OB=,AB=1,∴∠AOB=30°,当△ABO 绕点O 顺时针旋转90°后得到△A 1B 1O ,则易求A 1(1,﹣); 当△ABO 绕点O 逆时针旋转90°后得到△A 1B 1O ,则易求A 1(﹣1,).故选B .【点评】本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】分类讨论.【分析】首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.【解答】解:∵把点P(﹣5,3)向右平移8个单位得到点P1,∴点P1的坐标为:(3,3),如图所示:将点P1绕原点逆时针旋转90°得到点P2,则其坐标为:(﹣3,3),将点P1绕原点顺时针旋转90°得到点P3,则其坐标为:(3,﹣3),故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).故选:D.【点评】此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.8.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C 的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.【点评】本题考查的是坐标与图形变化旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣) C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【专题】计算题.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y 轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM ⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B【点评】此题考查了坐标与图形变化﹣旋转,熟练掌握旋转的性质是解本题的关键.10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:根据中心对称的性质,得点P (﹣2,3)关于原点对称点P′的坐标是(2,﹣3). 故选:A .【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)【考点】坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.【解答】解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2).故选:C .【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】首先利用平移变化规律得出P 1(1,3),进而利用关于原点对称点的坐标性质得出P 2的坐标.【解答】解:∵点P (﹣2,3)向右平移3个单位得到点P 1,∴P 1(1,3),∵点P 2与点P 1关于原点对称,∴P 2的坐标是:(﹣1,﹣3).故选:C .【点评】此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)【考点】关于原点对称的点的坐标.【分析】直接根据关于原点对称的点的坐标特点即可得出结论.【解答】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点A (3,﹣1)关于原点的对称点A′的坐标是(﹣3,1).故选C .【点评】本题考查的是关于原点对称的点的坐标,熟知关于原点对称的点的坐标特点是解答此题的关键.14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A .(3,﹣1)B .(﹣3,1)C .(﹣1,﹣3)D .(﹣3,﹣1)【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:点(3,1)关于原点中心对称的点的坐标是(﹣3,﹣1),故选D.【点评】此题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)【考点】关于原点对称的点的坐标.【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.【解答】解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选B.【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4【考点】关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.【解答】解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.【点评】此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).【考点】坐标与图形变化-旋转.【分析】首先根据点A的坐标求出OA的长度,然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OA′=OA,据此求出点A′的坐标即可.【解答】解:如图,过点A作AC⊥y轴于点C,作AB⊥x轴于点B,过A′作A′E⊥y轴于点E,作A′D⊥x轴于点D,,∵点A(4,5),∴AC=4,AB=5,∵点A(4,5)绕原点逆时针旋转90°得到点A′,∴A′E=AB=5,A′D=AC=4,∴点A′的坐标是(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了坐标与图形变换﹣旋转,要熟练掌握,解答此题的关键是要明确:旋转变换只改变图形的位置,不改变图形的形状与大小.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为(3,1).【考点】坐标与图形变化-旋转.【分析】过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,根据旋转求出∠A=∠A'OD,证△AC0≌△ODA',推出A'D=OC=1,OD=CA=3,即可根据题意作出A点绕坐标原点顺时针90°后的点,然后写出坐标.【解答】解:过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,∵∠AOA'=90°,∠ACO=90°,∴∠AOC+∠A'OD=90°,∠A+∠AOC=90°,∴∠A=∠A'OD,在△AC0和△ODA'中,,∴△AC0≌△ODA'(AAS),∴A'D=OC=1,OD=CA=3,∴A'的坐标是(3,1).故答案为:(3,1).【点评】本题主要考查对坐标与图形变换﹣旋转,全等三角形的性质和判定等知识点的理解和掌握,能正确画出图形并求出△AC0≌△ODA'是解此题的关键.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为(﹣2,0)或(1,﹣).【考点】坐标与图形变化-旋转.【专题】压轴题;数形结合.【分析】在Rt△OAB中利用勾股定理计算出OA=2,则利用含30度的直角三角形三边的关系得∠A=30°,所以∠AOB=60°,然后分类讨论:当△ABO绕点O逆时针旋转120°后,点A的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,易得A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第四象限,如图,则OA1=OA=2,∠AOA1=120°,∠BOA1=30°,利用三角函数可求出A1的纵坐标和横坐标.【解答】解:在Rt△OAB中,∵AB=,OB=1,∴OA==2,∴∠A=30°,∴∠AOB=60°,①当△ABO绕点O逆时针旋转120°后,点A的对应点A1落在x轴的负半轴上,如图,OA1=OA=2,此时A1的坐标为(﹣2,0);②当△ABO 绕点O 顺时针旋转120°后,点A 的对应点A 1′落在第三象限,如图,则OA 1′=OA=2,∠AOA 1′=120°,∵∠AOB=60°,∴∠BOA 1′=60°,∴点A 1′的横坐标为OA 1′•cos60°=2×=1,纵坐标为OA 1′•sin60°=2×=, A 1′的坐标为(1,﹣).综上所述,A 1的坐标为(﹣2,0)或(1,﹣). 故答案为(﹣2,0)或(1,﹣).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A (﹣2,5)的对应点A′的坐标是 A′(5,2) .【考点】坐标与图形变化-旋转.【分析】由线段AB 绕点O 顺时针旋转90°得到线段A′B′可以得出△ABO ≌△A′B′O′,∠AOA′=90°,作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,就可以得出△ACO ≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A 的坐标就可以求出结论.【解答】解:∵线段AB 绕点O 顺时针旋转90°得到线段A′B′,∴△ABO ≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为:A′(5,2).【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点M(1,2)关于原点的对称点M′的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).【点评】此题主要考查了关于原点对称的点的坐标特点,关键是熟练掌握点的坐标的变化规律.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.24.点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).【考点】关于原点对称的点的坐标.【分析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为:(﹣5,3).【点评】主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.26.已知点P(3,2),则点P关于y轴的对称点P的坐标是(﹣3,2),点P关于原点O的1的坐标是(﹣3,﹣2).对称点P2【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.的坐标是(﹣3,2),【解答】解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,﹣2).点P关于原点O的对称点P2故答案为:(﹣3,2);(﹣3,﹣2).【点评】本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).【考点】关于原点对称的点的坐标.【分析】根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).【点评】本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为(﹣1,﹣1).【考点】关于原点对称的点的坐标.【分析】过点A作AD⊥OB于点D,根据等腰直角三角形的性质求出OD及AD的长,故可得出A点坐标,再由关于原点对称的点的坐标特点即可得出结论.【解答】解:过点A作AD⊥OB于点D,∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(﹣1,﹣1).故答案为(﹣1,﹣1).【点评】本题考查的是关于原点对称的点的坐标特点,熟知等腰直角三角形的性质是解答此题的关键.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.∴S△A′B′C′【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);(2)将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【考点】关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.【分析】(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A的横坐标加5,纵坐标不变即可得到对应点D的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.【解答】解:(1)∵点C与点A(﹣2,2)关于原点O对称,∴点C的坐标为(2,﹣2);(2)∵将点A向右平移5个单位得到点D,点D的坐标为(3,2);(3)由图可知:A(﹣2,2),B(﹣3,﹣2),C(2,﹣2),D(3,2),∵在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(﹣1,1),(0,0),(1,﹣1),∴P==.【点评】本题考查了关于原点对称的点的坐标,坐标与图形变化﹣平移,概率公式.难度适中,掌握规律是解题的关键.。

最新人教版七年级下册数学第七章平面直角坐标系单元测试(解析版)

最新人教版七年级下册数学第七章平面直角坐标系单元测试(解析版)

人教版七年级数学下册第7 章《平面直角坐标系》培优试题(2)一.选择题(共10 小题)1.如下图,横坐标是正数,纵坐标是负数的点是()A.A点B.B点C.C点D.D点2.若x轴上的点P到y轴的距离为 3,则点P为()A.(3,0)B.(3,0)或( 3,0)C.(0,3)D.(0,3)或(0, 3)3.若 ab 0 ,则P(a, b)在()A.第一象限B.第一或第三象限C.第二或第四象限D.以上都不对4.点M (m1,m3) 在x轴上,则M点坐标为 ()A.(0,4)B.(4,0)C.( 2,0)D.(0, 2)5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上()A.向左平移了 3 个单位B.向下平移了 3 个单位C.向上平移了 3 个单位D.向右平移了 3 个单位6.如图,是象棋盘的一部分.若“帅”位于点(1, 2)上,“相”位于点(3, 2)上,则“炮”位于点 ()上.A.(1,1)B.( 1,2)C.( 2,1)D.( 2,2)7.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移 2 个单位得线段A1B1,以下点在线段A1 B1上的是()A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点A(0,2)在 ()A.第二象限B.x 轴的正半轴上C.y 轴的正半轴上D.第四象限9.将点A( 3,2)先向右平移 3 个单位,再向下平移 5 个单位,获得A 、将点B(3,6)先向下平移 5 个单位,再向右平移 3 个单位,获得 B ,则 A 与 B相距 () A.4 个单位长度B.5 个单位长度C.6 个单位长度D.7 个单位长度10.已知点A(m, n)在第二象限,则点B(| m |, n) 在 ()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8 小题)11.已知| x 2 |( y1)20 ,则点P( x, y)在第个象限,坐标为.12.点P( 3, 5)到x轴距离为,到 y 轴距离为.13.在平面直角坐标系中,将点P(1,4) 向右平移2个单位长度后,再向下平移3个单位长度,获得点 P P的坐标为.1 ,则点114.李明的座位在第 5 排第 4 列,简记为(5, 4),张扬的座位在第 3 排第 2 列,简记为(3, 2),若周伟的座位在李明的前方相距 2 排,同时在他的右侧相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,A(0,4),C (3,0),且三角形ABC 面积为10,则B点坐标为.16.点P(2 x1,x3) 在第一、三象限角均分线上,则x 的值为, P点坐标为.17.在平面直角坐标系中,点 A 的坐标为( 1,3),线段AB / / x 轴,且AB 4 ,则点B 的坐标为.18.在平面直角坐标系中,若点M (1, x)人教版七年级数学下册第7 章平面直角坐标系能力提高卷一.选择题(共10 小题)1.如图,小手遮住的点的坐标可能为()A. (5,2)B.(-7,9)C. (-6,-8)D. (7,-1)2.若线段 AB∥ x 轴且 AB=3,点 A 的坐标为 (2,1), 则点 B 的坐标为()A. (5,1)B.(-1,1)C. (5,1)或 (-1,1)D. (2,4)或 (2,-2)3.若点 A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到 x 轴的距离为()A.5B. -5C. 4D.-45.已知点 A(2x-4,x+2)在座标轴上,则x 的值等于()A.2 或 -2B. -2C. 2D.非上述答案6.依据以下表述,能确立一个点地点的是()A.北偏东40°B.某地江滨路C.光明电影院 6 排D.东经116 °,北纬42°7.如图是某动物园的平面表示图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为y 轴正方向成立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点 A 的坐标为(2,1),现将线段AB 先向左平移 1 个单位,再向下平移两个单位,则平移后 B 点的坐标为()A. (1,2)B.(1,-4)C. (-1,-1)或 (5,-1)D. (1,2)或 (1,-4)9.课间操时,小明、小丽、小亮的地点如下图,小明对小亮说:假如我的地点用(0,0) 表示,小丽的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5) C. (3,4) D. (4,3)10.已知点A(-1,2)和点 B(3,m-1),假如直线AB∥ x 轴,那么m 的值为()A.1B. -4C. -1D.3二.填空题(共 6 小题)11.若P(a-2,a+1)在x 轴上,则 a 的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移 4 个单位,获得点A′,则点A′的坐标为.13.在平面直角坐标系中,关于点P(x,y),若点Q 的坐标为(ax+y,x+ay),此中 a 为常数,则称点Q 是点 P 的“ a 级关系点”,比如,点P(1,4)的 3 级关系点”为 Q(3 × 1+4,1+3×即4)Q(7,13),若点 B 的“ 2 级关系点”是 B'(3,3),则点 B 的坐标为;已知点 M(m-1,2m) 的“ -3 级关系点” M′位于 y 轴上,则 M ′的坐标为.14.已知点 A(m-1,-5) 和点 B(2,m+1),若直线 AB∥ x 轴,则线段 AB 的长为.15.小刚家位于某住所楼 A 座 16 层,记为:A16,按这类方法,小红家住 B 座 10层,可记为.16.如图,矩形BCDE的各边分别平行于 x 轴或 y 轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作围绕运动,物体甲按逆时针方向以1个单位 / 秒匀速运动,物体乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第2012 次相遇地址的坐标是.三.解答题(共7 小题)17.如图,在平面直角坐标系中,三角形ABC 的极点 A、 B、 C 的坐标分别为(0,3)、 (-2,1)、(-1,1),假如将三角形ABC先向右平移 2 个单位长度,再向下平移 2 个单位长度,会获得三角形 A′ B′C′ ,点 A'、 B′、 C′分别为点 A、 B、 C 挪动后的对应点.(1)请直接写出点 A′、 B'、 C′的坐标;(2)请在图中画出三角形 A′ B′ C′ ,并直接写出三角形 A′ B′ C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当 m 为什么值时,点 M 到 x 轴的距离为 1?(2)当 m 为什么值时,点 M 到 y 轴的距离为 2 ?19.如图是某个海岛的平面表示图,假如哨所 1 的坐标是 (1,3),哨所 2 的坐标是 (-2,0),请你先成立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的地点.20.已知:点P(2m+4,m-1) .试分别依据以下条件,求出P 点的坐标.(1)点 P 在 y 轴上;(2)点 P 的纵坐标比横坐标大 3 ;(3)点 P 在过 A(2,-4)点且与 x 轴平行的直线上.21.阅读资料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.1)若点A位于点(-4,4),点B位于点(3,1),;" 马”所在点的坐标(则“帅”所在点的坐标为为 ;" 兵”所在点的坐标为.(2)若“马”的地点在点 A,为了抵达点 B,请按“马”走的规则,在图上画出一种你以为合理的行走路线,并用坐标表示出来.22.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =1m a,1n b, 此中a、b为常数.f运算22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)= ;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a= ,b =.答案:1-5CCBCA6-10DDDCD11.-112.(-10, 5)13.( 1, 1)( 0, -16)14.915.B1016.( -1, -1)17.解:( 1)依据题意知,点 A′的坐标为( 2,1)、 B' 的坐标为( 0,-1 )、 C′的坐标为(1, -1 );(2)如下图,△A′ B′ C′即为所求,S= × 1×2=1.△A ′B′C′18.解:( 1)∵ |2m+3|=12m+3=1 或 2m+3=-1∴m=-1 或 m=-2;(2)∵ |m-1|=2m-1=2 或 m-1=-2∴m=3 或 m=-1.19.解:成立如下图的平面直角坐标系:小广场( 0, 0)、雷达( 4,0)、营房( 2, -3 )、码头( -1 , -2 ).20.解:( 1)∵点 P( 2m+4, m-1),点 P 在 y 轴上,∴2m+4=0 ,解得: m=-2,则 m-1=-3,故 P( 0, -3);21.解:( 1)由点 A 位于点( -4 , 4人教版七年级下册第7 章平面直角坐标系水平测试卷一.选择题(共10 小题)1.在平面直角坐标系中,点P 3, x2 2 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.以下各点中,位于第四象限的点是()A. (3,-4)B.(3,4)C. (-3,4)D.(-3,-4)3.已知点 P(-4,3),则点 P 到 y 轴的距离为()A.4B. -4C. 3D.-34.已知 m 为随意实数,则点 A m, m2 1 不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.已知点 P 在第二象限,而且到 x 轴的距离为1,到 y 轴的距离为2.则点 P 的坐标是()A.( 1、 2)B.(-1,2)C.(2,1)D. (-2,1)6.如,一个点在第一象限及x 、 y 上运,在第一秒,它从原点 (0,0)运到 (0,1),而后接着按中箭所示方向运,即(0,0)→ (0,1)→ (1,1)→ (1,0)→⋯ ,且每秒移一个位,那么第80 秒点所在地点的坐是()A. (0,9)B. (9,0)C. (0,8)D. ( 8,0)7.已知点A(-3,0), A 点在()A.x 的正半上B. x 的半上C. y 的正半上D. y 的半上8.在平面直角坐系中,将点P(3,2)向右平移 2 个位度,再向下平移 2 个位度所获得的点坐()A. (1,0)B. (1,2)C. (5,4)D. (5,0)9.将以A(-2,7),B(-2,2)端点的段AB 向右平移 2 个位得段A1B1 ,以下点在段A1B1上的是()A. (0,3)B.(-2,1)C. (0,8)D.(-2,0)10.操,小明、小、小亮的地点如所示,小明小亮:假如我的地点用(0,0)表示,小的地点用(2,1)表示,那么你的地点能够表示成()A. (5,4)B. (4,5)C. (3,4)D. (4,3)二.填空(共 6 小)11.若P(a-2,a+1)在x 上, a 的是.12.在平面直角坐系中,点A(-5,4)在第象限.13.点P(3,-2)到y 的距离个位.14.小画了一称的,他妹妹:“假如我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的地点能够表示成.15.已知点A(m-1,-5) 和点B(2,m+1),若直线AB∥ x 轴,则线段AB 的长为.16.在平面直角坐标系中,已知点A(6,0), B(6,0),点 C 在x 轴上,且AC+BC=6,写出知足条件的全部点 C 的坐标三.解答题(共7 小题)17.如图,在平面直角坐标系中,点A、 B、 C、 D 都在座标格点上,点 D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点 C 与点 D 重合,点A, B 分别与点E, F 重合,画出三角形EFD.并直接写出E, F 的坐标;(2)若 AB 上的点 M 坐标为 (x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中成立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按以下要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移 5 个单位长度,再向上平移 4 个单位长度,获得A1B1C1 , 在图中画出 A1 B1C1, 并直接写出点A1、 B1、 C1的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3) .(1)当点 M 到 x 轴的距离为 1 时,求点 M 的坐标;(2)当点 M 到 y 轴的距离为 2 时,求点 M 的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1) .(1)点 M 到 y 轴的距离为 l 时, M 的坐标?(2)点 N(5,-1)且 MN ∥x 轴时, M 的坐标?21.【阅读资料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y) 的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为 [P], 即[P]=|x|+|y|(此中的“+“是四则运算中的加法),比如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点A(2,4), B( 23, 23) 的勾股值[A],[B];(2)若点 M在 x 轴的上方,其横,纵坐标均为整数,且[M]=3 ,请直接写出点M 的坐标.22.如图是学校的平面表示图,已知旗杆的地点是(-2,3),实验室的地点是(1,4).(1)依据所给条件成立适合的平面直角坐标系,并用坐标表示食堂、图书室的地点;(2)已知办公楼的地点是 (-2,1),教课楼的地点是 (2,2), 在图中标出办公楼和教课楼的地点;(3)假如一个单位长度表示 30 米,恳求出宿舍楼到教课楼的实质距离.23.对有序数对 (m,n) 定义“ f 运算”: f(m,n) =1m a,1n b , 此中a、b为常数.f运算22的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的随意一点A(x,y)规定“ F 变换”:点 A(x,y)在 F 变换下的对应点即为坐标为f(x,y) 的点 A′.(1)当 a=0, b=0 时 ,f(-2,4)=;(2)若点 P(4,-4)在 F 变换下的对应点是它自己,则a= ,b=.答案:1-5BAADD6-10CBDAC11.-112.二13.314.(3,4)15.916.. ( 3, 0)或( -3, 0)17.解:( 1)如下图,△ EFD即为所求,此中 E( 0, 2)、 F(-1, 0).(2)由图形知将△ABC向左平移 4 个单位、再向下平移 1 个单位可得△EFD,∴平移后点M 的坐标为( x-4, y-1),18. 解:( 1)如下图:(2)如下图:联合图形可得: A ( -2 ,6), B ( -1 , 1), C (-4 , 2).11119.解:( 1)∵ |2m+3|=1 ,∴2m+3=1或 2m+3=-1,解得: m=-1 或 m=-2,∴点 M的坐标是( -2 , 1)或( -3 , -1 );(2)∵ |m-1|=2 ,∴m-1=2 或 m-1=-2 ,解得: m=3或 m=-1,∴点 M的坐标是:( 2, 9)或( -2 , 1).20.解:( 1)∵点 M( 2m-3 , m+1),点 M 到 y 轴的距离为 1,∴|2m-3|=1 ,解得 m=1 或 m=2,当 m=1 时,点 M 的坐标为( -1, 2),当m=2 时,点 M 的坐标为( 1, 3);综上所述,点 M 的坐标为( -1, 2)或( 1, 3);(2)∵点 M( 2m-3, m+1),点 N(5, -1)且 MN ∥ x 轴,∴m+1=-1 ,解得 m=-2,故点。

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)

人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。

七年级下 数学 第11章 测试卷

七年级下 数学   第11章 测试卷

第11章三角形单元测试一.选择题(共10小题,满分30分,每小题3分)1.(2023秋•魏都区月考)如图,△ABC中,AB=4,AC=3,AD为BC边中线,若△ACD的周长为8,则△ABD的周长是()A.8B.9C.10D.122.(2024•云南)一个七边形的内角和等于()A.540°B.900°C.980°D.1080°3.(2023•福建)若某三角形的三边长分别为3,4,m,则m的值可以是()A.1B.5C.7D.94.(2023秋•魏都区期中)等腰三角形的一个外角是100°,它的顶角的度数为()A.80°B.20°C.80°或20°D.80°或50°5.(2023•聊城)如图,分别过△ABC的顶点A,B作AD∥BE.若∠CAD=25°,∠EBC=80°,则∠ACB的度数为()A.65°B.75°C.85°D.95°6.(2024•西和县二模)如图,BD是∠ABC的角平分线,AD⊥BD,垂足为D,∠DAC=20°,∠C=38°,则∠BAD=()A.50°B.58°C.60°D.62°7.(2024春•新华区期末)如图,在六边形ABCDEF中,∠A=∠B=90°,则∠1+∠2+∠3+∠4=()A.90°B.120°C.180°D.210°8.(2024•当阳市模拟)参加创客兴趣小组的同学,给机器人设定了如图所示的程序,机器人从点O出发,沿直线前进1米后左转18°,再沿直线前进1米,又向左转18°……照这样走下去,机器人第一次回到出发地O 点时,一共走的路程是()A.10米B.18米C.20米D.36米9.(2024春•普宁市期末)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,则∠APB=()10.(2024春•金山区校级期末)如图,已知BP、CP分别平分∠ABD、∠ACD,若∠BAC=α,∠BPC=β,则∠BDC的大小为()A.α+βB.180°﹣2β+αC.2β﹣αD.2α﹣β二.填空题(共5小题,满分15分,每小题3分)11.(2023秋•宣汉县期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P=.12.(2024•凉山州)如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是.13.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C =°.14.(2024•沭阳县校级模拟)已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△15.(2023秋•魏都区期中)如图,△ABC是边长为5cm的等边三角形,动点P、Q分别同时从点A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都为1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),当t=时,△PBQ是直角三角形.三.解答题(共8小题,满分75分)16.(8分)(2023秋•浉河区期末)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.17.(9分)(2023•张家口模拟)已知一个三角形的第一条边长为3a+b,第二条边长为2a﹣b(2)若a,b满足|a﹣5|+(b﹣2)2=0,第三条边长m为整数,求这个三角形周长的最大值18.(9分)(2024•邯山区校级三模)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.19.(9分)(2024•香洲区校级一模)已知如图,△ABC过点A作∠DAE=∠BAC,且AB∥DE,∠1=∠2.(1)求证AD∥BC;(2)若已知AE平分∠BAC,∠C=40°,求∠BAD的度数.20.(10分)(2023•十堰二模)如图,点E在四边形ABCD的边CD的延长线上,连接BE交AD于点F.已知AB∥CD,∠1=120°,∠2=60°.(1)求证:AD∥CB;(2)若∠3=70°,求∠ABF的度数.21.(10分)(2023秋•襄城县期中)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.22.(10分)(2023秋•禹州市期中)如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.23.(10分)(2024春•建邺区校级期中)如图,在△ABC中,点D在AB上,过点D作DE∥BC,交AC于点E,DP平分∠ADE,交∠ACB的平分线于点P,CP与DE相交于点G,∠ACF的平分线CQ与DP相交于点Q.(1)若∠A=50°,∠B=60°,则∠DPC=°,∠Q°;(2)若∠A=50°,当∠B的度数发生变化时,∠DPC、∠Q的度数是否发生变化?并说明理由;(3)若△PCQ中存在一个内角等于另一个内角的三倍,请直接写出所有符合条件的∠A的度数.。

浙教新版八年级上册《第4章图形与坐标》2024年单元测试卷(5)+答案解析

浙教新版八年级上册《第4章图形与坐标》2024年单元测试卷(5)+答案解析

浙教新版八年级上册《第4章图形与坐标》2024年单元测试卷(5)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,下列各点在第二象限的是()A. B. C. D.2.如图,小手盖住的点的坐标可能为()A.B.C.D.3.若y轴上的点P到x轴的距离为3,则点P的坐标是()A. B. C.或 D.或4.若,则在()A.第一象限B.第一或第三象限C.第二或第四象限D.以上都不对5.已知:点在y轴上,则P点的坐标为()A. B. C. D.6.点和点,则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度7.将三角形ABC的各顶点的横坐标都乘以,则所得三角形与三角形ABC的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位8.线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标为()A. B. C. D.9.若a为整数,且点在第四象限,则的值为()A.17B.16C.5D.410.如图,在平面直角坐标系中,已知,以为直角边构造等腰,再以为直角边构造等腰,再以为直角边构造等腰,…,按此规律进行下去,则点的坐标为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.在平面直角坐标系中,,在y轴上确定点P,使为等腰三角形,则符合条件的P点共有______个,且P点坐标为______.12.点A与点关于y轴对称,则线段AB的长为______.13.已知点和点关于y轴对称,那么______.14.以,,为顶点的三角形是______三角形.15.点P为y轴上的一点,且点P到点,点的距离和最小,则点P的坐标为______.16.在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,若点A的坐标为,则点的坐标为______.三、计算题:本大题共1小题,共6分。

七年级数学下册《平面图形的认识》单元测试卷(含答案解析)

七年级数学下册《平面图形的认识》单元测试卷(含答案解析)

七年级数学下册《平面图形的认识》单元测试卷(含答案解析)一.选择题(共10小题,满分30分)1.如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形2.如图,人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做蕴含的道理是()A.两点之间线段最短B.三角形具有稳定性C.经过两点有且只有一条直线D.垂线段最短3.如图,△ABC中,点D是BC上的一点,点E是AB的中点,若BD:CD=2:1,且△ABC的面积是9cm2,则△AED的面积为()A.1cm2B.2cm2C.3cm2D.4cm24.如图,在△ABC中,D是AB上的一点,且AD=3BD,E是BC的中点,CD、AE相交于点F.若△ABC的面积为28,则△EFC的面积为()A.1 B.2 C.2.5 D.35.如图,∠ABD、∠ACD的角平分线交于点P,若∠A>∠D,∠ACD﹣∠ABD=64°,∠P=18°,则∠A的度数为()A.50°B.46°C.48°D.80°6.由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为()A.4πB.9πC.5πD.13π7.下列图形中,是直角三角形的是()A.B.C.D.8.在五边形ABCDE中,∠A,∠B,∠C,∠D,∠E的度数之比为3:5:3:4:3,则∠D的外角等于()A.60°B.75°C.90°D.120°9.如图,在△ABC中,BD为AC边上的中线,已知BC=8,AB=5,△BCD的周长为20,则△ABD的周长为()A.17 B.23 C.25 D.2810.下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是()A.1,1,2 B.1,1,1 C.1,2,2 D.1,1,6二.填空题(共10小题,满分30分)11.从五边形的一个顶点出发的所有对角线,把这个五边形分成个三角形.12.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形13.过圆O内一点P的最长的弦、最短弦的长度分别是10cm,8cm,则OP=cm.14.若一个多边形的内角和为1800°,则这个多边形是边形,其对角线条数是.15.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多2cm,已知AB =4cm,则AC的长为cm.16.如图,在△ABC中,中线AD、BE相交于点O,如果△AOE的面积是4,那么四边形OECD 的面积是.17.在△ABC内有1个点,三边上有三个点(不与顶点重合),则这4个点和三个顶点最多可构成个互不重叠的小三角形;如果把1个点改成2021个点,其他条件不变,那么,最多可构成个互不重叠的小三角形.18.如图所示的自行车架设计成三角形,这样做的依据是三角形具有.19.已知a,b,c是△ABC三边的长,化简|a+b﹣c|+|a﹣b﹣c|+|c﹣a﹣b|+|b﹣a﹣c|=.20.如图,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,则∠三.解答题(共6小题,满分90分)21.某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:多边形的边数 4 5 6 …n从多边形的一个1 2 …顶点出发2 …多边形对角线的总条数应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.22.在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.23.在△ABC中.(1)如图1,AB=AC,BE⊥AC于E,BE=6,CE=3,求AB的长.(2)如图2,AD⊥BC于D,∠DAC=2∠DAB,BD=3,DC=8,求△ABC的面积.24.如图,在△BCD中,CD=5,BD=7.(1)求BC的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=115°,求∠C的度数.25.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC =30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,﹣),E(2,0),F(0,)中,⊙O的半角关联点是;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O 的半角关联点,求m的取值范围.26.如图,已知△ABC中,E为AB上一点,DG∥BA交CA于G,∠1=∠2.(1)求证:EF∥AD;(2)若∠FEA=150°,∠FEA与∠DAE的角平分线相交于O,求∠EOA的度数.参考答案与解析一.选择题(共10小题,满分30分)1.解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.2.解:人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做的道理是三角形具有稳定性,故选:B.3.解:∵BD:CD=2:1,∴BD:BC=2:3,∴S△ABD=S△ABC=×9=6(cm2),∵点E是AB的中点,∴S△AED=S△ABD=×6=3(cm2).故选:C.4.解:连接BF,设△EFC的面积为x,∵E是BC的中点,∴△BEF的面积为x,∵△ABC的面积为28,且AD=3BD,∴△BCD的面积为7,∴△BDF的面积为(7﹣2x),∵AD=3BD,∴△ADF的面积为3(7﹣2x),∴△ABE的面积为3(7﹣2x)+(7﹣2x)+x,∵E是BC的中点,△ABC的面积为28,∴△ABE的面积为14,即3(7﹣2x)+(7﹣2x)+x=14,解得x=2,故选:B.5.解:如图,∵∠ABD、∠ACD的角平分线交于点P,∴∠ABP=∠ABD,∠ACP=∠ACD,∵∠1=∠2,∴∠ABP+∠A=∠ACP+∠P,∴∠A=∠ACP﹣∠ABP+∠P=(∠ACD﹣∠ABD)+∠P=×64°+18°=50°.故选:A.6.解:由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C.7.解:A、第三个角的度数是180°﹣60°﹣60°=60°,是等边三角形,不符合题意;B、第三个角的度数是180°﹣55.5°﹣34.5°=90°,是直角三角形,符合题意;C、第三个角的度数是180°﹣30°﹣30°=120°,是钝角三角形,不符合题意;D、第三个角的度数是180°﹣40°﹣62.5°=77.5°,不是直角三角形,不符合题意;故选:B.8.解:设∠A=3x°,则∠B=5x°,∠C=3x°,∠D=4x°,∠E=3x°,∴(3x°+5x°+3x°+4x°+3x°)=540°,解得:x=30.∴∠D=4×30°=120°.∵180°﹣120°=60°,∴∠D的外角等于60°.故选:A.9.解:∵BD是AC边上的中线,∴AD=CD,∵△BCD的周长为20,BC=8,∴CD+BD=BC+BD+CD﹣BC=20﹣8=12,∴CD+BD=AD+BD=12,∵AB=5,∴△ABD的周长=AB+AD+BD=5+12=17.故选:A.10.解:A、∵1+1+2=4=4,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;B、∵1+1+1=3<4,∴此三条线段与长度为5的线段能组成四边形,故不符合题意;C、∵1+2+2=5>4,∴此三条线段与长度为4的线段不能组成四边形,故符合题意;D、∵1+1+4=6,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;故选:C.二.填空题(共10小题,满分30分)11.解:∵从n边形的一个顶点出发,分成了(n﹣2)个三角形,∴当n=5时,5﹣2=3.即可以把这个五边形分成了3个三角形,故答案为:3.12.解:学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的不稳定性.故答案为:不稳定性.13.解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=6cm.∵CD⊥AB,∴CP=CD=4cm.根据勾股定理,得OP==3(cm).故答案为:3.14.解:设多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12,∴多边形的对角线的条数是:==54,故答案为:十二;54.15.解:∵AD是BC边上的中线,∴CD=BD,∵△ADC的周长比△ABD的周长多2cm,∴(AC+CD+AD)﹣(AD+DB+AB)=2cm,∴AC﹣AB=2cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.解:在△ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴AO:OD=2:1,BO:OE=2:1,∵△AOE的面积是4,∴△AOB的面积=2×△AOE的面积=8,∴△BOD的面积=×△AOB的面积=4,∴△ABD的面积=△AOB的面积+△BOD的面积=12,∴△ADC的面积=△ABD的面积=12,∴四边形OECD的面积=△ADC的面积﹣△AOE的面积=12﹣4=8.故答案为:8.17.解:∵三角形内角和为180°,内部每个点所构成角之和为360°,三边所构成角为180°,当三角形内有1个点,三边有三个点时,所有三角形的内角和为180°+360°+3×180°=1080°,∵一个三角形内角和为180°,∴三角形个数为1080°÷180°=6(个)当三角形内有2021个点,三边有三个点时,所有三角形的内角和为180°+2021×360°+3×180°=4046×180°,∵一个三角形内角和为180°,∴三角形个数为4046个,故答案为:6;4046.18.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.19.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,a﹣b﹣c<0,c﹣a﹣b<0,b﹣a﹣c<0,∴原式=a+b﹣c﹣a+b+c﹣c+a+b﹣b+a+c=2a+2b.故答案为:2a+2b.20.证明:∵C、A、G三点共线AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.∴∠CFE=90°﹣∠M=90°﹣35°=55°.故答案为:55°.三.解答题(共6小题,满分90分)21.解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.22.解:(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为17,∴AB+AD+BD=17,∵AB=1,∴AD+BD=16,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+16=24.23.解:(1)∵AB=AC,CE=3,∴AE=AB﹣3,∵BE⊥AC于E,∴∠BEA=90°,∴AB2=AE2+BE2,∵BE=6,∴AB2=(AB﹣3)2+62,∴AB=;(2)作∠DAC的角平分线交BC于点E,过点E作EM⊥AC于点M,则∠DAE=∠CAE=∠DAC,∵∠DAC=2∠DAB,∴∠DAB=∠DAE,∵AD⊥BC于D,∴∠ADB=∠ADE=90°,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴DE=BD=3,∵ED⊥AD,EM⊥AC,AE平分∠DAC,∴EM=DE=3,∵DC=8,∴CE=8﹣3=5,∴CM==4,∴tan C===,∴AD=6,∴△ABC的面积=BC•AD=×(3+8)×6=33.24.解:(1)因为,所以2<BC<12;(2)∵AE∥BD,∠A=55°,∴∠CBD=∠A=55°.∵∠BDE=115°,∴∠BDC=65°.∴∠C=180°﹣55°﹣65°=60°.25.解:(1)由题意可知在圆上存在点A使∠ADO=30°和∠AEO=30°,∴D,E是,⊙O的半角关联点,故答案为D,E;(2)由直线解析式可直接求得,以O为圆心,ON长为半径画圆,交直线MN于点G,可得m≤0,设小圆⊙O与y轴负半轴的交点为H,连接OG,HG∵M(,0),N(0,2)∴OM=,ON=2,tan∠OMN=∴∠OMN=30°,∠ONM=60°∴△OGN是等边三角形∴GH⊥y轴,∴点G的纵坐标为﹣1,代入,可得,横坐标为,∴m≥,∴≤m≤0;26.证明:(1)∵DG∥BA,∴∠1=∠DAE.∵∠1=∠2,∴∠2=∠DAE.∴EF∥AD;(2)∵EF∥AD,∴∠FEA+∠BAD=180°.∵∠FEA与∠DAE的角平分线相交于O,∴∠OEA=∠FEA,∠OAE=∠BAD.∴∠OEA+∠OAE=(∠FEA+∠BAD)=90°.∴∠EOA=180°﹣(∠OEA+∠OAE)=90°.。

部编数学七年级下册专题05坐标与图形性质(解析版)含答案

部编数学七年级下册专题05坐标与图形性质(解析版)含答案

2022-2023学年人教版七年级数学下册精选压轴题培优卷专题05 坐标与图形性质一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•海淀区校级期中)在平面直角坐标系中,已知定点A(﹣3,2),B(m,n),其中m,n 为常数且m≠﹣3,点C为平面内的动点,若AC∥x轴,则线段BC长度的最小值及此时点C的坐标分别为( )A.|n﹣2|,(m,2)B.|m﹣2|,(﹣3,n)C.|n+3|,(m,2)D.|m+3|,(﹣3,n)解:∵点A(﹣3,2),B(m,n),AC∥x轴,∴点C的纵坐标为2,设C(t,2),∴BC=,∵m,n为常数且m≠﹣3,∴当t=m时,线段BC长度的最小,此时BC的值为|n﹣2|,故选:A.2.(2分)(2022春•曲阜市期末)如图,在平面直角坐标系中,直线m⊥n,若x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点可能为( )A.O1B.O2C.O3D.O4解:设过A、B的直线解析式为y=kx+b,∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),∴,解得:,∴直线AB为y=﹣x﹣2,∴直线AB经过第二、三、四象限,如图,由A、B的坐标可知坐标轴位置,故将点A沿着x轴正方向平移4个单位,再沿y轴负方向平移2个单位,即可到达原点位置,则原点为.点O1故选:A.3.(2分)(2022春•洪湖市期末)平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为( )A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.4.(2分)(2021春•东城区校级期末)已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为( )A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.5.(2分)(2021春•无为市期末)在直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x+3y=7,则满足条件的点有( )A.1个B.2个C.3个D.4个解:∵2x+3y=7,∴x=2,y=1,满足条件的点有1个.故选:A.6.(2分)(2021春•永春县期中)已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则( )A.a可取任意实数,b=5B.a=﹣1,b可取任意实数C.a≠﹣1,b=5D.a=﹣1,b≠5解:∵AB∥x轴,∴b=5,a≠﹣1,故选:C.7.(2分)(2021春•新洲区期末)已知点A(2,5)、点B(2,﹣1),那么线段AB的中点的坐标是( )A.(2,3)B.(2,2)C.(2,1)D.(1,2)解:设线段AB的中点的坐标是(x,y),由中点坐标公式可得x==2,y==2,故线段AB的中点的坐标是(2,2),故选:B.8.(2分)(2021春•兴宁区校级期中)在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q不在第( )象限.A.一B.二C.三D.四解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.9.(2分)(2020春•石泉县期末)已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为( )A.﹣1B.1C.2D.﹣2解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.10.(2分)(2018秋•包河区期末)在平面直角坐标系中,点A(a,0),点B(2﹣a,0),且A在B的左边,点C(1,﹣1),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为( )A.﹣1<a≤0B.0≤a<1C.﹣1<a<1D.﹣2<a<2解:∵点A(a,0)在点B(2﹣a,0)的左边,∴a<2﹣a,解得:a<1,记边AB,BC,AC所围成的区域(含边界)为区域M,则落在区域M的横纵坐标都为整数的点个数为4个,∵点A,B,C的坐标分别是(a,0),(2﹣a,0),(1,﹣1),∴区域M的内部(不含边界)没有横纵坐标都为整数的点,∴已知的4个横纵坐标都为整数的点都在区域M的边界上,∵点C(1,﹣1)的横纵坐标都为整数且在区域M的边界上,∴其他的3个都在线段AB上,∴2≤2﹣a<3.解得:﹣1<a≤0,故选:A.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022春•南沙区期末)在平面直角坐标系中,已知点A(﹣2,4),M是y轴上一动点,当AM 的值最小时,点M的坐标是 (0,4) .解:如图,当AM⊥y轴时,AM取最小值.∵A(﹣2,4),∴M(0,4).故答案是:(0,4).12.(2分)(2022春•静海区校级期中)已知点A的坐标是A(﹣2,4),线段AB∥y轴,且AB=5,则B点的坐标是 (﹣2,﹣1)或(﹣2,9) .解:∵线段AB∥y轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).13.(2分)(2022春•永年区期末)已知点M(3,﹣2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y轴的距离等于4,则点N的坐标是 (4,﹣2)或(﹣4,﹣2) .解:∵点M(3,﹣2)与点N(a,b)在同一条平行于x轴的直线上,∴b=﹣2,∵N到y轴的距离等于4,∴a=±4,∴点N的坐标为(4,﹣2)或(﹣4,﹣2).故答案为:(4,﹣2)或(﹣4,﹣2).14.(2分)(2022春•东城区期中)在平面直角坐标系中,点A(﹣2,a),B(b,3),如AB=3,且AB∥x 轴,则a= 3 ,b= 1或﹣5 .解:∵A(﹣2,a),B(b,3),且AB=3,且AB∥x轴,∴a=3,=3,解得:a=3,b=1或﹣5故答案为:3;1或﹣515.(2分)(2021春•浦东新区期末)在平面直角坐标系中,线段AB=3,且AB∥x轴,如果点A的坐标为(﹣1,2),那么点B的坐标是 (﹣4,2),(2,2) .解:∵AB∥x轴且A(﹣1,2),∴点B的纵坐标为2,又∵AB=3,∴点B的横坐标为﹣1+3=2或﹣1﹣3=﹣4,∴点B的坐标为(2,2)或(﹣4,2),故答案为:(﹣4,2),(2,2).16.(2分)(2020春•临颍县期末)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为 (3,0)或(9,0) .解:如图,设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).17.(2分)(2021秋•高青县期末)在平面直角坐标系xOy中,已知点A(a,﹣1),B(2,3﹣b),C(﹣5,4).若AB∥x轴,AC∥y轴,则a+b= ﹣1 .解:∵A(a,﹣1),B(2,3﹣b),C(﹣5,4).AB∥x轴,AC∥y轴,∴﹣1=3﹣b且a=﹣5,∴b=4,∴a+b=﹣5+4=﹣1,故答案为:﹣1.18.(2分)(2020秋•兴化市期末)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0)在x轴上,若点P 到两坐标轴的距离相等,且∠APO=∠BPO,则点P的坐标为 (4,4)或(4,﹣4) .解:当点P在第一象限时,设(m,m),过点O作OE⊥PA于E,OF⊥PB于F.∵∠OPA=∠OPB,∴OE=OF,∴===,∴==2,∴PA2=4PB2,∴(m+4)2+m2=4[(m﹣2)2+m2],解得m=4或0(舍弃),∴P(4,4),当点P在第四象限时,根据对称性可知,P′(4,﹣4),故答案为:(4,4)或(4,﹣4).19.(2分)(2019春•涧西区校级期中)已知一平面直角坐标系内有点A(﹣4,3),点B(1,3),点C(﹣=10,点D的坐标为 (﹣2,7)或(﹣2,﹣2,5),若在该坐标系内存在一点D,使CD∥y轴,且S△ABD1) .解:将点A(﹣4,3),点B(1,3),点C(﹣2,5)的坐标在平面直角坐标系中标出来,如图所示:∵点A(﹣4,3),点B(1,3),∴AB∥x轴,∴AB=1﹣(﹣4)=5,∵点C(﹣2,5),CD∥y轴,∴点D的横坐标为﹣2,设点D的纵坐标为m,=10,∵S△ABD∴×5×|m﹣3|=10,∴|m﹣3|=4,∴m=7或m=﹣1.∴点D的坐标为(﹣2,7)或(﹣2,﹣1).故答案为:(﹣2,7)或(﹣2,﹣1).20.(2分)(2015春•新泰市期末)已知长方形ABCD的三个顶点坐标为A(2,1),B(6,1),C(6,﹣3),则顶点D的坐标为 (2,﹣3) .解:∵A(2,1),B(6,1),C(6,﹣3),∴点D的横坐标与点A的横坐标相同,为2,点D的纵坐标与点C的纵坐标相同,为﹣3,∴点D的坐标为(2,﹣3).故答案为:(2,﹣3).三.解答题(共9小题,满分60分)21.(6分)(2022秋•邗江区期中)已知点Q(2m﹣6,m+2),试分别根据下列条件,求出m的值并写出点Q 的坐标.(1)若点Q在y轴上,求点Q的坐标.(2)若点Q在∠xOy(即第一象限)角平分线上,求点Q的坐标.解:(1)点Q在y轴上,则2m﹣6=0,解得m=3.所以m+2=5,故Q点的坐标是(0,5);(2)当点Q在∠xOy(即第一象限)角平分线上,有2m﹣6=m+2,解得m=8.所以2m﹣6=10.故Q点的坐标是(10,10).22.(6分)(2022春•绵阳期末)如图,将四边形ODFE放在平面直角坐标系xOy中,EF∥OD,OE∥DF,在三角形ABC中,∠C=90°,点C在四边形ODFE内部,点A和点B分别在边EF和OD上,AC平分∠FAB,边EF与y轴正半轴交于点G(0,a),EG=b,设∠E=θ(θ为锐角).(1)请直接写出点E的坐标,并证明:BC平分∠ABD;(2)当AC∥OE时,①若∠FAC=3∠CBD,求θ的值;②若点B的坐标为(b,0)时,试问:BG是否平分∠ABO?说明理由.解:(1)∵EF∥OD,D在x轴上,边EF与y轴正半轴交于点G(0,a),∴EF⊥OG,∴OG=EG•tanθ=b tanθ,∴E(﹣b,b tanθ)或(﹣b,a);∵EF∥OD,∴∠FAB+∠ABD=180°,∵AC平分∠FAB,∴∠FAB=2∠BAC,∴2∠BAC+∠ABD=180°,∵∠C=90°,∴∠BAC+∠ABC=90°,∴2∠BAC+2∠ABC=180°,∴2∠BAC+2∠ABC=2∠BAC+∠ABD,∴2∠ABC=∠ABD,∴BC平分∠ABD;(2)①∵AC∥OE,∴∠FAC=∠E=θ,∵AC平分∠FAB,∴∠FAB=2∠FAC=2θ,由(1)得BC平分∠ABD,∴∠ABD=2∠CBD,∵EF∥OD,∴∠FAB+∠ABD=180°,∴2θ+2∠CBD=180°;∵∠FAC=3∠CBD,∠FAC=θ,∴∠CBD=,∴2θ+2×=180°,∴θ=67.5°;②BG平分∠ABO,理由如下:∵B(b,0),∴OB=b,∵EG=b,∴EG=OB,又∵EF∥OD,∴四边形BOEG是平行四边形,∴∠OBG=∠E=θ,OE∥BG,∵OE∥AC,∴BG∥AC,∠FAC=∠E=θ,∴∠ABG=∠BAC,∵AC平分∠FAB,∴∠BAC=∠FAC=θ,∴∠ABG=θ,∴∠OBG=∠ABG,∴BG平分∠ABO.23.(6分)(2022春•唐县期末)如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,PA=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴PA=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).24.(6分)(2021春•乾安县期末)如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第=16.四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC (1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S=16,四边形AOBC∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)延长CA到点G,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°∴∠APD=90°.25.(6分)(2021春•长白县期中)如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程3(b+1)=6.(1)求点A,B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;解:(1)解方程3(b+1)=6,得到b=1,∴A(﹣3,0),B(0,4).(2)∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∵S=•BC•OA=12,△ABC∴BC=8,∵点C在y轴的负半轴上,∴OC=4,C(0,﹣4).26.(8分)(2021春•莘县期末)已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3).请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)描点如图;(2)依题意,得AB∥x轴,且AB=3﹣(﹣2)=5,∴S=×5×2=5;△ABC(3)存在;=10,∵AB=5,S△ABP∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,﹣3).27.(8分)(2022春•随县期末)如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|a+2|+(b﹣3)2=0(1)求a,b的值.(2)①在y轴的正半轴上存在一点M,使,求点M的坐标;②在坐标轴的其它位置是否存在点M,使仍然成立,若存在,请直接写出符合条件的点M的坐标.(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.解:(1)∵|a+2|+(b﹣3)2=0,∴a=﹣2,b=3,(2)①设M(0,m)(a>),由题意得:0.5m•1=0.5×0.5×(2+3)×2,解得:m=5,∴M(0,5);②当M在y轴的负半轴上时,0.5(﹣m)•1=0.5×0.5×(2+3)×2,m=﹣5,M(0,﹣5);当M在横轴上时,设M(n,0),则:0.5×|n|×2=0.5×0.5×(2+3)×2,解得:n=±2.5,∴M(±2.5,0),所以M(2.5,0)或M(﹣2.5,0)或M(0,﹣5);(3)=2,理由:∵∠EOF=90°,∠ODE=90°,∴∠OED+∠EFO=90°,∠DOE+∠DEO=90°,∠AOE+∠FOB=90°,∠EOP+∠POF=90°,∴∠EOD=∠EFO,∵OE平分∠AOP,EF∥AB,∴∠AOE=∠EOP,∠OFE=∠FOB,∴∠FOP=∠FOB=∠OFP,∵∠OPD=∠PFO+∠POF=2∠OFP=2∠DOE,∴=2.28.(8分)(2021春•延长县期末)在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t (秒).(1)直接写出点B 和点C 的坐标B ( 0 , 6 )、C ( 8 , 0 );(2)当点P 运动时,用含t 的式子表示线段AP 的长,并写出t 的取值范围;(3)点D (2,0),连接PD 、AD ,在(2)条件下是否存在这样的t 值,使S △APD =S 四边形ABOC ,若存在,请求出t 值,若不存在,请说明理由.解:(1)B (0,6),C (8,0),故答案为:0、6,8、0;(2)当点P 在线段BA 上时,由A (8,6),B (0,6),C (8,0)可得:AB =8,AC =6∵AP =AB ﹣BP ,BP =2t ,∴AP =8﹣2t (0≤t <4);当点P 在线段AC 上时,∴AP =点P 走过的路程﹣AB =2t ﹣8(4≤t ≤7).(3)存在两个符合条件的t 值,当点P 在线段BA 上时∵S △APD =AP •AC S 四边形ABOC =AB •AC ,S △APD =S 四边形ABOC ,∴(8﹣2t )×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6,∴(2t﹣8)×6=×8×6,解得:t=5.综上所述:当t为3秒和5秒时S△APD =S四边形ABOC,29.(6分)(2018春•十堰期末)如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式|a+2|+(b﹣a+1)2=0.(1)a= ﹣2 ,b= ﹣3 ;(2)如图2,若AC⊥BC,BQ平分∠ABC交AC于点Q,交OC于点P,求证:∠CPQ=∠CQP;(3)如图3,若点A、点B分别在x轴负半轴和正半轴上运动,∠ACB的角平分线交x轴于点M,点N 在x轴上,且∠BCF=∠DCN,请补全图形,探究的值的变化情况,并直接写出结论(不要求写出探究过程).(1)解:如图1中,∵|a+2|+(b﹣a+1)2=0,∴a=﹣2,b=﹣3,故答案为:﹣2,﹣3;(2)证明:如图2中,∵BQ平分∠CBA,∴∠OBP=∠CBQ,∵AC⊥BC,∴∠ACB=90°,∴∠BOP=∠BCQ=90°,∴∠BPO=∠CQP,∵∠CPQ=∠BPO,∴∠CQP=∠CPQ;(3)解:如图3,结论:定值=.理由:设∠DCN=∠BCF=x,∠ACD=y,∴∠ACB=180°﹣x﹣y,∠ACN=x﹣y,∵CM平分∠ACB,∴∠MCB=(180°﹣x﹣y),∵AB∥CD,∴∠ABC=∠BCF=x,∴∠BCO=90°﹣x,∴∠OCM=(180°﹣x﹣y)﹣(90°﹣x)=∴=.。

人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)

人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)

1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(

D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(

A. 2 个
9. 81的平方根是

10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =

12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A

七下《第7章 平面直角坐标系》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)

七下《第7章 平面直角坐标系》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)

人教新版七年级下册《第7章平面直角坐标系》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)试题数:25,总分:01.(填空题,0分)若点P在第二象限,且点P到x轴的距离是3,到y轴的距离是5,则点P的坐标是___ .2.(填空题,0分)点P(m+3,m+1)在直角坐标系的y轴上,则点P的坐标为___ .3.(填空题,0分)若点M(a+4,a-3)在x轴上,则点M的坐标为___ .4.(填空题,0分)第四象限的点P到x轴的距离为3,到y轴的距离为4,则P点坐标为___ .5.(填空题,0分)在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为___ .6.(填空题,0分)已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是___ .7.(填空题,0分)已知点A(1,2),AC || x轴,AC=5,则点C的坐标是___ .8.(填空题,0分)如图,所有正方形的中心都在原点,且各边也都与x轴或y轴平行,从内向外,它们的边长依次为2,4,6,8,…顶点依次用A1、A2、A3、A4表示,则顶点A2020的坐标为___ .9.(填空题,0分)如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2020的坐标为___ .10.(填空题,0分)如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2020的坐标为___ .11.(填空题,0分)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2019的坐标为___ .12.(填空题,0分)如图,点A(1,0)第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是___ .13.(填空题,0分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为___ .14.(填空题,0分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是___ .15.(填空题,0分)在平面直角坐标系中,点M(a-3,a+4),点N(5,9),若MN || y轴,则a=___ .16.(填空题,0分)已知点A(3,-2),直线AB || y轴,且AB=6则点B的坐标为___ .17.(填空题,0分)已知AB || y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为___ .18.(填空题,0分)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是___ .19.(填空题,0分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为___ .20.(填空题,0分)A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=___ .21.(填空题,0分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b=___ .22.(问答题,0分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.23.(问答题,0分)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b 满足|a+1|+(b-3)2=0.(1)填空:a=___ ,b=___ ;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示△ABM的面积;时,在y轴上有一点P,使得△BMP的面积与△ABM的面积(3)在(2)条件下,当m=- 32相等,请求出点P的坐标.24.(问答题,0分)如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B (b,0),且a,b满足|a+2|+ √b−4 =0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;S△ABC,试求点M的坐标.(2)若点M在x轴上,且S△ACM= 1325.(问答题,0分)如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.人教新版七年级下册《第7章平面直角坐标系》2021年单元测试卷(江西省南昌市红谷滩区凤凰城上海外国语学校)(2)参考答案与试题解析试题数:25,总分:01.(填空题,0分)若点P在第二象限,且点P到x轴的距离是3,到y轴的距离是5,则点P的坐标是___ .【正确答案】:[1](-5,3)【解析】:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】:解:∵点P在第二象限,且点P到x轴的距离是3,到y轴的距离是5,∴点P的横坐标是-5,纵坐标是3,∴点P的坐标是(-5,3).故答案为:(-5,3).【点评】:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2.(填空题,0分)点P(m+3,m+1)在直角坐标系的y轴上,则点P的坐标为___ .【正确答案】:[1](0,-2)【解析】:根据y轴上点的坐标性质得出m的值,进而得出答案.【解答】:解:∵点P(m+3,m+1)在直角坐标系的y轴上,∴m+3=0,解得:m=-3,故m+1=-2,则点P的坐标为:(0,-2).故答案为:(0,-2).【点评】:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.(填空题,0分)若点M(a+4,a-3)在x轴上,则点M的坐标为___ .【正确答案】:[1](7,0)【解析】:根据x轴上点的纵坐标为0列方程求出a的值,然后求解即可.【解答】:解:∵点M(a+4,a-3)在x轴上,∴a-3=0,解得a=3,∴a+4=3+4=7,∴点M的坐标为(7,0).故答案为:(7,0).【点评】:本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.4.(填空题,0分)第四象限的点P到x轴的距离为3,到y轴的距离为4,则P点坐标为___ .【正确答案】:[1](4,-3)【解析】:根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】:解:∵点P在第四象限,到x轴的距离为3,到y轴的距离为4,∴点P的横坐标是4,纵坐标是-3,∴点P的坐标为(4,-3).故答案为:(4,-3).【点评】:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.5.(填空题,0分)在平面直角坐标系中,点P(m,3)在第一象限的角平分线上,点Q(2,n)在第四象限角平分线上,则m+n的值为___ .【正确答案】:[1]1【解析】:根据角平分线上的点到脚的两边距离相等以及第一象限内点的横坐标与纵坐标都是正数求出m,第四象限内点的纵坐标是负数求出n,然后相加计算即可得解.【解答】:解:∵点P(m,3)在第一象限的角平分线上,∴m=3,∵点Q(2,n)在第四象限角平分线上,∴n=-2,∴m+n=3+(-2)=1.故答案为:1.【点评】:本题考查了各象限内点的坐标的符号特征以及角平分线上的点到脚的两边距离相等的性质,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.(填空题,0分)已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P 的坐标是___ .【正确答案】:[1](3,3)或(6,-6)【解析】:点P到两坐标轴的距离相等就是横纵坐标相等或互为相反数,就可以得到方程求出a的值,从而求出点的坐标.【解答】:解:∵点P到两坐标轴的距离相等就是横纵坐标相等或互为相反数,∴分以下两种情考虑:① 横纵坐标相等时,即当2-a=3a+6时,解得a=-1,∴点P的坐标是(3,3);② 横纵坐标互为相反数时,即当(2-a)+(3a+6)=0时,解得a=-4,∴点P的坐标是(6,-6).故答案为(3,3)或(6,-6).【点评】:因为这个点到两坐标轴的距离相等,即到坐标轴形成的角的两边距离相等,所以这个点一定在各象限的角平分线上.7.(填空题,0分)已知点A(1,2),AC || x轴,AC=5,则点C的坐标是___ .【正确答案】:[1](6,2)或(-4,2)【解析】:根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.【解答】:解:∵点A(1,2),AC || x轴,∴点C的纵坐标为2,∵AC=5,∴点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2).故答案为:(6,2)或(-4,2).【点评】:本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.8.(填空题,0分)如图,所有正方形的中心都在原点,且各边也都与x轴或y轴平行,从内向外,它们的边长依次为2,4,6,8,…顶点依次用A1、A2、A3、A4表示,则顶点A2020的坐标为___ .【正确答案】:[1](505,-505)【解析】:根据正方形的性质找出部分A n点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.【解答】:解:观察,发现:A1(-1,-1),A2(-1,1),A3(1,1),A4,(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n 为自然数).∵2020=505×4,∴A2020(505,-505).故答案为:(505,-505).【点评】:本题考查了规律型中的点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.9.(填空题,0分)如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2020的坐标为___ .【正确答案】:[1](-505,-505)【解析】:根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2020的坐标.【解答】:解:通过观察可得数字是4的倍数的点在第三象限,∵2020÷4=505,∴点A2020在第三象限,∴A2020是第三象限的第505个点,∴点A2020的坐标为:(-505,-505).故答案为:(-505,-505).【点评】:此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.10.(填空题,0分)如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2020的坐标为___ .【正确答案】:[1](505,505)【解析】:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,点P2020在第一象限,且横、纵坐标=2020÷4,再根据第一象限点的规律即可得出结论.【解答】:解:由规律可得,2020÷4=505,∴点P2020在第一象限,∵点P4(1,1),点P8(2,2),点P12(3,3),∴点P2020(505,505),故答案为:(505,505).【点评】:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.11.(填空题,0分)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2019的坐标为___ .【正确答案】:[1](-1008,0)【解析】:根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.【解答】:解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,-1),A3(0,0),A4(2,2),A5(4,0),A6(1,-3),A7(-2,0),A8(2,4),A9(6,-1),A10(1,-5),A11(-4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是-(2019-3)÷2=-1008,纵坐标是0,∴A2019的坐标为(-1008,0).故答案为:(-1008,0).【点评】:本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.12.(填空题,0分)如图,点A(1,0)第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是___ .【正确答案】:[1](51,50)【解析】:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】:解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故答案为:(51,50)【点评】:本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.13.(填空题,0分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为___ .【正确答案】:[1](1009,1)【解析】:结合图象可知:纵坐标每四个点循环一次,而2018=505×4-2,故A2018的纵坐标与A2的纵坐标相同,都等于1;由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-2(2n-1,1)(n为不为0的自然数),当n=505时,A2018(1009,1).【解答】:解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n-2(2n-1,1)(n为不为0的自然数),当n=505时,A2018(1009,1).故答案为:(1009,1)【点评】:本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循环节是解决本题的关键.14.(填空题,0分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是___ .【正确答案】:[1](20,0)【解析】:根据图形分别求出n=3、6、9时对应的点的坐标,可知点P3n(n,0),将n=20代入可得.【解答】:解:∵P3(1,0),P6(2,0),P9(3,0),…,∴P3n(n,0)当n=20时,P60(20,0),故答案为:(20,0).【点评】:本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的关键.15.(填空题,0分)在平面直角坐标系中,点M(a-3,a+4),点N(5,9),若MN || y轴,则a=___ .【正确答案】:[1]8【解析】:由MN || y轴可知点M点N的横坐标相同,从而得出关于a的方程,解得a 的值即可.【解答】:解:∵MN || y轴,∴点M(a-3,a+4)与点N(5,9)的横坐标相同,∴a-3=5,∴a=8.故答案为:8.【点评】:本题考查了坐标与图形性质,明确平面直角坐标系中点的坐标特点是解题的关键.16.(填空题,0分)已知点A(3,-2),直线AB || y轴,且AB=6则点B的坐标为___ .【正确答案】:[1](3,4)或(3,-8)【解析】:由AB || y轴,A、B两点横坐标相等,又AB=6,B点可能在A点上方或者下方,根据距离确定B点坐标即可.【解答】:解:∵AB || y轴,∴A、B两点的横坐标相同,都为3,又AB=6,∴B点纵坐标为:-2+6=4,或-2-6=-8,∴B点的坐标为:(3,4)或(3,-8);故答案为:(3,4)或(3,-8).【点评】:本题考查了坐标与图形的性质,平行于y轴的直线上点的横坐标相等;熟练掌握一条直线上到一个定点为定长的点有2个是解题的关键.17.(填空题,0分)已知AB || y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为___ .【正确答案】:[1](3,7)或(3,-3)【解析】:先确定出点B的纵坐标,再分点B在点A的上边与下边两种情况求出点B的横坐标,从而得解.【解答】:解:∵AB || y轴,点A的坐标为(3,2),∴点B的横坐标为3,∵AB=5,∴点B在点A的上边时,点B的纵坐标为2+5=7,点B在点A的下边时,点B的纵坐标为2-5=-3,∴点B的坐标为:(3,7)或(3,-3).故答案为:(3,7)或(3,-3).【点评】:本题考查了坐标与图形的性质,根据平行线间的距离相等求出点B的纵坐标,求横坐标时要注意分点B在点A的上下两种情况求解.18.(填空题,0分)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是___ .【正确答案】:[1](-1,1)【解析】:根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】:解:将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A'的坐标为(1-2,-2+3),即(-1,1),故答案为:(-1,1).【点评】:本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.19.(填空题,0分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为___ .【正确答案】:[1](a-2,b+3)【解析】:先利用点A它的对应点A′的坐标特征可得到线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【解答】:解:∵点A(1,-1)先向左平移2个单位,再向上平移3和单位得到点A′(-1,2),∴线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,∴点P(a,b)平移后的对应点P′的坐标为(a-2,b+3).故答案为(a-2,b+3).【点评】:本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.20.(填空题,0分)A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=___ .【正确答案】:[1]2【解析】:根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解答】:解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.【点评】:此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.21.(填空题,0分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b=___ .【正确答案】:[1]3【解析】:由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】:解:由题意可知:a=0+(4-2)=2;b=0+(2-1)=1;∴a+b=3.故答案为:3.【点评】:本题主要考查坐标与图形的变化,解决本题的关键是得到各点的平移规律.22.(问答题,0分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.【正确答案】:【解析】:(1)根据图形平移的性质画出△A′B′C′即可;根据各点在坐标系中的位置写出点A′、B′、C′的坐标;(2)根据三角形的面积公式即可求出结果;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.【解答】:解:(1)如图所示:A′(0,4)、B′(-1,1)、C′(3,1);×(3+1)×3=6;(2)S△ABC= 12(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,×4×|y+2|=6,由题意得12解得y=1或y=-5,所以点P的坐标为(0,1)或(0,-5).【点评】:本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.23.(问答题,0分)如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b 满足|a+1|+(b-3)2=0.(1)填空:a=___ ,b=___ ;(2)如果在第三象限内有一点M(-2,m),请用含m的式子表示△ABM的面积;时,在y轴上有一点P,使得△BMP的面积与△ABM的面积(3)在(2)条件下,当m=- 32相等,请求出点P的坐标.【正确答案】:-1; 3【解析】:(1)根据非负数性质可得a、b的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S△ABM,再分两种情况:当点P在y轴正半轴上时、当点P在y轴负半轴上时,利用割补法表示出S△BMP,根据S△BMP=S△ABM列方程求解可得.【解答】:解:(1)∵|a+1|+(b-3)2=0,∴a+1=0且b-3=0,解得:a=-1,b=3,故答案为:-1,3;(2)过点M作MN⊥x轴于点N,∵A(-1,0)B(3,0)∴AB=1+3=4,又∵点M(-2,m)在第三象限∴MN=|m|=-m∴S△ABM= 12AB•MN= 12×4×(-m)=-2m;(3)当m=- 32时,M(-2,- 32)∴S△ABM=-2×(- 32)=3,点P有两种情况:① 当点P在y轴正半轴上时,设点p(0,k)S△BMP=5×(32 +k)- 12×2×(32+k)- 12×5× 32- 12×3×k= 52k+ 94,∵S△BMP=S△ABM,∴ 5 2 k+ 94=3,解得:k=0.3,∴点P坐标为(0,0.3);② 当点P在y轴负半轴上时,设点p(0,n),S△BMP=-5n- 12 ×2×(-n- 32)- 12×5× 32- 12×3×(-n)=- 52n- 94,∵S△BMP=S△ABM,∴- 52 n- 94=3,解得:n=-2.1∴点P坐标为(0,-2.1),故点P的坐标为(0,0.3)或(0,-2.1).【点评】:本题主要考查坐标与图形的性质,利用割补法表示出△BMP的面积,并根据题意建立方程是解题的关键.24.(问答题,0分)如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B (b,0),且a,b满足|a+2|+ √b−4 =0,点C的坐标为(0,3).(1)求a,b的值及S△ABC;(2)若点M在x轴上,且S△ACM= 13S△ABC,试求点M的坐标.【正确答案】:【解析】:(1)由“|a+2|+ √b−4=0”结合绝对值、算术平方根的非负性即可得出a、b的值,再结合三角形的面积公式即可求出S△ABC的值;(2)设出点M的坐标,找出线段AM的长度,根据三角形的面积公式结合S△ACM= 13S△ABC,即可得出AM的值,从而得出点M的坐标.【解答】:解:(1)∵|a+2|+ √b−4 =0,∴a+2=0,b-4=0,∴a=-2,b=4,∴点A(-2,0),点B(4,0).又∵点C(0,3),∴AB=|-2-4|=6,CO=3,∴S△ABC= 12AB•CO= 12×6×3=9.(2)设点M的坐标为(x,0),则AM=|x-(-2)|=|x+2|,又∵S△ACM= 13S△ABC,∴ 1 2AM•OC= 13×9,∴ 12|x+2|×3=3,∴|x+2|=2,即x+2=±2,解得:x=0或-4,故点M的坐标为(0,0)或(-4,0).【点评】:本题考查了坐标与图形的性质、绝对值(算术平方根)的非负性以及三角形的面积公式,解题的关键是:(1)根据绝对值、算术平方根的非负性求出a、b的值:(2)根据三角形的面积公式得出关于x的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据绝对值、算术平方根的非负性求出点的坐标是关键.25.(问答题,0分)如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.【正确答案】:【解析】:(1)由点A的坐标结合AB的长度,即可得出点B的坐标;(2)由线段AB的长度以及点C的纵坐标,利用三角形的面积公式即可求出△ABC的面积;(3)假设存在,设点P的坐标为(0,m),根据△ABP的面积为7,即可得出关于m的含绝对值符号的一元一次方程,解之即可得出点P的坐标.【解答】:解:(1)∵A(-1,0),点B在x轴上,且AB=4,∴-1-4=-5,-1+4=3,∴点B的坐标为(-5,0)或(3,0).(2)∵C(1,4),AB=4,∴S△ABC= 12AB•|y C|= 12×4×4=8.(3)假设存在,设点P的坐标为(0,m),∵S△ABP= 12AB•|y P|= 12×4×|m|=7,∴m=± 72.∴在y轴上存在点P(0,72)或(0,- 72),使以A、B、P三点为顶点的三角形的面积为7.【点评】:本题考查了坐标与图形性质、两点间的距离、三角形的面积以及解一元一次方程,解题的关键是:(1)利用两点间的距离求出点B的坐标;(2)套用三角形的面积公式求值;(3)根据△ABP的面积找出关于m的含绝对值符号的一元一次方程.。

人教版七年级下册平面直角坐标系单元测试卷66

人教版七年级下册平面直角坐标系单元测试卷66

人教版七年级下册平面直角坐标系单元测试卷66一、选择题(共10小题;共50分)1. 如果点在直线上,点的坐标是,点的坐标是,那么三角形的面积A. 等于B. 大于C. 小于D. 无法确定2. 点的坐标为,点的坐标为,若将线段平移至的位置,点的坐标为,点的坐标为,则的值为A. B. C. D.3. 平面直角坐标系中,若在第三象限,且到轴,轴的距离分别为,,则点的坐标为A. C.4. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标是,那么“马”的坐标是B. C. D.5. 已知点,,点在轴上,且的面积为,则点的坐标是A. B.C. 或D. 或6. 已知三角形三个顶点的坐标分别是,,,先将三角形向右平移个单位长度,再向上平移个单位长度,则平移后个顶点的坐标分别是A. ,,B. ,,C. ,,D. ,,7. 在平面直角坐标系中,点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走公尺,再向东直走公尺可到图书馆.乙:从学校向西直走公尺,再向北直走公尺可到邮局.丙:邮局在火车站西方公尺处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站A. 向南直走公尺,再向西直走公尺B. 向南直走公尺,再向西直走公尺C. 向南直走公尺,再向西直走公尺D. 向南直走公尺,再向西直走公尺 .9. 点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是A. C. D.10. 如图,中,,,点,在双曲线的图象上,轴,交轴于点,满足,,交双曲线于点,连接,则的面积为A. B. C. D.二、填空题(共6小题;共30分)11. 众所周知,利用电影票可找到其相应的位置,如果将“ 排座”简记作,那么“ 排座”简记作,那么表示这张电影票是排座.12. 如果将点先向右平移个单位,再向上平移个单位后到达点,那么点的坐标是.13. 如图,在平面直角坐标系中,点,,的坐标分别为,,.正方形从图中的位置出发,以每秒旋转的速度,绕点沿顺时针方向旋转.同时,点从点出发,以每秒移动个单位长度的速度,沿正方形的边,按照的路线循环运动.第秒时点的坐标为第秒时点的坐标为,第秒时点的坐标为.14. 在同一坐标系中,图形是图形向上平移个单位长度,左平移个单位长度得到的,若在图形中点的坐标为,则图形中与对应的点的坐标为.15. 已知点和点两点,且直线与坐标轴围成的三角形的面积等于,则的值是.16. 如图,水立方所在位置表示街与路的十字路口,玲珑塔所在位置表示街与路的十字路口.如果用表示水立方的位置,那么"" 表示从水立方到玲珑塔的一种路线.请你用这种形式写出一种从水立方到玲珑塔的路线,且使该路线经过鸟巢:.三、解答题(共8小题;共104分)17. 在同一平面直角坐标系中,描出下列各组的点,并将各组的点用线段依次连接起来,观察各组所得的图形,它们分别像什么?(1),,,,;(2),,,,.18. 如图,三角形中任意一点经平移后对应点为,将三角形作同样的平移得到三角形.求,,的坐标.19. 如图,在所给的坐标系中描出下列各点:,,,,,.这些点有什么关系?你能再找出一些类似的点吗?20. 如图,在平面直角坐标系中,点在第一象限内,点的坐标为,,.(1)求点的坐标.(2)若直线交轴于点,求的面积.21. 已知点,分别根据下列条件求出点的坐标.(1)点在轴上;(2)点在轴上;(3)点的坐标为,直线轴;(4)点到轴,轴的距离相等.22. 如图,是小明家和学校所在地的简单地图,已知,,,为的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场、学校、公园、停车场分别在小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家,则商场和停车场分别距离小明家多少米?23. 如图,将向右平移个单位长度,再向下平移个单位长度,得到,请画出平移后的图形,并写出各顶点的坐标.24. 已知在平面直角坐标系中,点,.(1)在轴上找一点,使之满足.求点的坐标.(2)在坐标平面内找一点,能满足的点有多少个?这些点的位置有何特点?答案第一部分1. A2. A 【解析】根据题意得,,把,代入.3. D4. C5. C【解析】根据题意可知:的高为,则底为,即,根据点的坐标可得:点的坐标为:或.6. A7. C 【解析】点横纵坐标均小于,故点在第三象限.点在第一象限点的特点,,.第二象限点的特点,,.第三象限点的特点,,.第四象限点的特点,,.8. A9. B 【解析】坐标平移,左减右加,上加下减,点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是,即.10. B【解析】过作轴,过作轴,交轴于,中,,,,,,,中,,,,,,,,设,则,点,在双曲线的图象上,,,,,,,设直线的解析式为:,则直线的解析式为:,,,,第二部分11. ,,12.13. ,14.15. 或【解析】点可以在轴正半轴上,也可以在轴负半轴上,所以,所以,所以.16. 答案不唯一.例如:第三部分17. (1)描点,连线略,像大写字母M.(2)描点,连线略,像大写字母W.18. ,,19. 如图,在平面直角坐标系中描出点,,,,,.这些点的横坐标与纵坐标相等,它们都在一条直线上.还可以再找出一些类似的点,例如坐标分别为,的点.20. (1).(2).21. (1)点在轴上,,解得,,.(2)点在轴上,,解得,,.(3)点的坐标为,直线轴,,解得,,.(4)点到轴,轴的距离相等,或,解得:,,当时,,,;当时,,,.综上所述:.22. (1)学校和公园.(2)商场:北偏西,学校:北偏东,公园和停车场都是南偏东;公园和停车场的方位是相同的.(3)商场:米,停车场:米.23. 如图所示,,,.24. (1)或.(2)如图,点有无数个,在直线或上.。

新人教版七年级下(初一下)数学单元测试题:七章平面直线坐标系(多套含答案)

新人教版七年级下(初一下)数学单元测试题:七章平面直线坐标系(多套含答案)

第七章 平面直角坐标系检测题(时间:120分钟,满分:100分)一、选择题(共10小题,每小题3分,满分30分)1. 在平面直角坐标系中,已知点(2,-3),则点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 如图,、、这三个点中,在第二象限内的有( )A .、、B .、C .、D .第2题图 第3题图3.如图,矩形的各边分别平行于轴或轴,物体甲和物体乙分别由点(2,0)同时出发,沿矩形的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2 012次相遇地点的坐标是( )A .(2,0)B .(-1,1)C .(-2,1)D .(-1,-1)4. 已知点坐标为(2−a ,3a +6),且点到两坐标轴的距离相等,则点的坐标 是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6)5.设点A(m ,n)在x 轴上,且位于原点的左侧,则下列结论正确的是( ) P P 1P 2P 3P 1P 2P 3P 1P 2P 1P 3P 1P BCDE x y A BCDE P P PA.m =0,n 为一切数B.m =0,n <0C.m 为一切数,n =0D.m <0,n =0 6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a (a >1),那么所得的图案与原来图案相比( )A.形状不变,大小扩大到原来的a 倍B.图案向右平移了a 个单位C.图案向上平移了a 个单位D.图案向右平移了a 个单位,并且向上平移了a 个单位7.已知点M(3,−4),在x 轴上有一点B , B 点与M 点的距离为5,则点B 的坐标为( )A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)8.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的 ,则点的对应点的坐标是( ) A .(-4,3)B .(4,3)C .(-2,6)D .(-2,3) 9.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,-2)10.一只跳蚤在第一象限及轴、轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,O )B .(5,0)C .(0,5)D .(5,5)21A x y第8题图 第9题图 第10题图二、填空题(共8小题,每小题3分,满分24分)11. 已知点M(a ,3−a)是第二象限的点,则a 的取值范围是 .12. 已知点与点关于轴对称,则 , .13. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬 2个单位长度后,它所在位置的坐标是_________.14.在平面直角坐标系中,点(2,+1)一定在第 __________象限. 15. 点A(a ,b)和点B 关于x 轴对称,而点B 与点C(2,3)关于y 轴对称,那么a =_______ , b =_______ , 点A 和点C 的位置关系是__________.16. 已知a 是整数,点A(2a +1,2+a)在第二象限,则a =_____.17. 如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点的坐标为 __________.18. 如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(,4),白棋②的位置可记为(,3),则白棋⑨的位置应记为 __________.第17题图 第18题图三、解答题(共6小题,满分46分)(13)A m -,(21)B n +,x m =n =A 2m ABCD A AB x C C E19.(6分)如图所示,三角形ABC三个顶点A、B、C的坐标分别为A(1,2)、B(4,3)、C(3,1).把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.第19题图第20题图20.(8分)如图,在平面网格中每个小正方形边长为1,(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?21.(8分)在直角坐标系中,用线段顺次连接点A(−2,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.22.(8分)如图,点A用(3,1)表示,点B用(8,5)表示.若用(3,1)→(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.23.(8分)如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点第22题图D(3,4)处,这时点A移动到点C处.(1)画出平移后的线段CD,并写出点C的坐标;(2)如果平移时只能左右或者上下移动,叙述线段AB是怎样移到CD的.第23题图第24题图24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由③能得到④吗?为什么?(3)根据对称性由三角形③可得三角形①、②,顶点坐标各是什么?第七章平面直角坐标系检测题参考答案P1.D 解析:因为横坐标为正,纵坐标为负,所以点(2,-3)在第四象限,故选D.2.D 解析:由图可知,在第二象限,点在轴的正半轴上,点在轴的负半轴上,所以,在第二象限内的有.故选D .3.D 解析:矩形的边长为4和2,因为物体乙的速度是物体甲的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12× =8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在点相遇; …此时甲乙回到原出发点,则每相遇三次,两点回到出发点,因为2 012÷3=670……2,故两个物体运动后的第2 012次相遇地点的是:第二次相遇地点,即物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE 边相遇;此时相遇点的坐标为:(-1,-1),故选:D .4.D 解析:因为点到两坐标轴的距离相等,所以|2−a |=|3a +6|,所以a =−1或a =−4,当a =−1时,P 点坐标为(3,3),当a =−4时,P 点坐标为(6,−6). 1P 2P y 3P x 1P 31323132DE 3132A 3132P5.D 解析:因为 点A(m ,n)在x 轴上,所以 纵坐标是0,即n =0.又因为 点A 位于原点的左侧,所以 横坐标小于0,即m <0,所以 m <0,n =0,故选D .6.D7.D 解析:过点M 作MD ⊥x 轴于点D ,则点D 的坐标为(3,0).因为点M 到x 轴的距离为4,所以MD =4.又因为BM =5,所以由勾股定理得BD =√BM 2−DM 2=√52−42=3,所以点B 的坐标为(6,0)或(0,0),故选D.8.A 解析:点变化前的坐标为(-4,6),将横坐标保持不变,纵坐标分别变为原来的,则点的对应点的坐标是(-4,3).故选A . 9.C 解析:因为 在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“馬”位于点 (2,-2),所以可得出原点位置在棋子“炮”的位置,所以“兵”位于点:(-3,1),故选C .10.B11. a <0 解析:因为点M(a ,3−a)是第二象限的点,所以解得a <0.12.3 -4 解析:因为点与点关于轴对称,所以横坐标不变,纵坐标互为相反数,所以{m −1=2,−3=n +1,所以m =3,n =−4. 13.(3,2) 解析:一只蚂蚁由(0,0)先向上爬4个单位长度,则坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,则坐标变为(3,2),所以它所在位置的坐标为(3,2).14.一 解析:因为≥0,1>0,所以 纵坐标+1>0.因为点的横坐标2>0,所以点一定在第一象限. A 21A ⎩⎨⎧>-<,,030a a (13)A m -,(21)B n +,x 2m 2m A A15.−2 −3 关于原点对称 解析:因为点A(a ,b)和点B 关于x 轴对称,所以点B 的坐标为 (a ,−b);因为点B 与点C(2,3)关于y 轴对称,所以点B 的坐标为(−2,3),所以a =−2,b =−3,点A 和点C 关于原点对称.16. -1 解析:因为点A 在第二象限,所以2a +1<0,2+a >0,所以−2<a <−12.又因为a 是整数,所以a =−1.17.(3,5) 解析:因为正方形的边长为4,点的坐标为(-1,1), 所以点的横坐标为4-1=3,点的纵坐标为4+1=5,所以点的坐标为(3,5).故答案为(3,5).18.(,6) 解析:由题意可知:白棋⑨在纵线对应,横线对应6的位置,故记作(,6).19.解:设△A 1B 1C 1 的三个顶点的坐标分别为A 1(x 1,y 1),B 1(x 2,y 2),C 1(x 3,y 3),将它的三个顶点分别向右平移4个单位,再向下平移3个单位,则此时三个顶点的坐标分别为(x 1+4,y 1−3), (x 2+4,y 2−3),(x 3+4,y 3−3),由题意可得x 1+4=1,y 1 −3=2,x 2+4=4,y 2−3=3,x 3+4=3,y 3−3=1,所以A 1(−3,5),B 1(0,6), C 1(−1,4).20. 解:(1)将线段向右平移3个小格(向下平移4个小格),再向下平移4个小格(向右平移3个小格),得线段.(2)将线段向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段.21. 解:(1)因为(0,3)和(3,3)的纵坐标相同,ABCD A C C C D D D AB CD BD AC 第21题答图的纵坐标也相同,因而BC ∥AD ,因为故四边形ABCD 是梯形.作出图形如图所示.(2)因为BC =3,AD =6,高OB =3, 故梯形的面积是(3+6)×3=. (3)在Rt △ABO 中,根据勾股定理得AB =√OA 2+OB 2=√13,同理可得CD =√10,因而梯形的周长是9+√13+√10.22.解:路程相等.走法一:(3,1)→(6,1)→(6,2)→(7,2)→(8,2)→(8,5);走法二:(3,1)→(3,2)→(3,5)→(4,5)→(7,5)→(8,5);答案不唯一.23.解:(1)因为点(1,1)移动到点(3,4)处,如图,所以(1,3);(2)向右平移2个单位长度,再向上平移3个单位长度即可得到.24.分析:(1)根据坐标的确定方法,读出各点的纵、横坐标,即可得出各个顶点的坐标;(2)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得④不能由③通过平移得到;(3)根据对称性,即可得到①、②三角形顶点坐标.解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能,下面两个点向右平移5个单位长度,上面一个点向右平移4个单位长度.(3)三角形②顶点坐标为(-1,1),(-4,4),(-3,5).))和((0,40,2-AD BC 21227B D C CD 第23题答图(三角形②与三角形③关于x 轴对称);三角形①顶点坐标为(1,1),(4,4),(3,5)•(由③与①关于原点对称可得①的顶点坐标).第七章 平面直角坐标系 水平测试题(一)一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.某同学的座位号为(),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定2.下列各点中,在第二象限的点是( )(A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3)3.若轴上的点到轴的距离为3,则点的坐标为( )(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3)4.点(,)在轴上,则点坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)5.点C 在轴上方,轴左侧,距离轴2个单位长度,距离轴3个单位长度,则点C 的坐标为( )4,2x P y P M 1m +3m +x M x y x y(A )() (B )() (C )() (D )()6.如果点(5,)在第四象限,则的取值范围是( )(A ) (B ) (C ) (D )7.如图:正方形ABCD 中点A 和点C 的坐标分别为和,则点B 和点D 的坐标分别为( ).(A )和 (B )和(C )和 (D )和8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( )(A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3) 9.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(),B 1() (B )A 1(), B 1(0,5)(C )A 1() B 1(-8,1) (D )A 1() B 1()10.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).3,23,2--2,3-2,3-P y y 0y <0y >0y ≤0y ≥)3,2(-)2,3(-)2,2()3,3()2,2(--)3,3()2,2(--)3,3(--)2,2()3,3(--4,1-1,4-0,5-3,8--7,34,5-4,31,0(A )(-2,-5) (B )(-2,5) (C )(2,-5) (D )(2,5)二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________. 12. 若点P (,)在第二象限,则点Q (,)在第_______象限.13. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________(写出一个即可).14.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.15. 已知点(,)在第四象限,且||=3,||=5,则点的坐标是______. 16. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标________.a b -ab -a b +x y P x y x yP18.已知点的坐标(,),且点到两坐标轴的距离相等,则点的坐标是 .三、认真答一答:(本大题共4小题,每小题10分,共40分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册第11章《图形与坐标》单元测
试卷B卷
-CAL-FENGHAI.-(YICAI)-Company One1
第11章《图形与坐标》单元测试卷B 卷
时间60分钟 满分100分
一、选择题(每小题3分,共24分)
1.已知ABC ∆在平面直角坐标系中的位置如图所示,将ABC ∆向右平移6个单
位,则平移后A 点的坐标是( ) A .(2-,1) B .(2,1) C .(2,1-)
D .(2-,1-)
2、下列函数中,y 随x 的增大而减小的是( ) A . y= -x+3 B.y= 0.5x —8 C. y=7x —6 D. y=2x+5
3、一次函数y=mx+5中,y 的值随x 值的增大而增大,则m 的取值范围是( )
A. m ≥0
B. m ﹥0
C. m ≤0
D. m ﹤0 4、一次函数y=x+2的图像不经过( )
A. 第一象限
B.第二象限
C. 第三象限
D. 第四象限 5.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是
6. 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )
O y x
A
B C 1 1
第1题图

••

A
B
C
D
y
x
O
(第5
O y x O y x O y x O y

3
)
第8题图
7.下列函数中,y 的值随x 值的增大而增大的函数是( ) A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-2
8、济南市某储运部紧急调拨一批物资,调进物资共用4小时,调 进物资2小时后开始调出物资(调进物资与调出物资的速度均 保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关 系如图所示,这批物资从开始调进到全部调出需要的时间是( ) A .4小时 B .4.4小时 C .4.8小时 D .5小时
二、填空题:(每小题3分,共24分)
1、直线y=2x - 4与y 轴的交点为 ,与x 轴交于 。

2、将点A (3,5)先向左平移1个单位长度,再向上平移2个单位长度,此时A 点的坐标为______________.
3、已知点A (m ,2)、点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。

4、将点M 向下平移5个单位后的点M1的坐标为(2,-2),则点M 的坐标为________
5、函数y=2x -1经过 象限,函数y=-2x+3经过 象限
6、已知点(x 1, y 1)和(x 2, y 2)都在直线 y=43
x-1上, 若x 1 < x 2, 则 y 1__________y 2
7、点A(-2,3)关于x轴的对称点A1的坐标为______________,关于y轴的对称点的坐标为________________,关于原点的对称点坐标为______________。

8、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点C的坐标为_______________。

三、解答题
1、(10分)在如图所示的坐标系中,
⑴描出下列各组点,并将各组内的点用线段依次连结成封闭的图形
①(-1,-1),(3,2),(1,-1

②(3,0),(3,-2),(1,-1
⑵观察你刚才所画的图形,
联系生活实际,写出一句
贴切的解说词。

2、(8分)已知直线y=kx—3经过点M(1,-1),求此直线与x轴,y轴的交点坐标。

3、(10分)已知函数y=()()1
12-
+
+m
x
m当m取什么值时,y是x的一次函
数?当m取什么值是,y是x的正比例函数。

10.(12分)如图,L1、L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2 000h,照明效果一样.
(1)根据图像分别求出L
1、L
2
的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2 500h,他买了一个白炽灯和一个节能灯, 请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).
5.(12分)购买作业本每个0.5元,若数量不少于10本,则按9折优惠,
⑴写出应付金额y与购买数量x之间的函数关系式;
⑵求购买8本、55本的金额;
⑶画出上述函数的图象;
⑷若需9本作业本,怎样购买合算?。

相关文档
最新文档