船体结构强度
船体强度和结构设计
船体强度和结构设计
船体强度和结构设计是船舶设计中最重要的部分之一。
船体强度和结构设计的目的是确保船舶在航行中能够承受各种外部力量和内部压力,保证船舶的安全性和可靠性。
船体强度设计主要包括船体的强度计算和结构设计。
船体的强度计算是指通过计算船体的各个部位的受力情况,确定船体的强度要求。
船体的结构设计是指根据船体的强度要求,设计船体的结构形式和材料,以满足船体的强度要求。
船体强度设计的主要考虑因素包括船舶的航行条件、船舶的载重量、船舶的航速、船舶的航线、船舶的使用寿命等。
在设计船体强度时,需要考虑船舶在不同的航行条件下的受力情况,如波浪、风力、水流等。
同时,还需要考虑船舶的载重量和航速,以确定船体的强度要求。
此外,船舶的航线和使用寿命也是船体强度设计的重要考虑因素。
船体结构设计的主要考虑因素包括船体的结构形式、材料和连接方式。
船体的结构形式包括船体的外形和内部结构,如船体的船首、船尾、船体侧壁、船底等。
船体的材料包括船体的钢材、铝合金、复合材料等。
船体的连接方式包括焊接、螺栓连接等。
船体强度和结构设计的重要性不言而喻。
只有通过科学的设计和计算,才能确保船舶在航行中的安全性和可靠性。
因此,在船舶设计
中,船体强度和结构设计是必不可少的一部分。
《船体结构与强度》课件
# 船体结构与强度 ## 简介 - 船体结构的作用 - 船体强度的重要性 - 船体结构与强度之间的关系 ## 船体结构 ### 船体主要部件 - 船体骨架 - 船板 - 船底 - 船首 - 船尾 ### 船体结构设计要点 - 抗压性 - 抗弯性 - 抗剪性
船体结构与强度
船体结构
船体主要部件
船体骨架、船板、船底、船首、船尾是构成船体的主要部件。
船体结构设计要点
在船体结构设计过程中,需要考虑抗压性、抗弯性、抗剪性、抗扭性以及节能性等要点。
船体强度
1 船体强度分析方法
有限元方法、燃爆分析和沉没分析是常用的船体强度分析方法。
2 船体强度检测方法
超声波检测、磁粉探伤和声发射检测等方法可用于检测船体的强度。
船体结构的作用
船体强度的重要性
了解船体结构对船只性能的影响, 会使我们更好地了解整个船舶体 系的组成与工作原理。
船体强度是船只安全和有效运行 的基础,关系到船舶的使用寿命 以及航行过程中的安全性。
船体结构与强度之间的关系
船体结构和船体强度是相互关联 的,合理的设计和构造能够提高 船体的整体强度和稳定性。
船舶工业的发展趋势
未来,船只将更加先进和智能 化,船体结构和强度设计将更 加注重船舶的安全性和性能。ຫໍສະໝຸດ 船体结构与强度的未 来发展方向
船体结构和强度的未来发展方 向将致力于提高船体的轻量化、 智能化和可持续性。
船体结构与强度的优化
1
轻量化设计
通过使用新型材料和优化结构设计,减轻船体重量,提高航行性能。
2
智能化设计
引入智能化技术,提高船体结构和强度的可监测性和自主维护能力。
3
可持续发展设计
船体结构与强度设计总结新
1、结构的安全性是指结构能承受在正常施工和正常使用时大概浮现的各种载荷和(或)载荷效应,同时在偶然事件发生时及发生后,仍能保持必须的整体稳定性。
此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。
2、船体强度计算包括:(1) 确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷(2) 确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。
响应(3) 确定合适的强度标准,并检验强度条件。
衡准(结构的安全性衡准都普遍采纳确定性的许用应力法)3、通常将船体强度分为总强度和局部强度来研究。
4、结构的安全性是属于概率性的。
5、把船体当做一根漂移的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏的能力,通常成为总强度。
总强度就是研究船体梁纵弯曲问题。
从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。
6、作用在船体结构上的载荷,按其对结构的阻碍可分为:总体性载荷、局部性载荷。
按载荷随时刻变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。
7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。
局部性载荷是指引起局部结构、构件变形或破坏的载荷。
冲击载荷,是指在特别短的时刻内猛然作用的载荷,例如砰击。
8、结构设计的基本任务是:抉择合适的结构材料和结构型式,决定全部构件的尺寸和连接方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。
9、船体结构设计,一般随全船设计过程分为三个时期,即初步设计、详细设计和生产设计。
10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。
11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。
然而,减小结构尺寸、降低结构重量,往往会增加建筑工作量,从而增加制造成本同时还会引起维护保养费用的增加。
9-1船体结构规范法设计-强度计算
高速艇结构规范设计
结构强度计算书
船舶总体设计
船体强度计算书内容: 1、重心垂向加速度和波高、航速 2、船主要结构压力 底部波浪冲击力 舷侧压力 主甲板压力 上层建筑和甲板室压力 舱壁压力
船舶总体设计
3、船舶主要结构层板计算 船底板 舷侧板 主甲板 上层建筑前端壁、侧后壁、顶棚甲板 4、船体骨架剖面模数计算 5、舱壁厚 6、支柱载荷 7、窗厚度
船舶总体设计
船舶总体设计
作业: 某高速艇船长11.467m,BWL2.234m,航速 45km/h,航区平均波高1m,斜升角12°, 求垂向加速度。
平均波高:一定时段内,定点连续观测记录中的 所有波高的算术平均值。
船舶总体设计
斜升角的角度定义
折角型高速船从中心到折角; 圆舭型从中心到舭部转圆或指定点
船舶总体设计
高速艇波浪冲击力的指数-垂向加速度公式:
KT=1 单体船、双体船; KT=0.8 水面效应船 KT=0.7 水翼船 水面效应船:气垫船的一种,系指籍助浸在水中 的永久性硬结构,完全或部分地保持气垫的一种 气垫船,如双体气垫船、侧壁气垫船。 水翼船::系指非排水状态航行时能被水翼产生 的水动升力支承在水面以上的船舶。
船舶总体设计
h :压力计算点到上甲板垂直距离 压力计算点: 对受非均布载荷的垂向,取板的下缘。对于 次要构件,一般取其跨距中点,如骨材上压 力为非线性分布时,设计压力取跨距中点压 力与骨材两端压力平均值中之大者,对于主 要构件,取其承载区域的中点。
船舶总体设计
铝、钢体结构尺寸 1、厚度分布 板厚最小单位0.5mm 2、船体各表面最小板厚
船体强度和结构设计
船体强度和结构设计随着现代技术的不断发展,船只的生产和运营已经成为了一个高度专业化、技术含量极高的行业。
在船只的制造和使用过程中,船体的强度和结构设计对于整个船体的安全性和使用寿命有着至关重要的作用。
船体强度的设计是指,在各种环境和使用条件下,船体能够承受的最大力量和刚度。
为了保证船只的强度和安全性,船体的设计需要遵循一定的规范和标准,如国际海事组织(IMO)的规定、船级社的认证要求等。
一般来说,船体强度的设计包括了以下几个步骤:第一步:确定载荷船只的使用环境和任务不同,需要承受的载荷也不一样。
因此在进行船体强度设计前,需要确定船只承受的载荷类型和强度。
例如,对于运输散货的散货船,需要考虑到船体承受的自由液面荷载、海浪力、风力等多种载荷。
第二步:计算刚度和弯曲在船体强度设计中,需要对船体的刚度和弯曲进行计算和分析。
这是因为船只在航行中会受到各种冲击和力量的作用,比如海浪、风力等。
如果船体刚度不够或弯曲过大,就会导致整个船体的变形或损坏,从而影响船只的安全操作。
第三步:确定材料和结构根据船只承受的载荷类型和强度,以及对船体刚度和弯曲的计算,可以确定所需的船体材料和结构。
船体结构的设计通常分为纵向结构和横向结构两个方面。
纵向结构用于支撑船体的长度,包括船首、船尾、船面等。
而横向结构则用于支撑船体的宽度,包括船甲板、船壳等。
第四步:进行强度校核和验证一旦确定了船体的材料和结构,就需要进行强度校核和验证。
这个过程通常涉及到各种力学和材料学知识,包括疲劳寿命、断裂韧性、弯曲应力等。
校核和验证的目的是通过模拟船只在各种载荷情况下的应力和变形情况,来确保船体的强度和结构是安全的。
总之,船体强度和结构设计是保证船只安全和长期使用的重要环节。
只有在严谨的设计和校核过程中,才能保证船体设计符合规范,安全可靠。
ccs船体结构强度直接计算指南
ccs船体结构强度直接计算指南English answer:Direct Calculation of Hull Structural Strength for CCS Ships.The direct calculation method is a deterministic method for calculating the hull structural strength of ships, which is based on the principle of limit state design. Itis a widely used method in the design of CCS ships. The main steps of the direct calculation method are as follows:1. Determine the design loads and boundary conditions.2. Establish the calculation model of the hull structure.3. Calculate the stress and strain of the hull structure.4. Check the strength of the hull structure.The direct calculation method is a relatively simple and straightforward method, and it can be used to calculate the hull structural strength of ships with different types and sizes. However, it is also a conservative method, and it may lead to over-design of the hull structure.Chinese answer:CCS船体结构强度直接计算指南。
船体结构强度试验规范
船体结构强度试验规范1 范围本规范规定了舰船船体结构强度实船试验的试验方法。
本规范适用于舰船船体结构强度实船试验。
2 试验目的测定舰船船体结构强度,发现舰船设计和建造中出现的某些缺陷;检验理论预报的精度和可信度;保证舰船船体结构的可靠性。
3 试验仪器、设备3.1 保证船试验时必须提供保证船,该船应能在试验所要求的浪级下安全航行并履行其工作职责。
3.2 测试用仪器应选用具有多通道并能长期保存记录的电子测试系统。
通常由电阻应变片(传感器)、补偿片、静态或动态电阻应变仪(放大器)和记录器数据分析仪组成。
测试系统应具有良好满足被测物件要求的幅值线性,并能适应船上工作环境(温度、湿度及其它干扰)。
测试用仪表应按国家计量法的规定经过计量检定合格并处在规定的有效周期内,其量程和精度与试验检测的要求相适应。
试验前后应对所有仪器仪表检查、校验和标定。
在试验现场待试期间应保持良好状态。
3.3 测试仪器仪表的安装粘贴应变片前,待测部位表面要进行磨平和清洁处理。
应变片的粘贴(胶粘剂、粘贴、接线和保护涂层等)要严格按照制造厂说明书的要求进行。
应变片要粘贴牢靠,方向要正确,贴好的应变片应具有防水绝缘措施。
测试仪表应按照测试项目的要求及有关操作规程安装在合适的位置上,并有安全可靠的固定措施。
防止在试验过程中因松动、振动及外界环境等因素影响测试结果的正确性。
4 试验条件4.1 试验海区静力试验应选在无风无浪的缓流静水区域。
波浪中强度试验要求试验海区应开阔,海区水域应大于30 n mile X 30 n mile,海区应有足够水深,建议按表l选择试验海区的水深。
表l 试验海区的水深要求浪级 3 4 5 要求水深m ≥30 ≥45 ≥804.2 舰船状态4.2.1 静力试验测试前舰船应处于空载状态。
4.2.2 试验前后应检查并记录舰船的艏艉吃水,估算舰船的排水量,重心高度,横稳心高等。
5 试验项目5.1 波浪用测波仪测量波浪长度,波高,波的周期等,在罗经上判断浪向并记录。
《船体结构疲劳强度指南》
《船体结构疲劳强度指南》船体结构的疲劳强度指南是为了帮助船舶的设计和维护工程师正确评估和处理船体在长期使用过程中可能产生的疲劳破坏问题而编制的一本指导手册。
本文将介绍船体结构疲劳强度指南的内容和目的,并说明其对船舶设计和维护的重要性。
船体是船舶的基本骨架,支撑着船舶的各个部分及其载荷,承受着各种力量和应力作用。
由于航海环境的复杂性和船舶的使用特点,船体在长期使用过程中可能会受到疲劳破坏的影响。
船体的疲劳破坏可能导致严重的安全问题和经济损失,因此对船体疲劳强度进行合理的评估和控制是十分重要的。
船体结构疲劳强度指南主要包括以下内容:1.船体疲劳强度评估方法:介绍船体疲劳强度评估的基本原理、方法和步骤。
包括载荷和应力计算方法、疲劳寿命预测方法以及疲劳裕度的评估方法等。
2. 疲劳强度评估标准和准则:提供了船体疲劳强度评估的标准和准则。
根据国际海事组织(IMO)和国际船级社会(ClassNK)等相关规定和要求,对船体疲劳裕度、疲劳寿命和疲劳强度等方面的评估标准进行了详细的说明和解释。
3.疲劳强度改进方法和措施:根据船体结构的特点和疲劳破坏的原因,提供了一些改进船体疲劳强度的方法和措施。
包括材料选择、结构设计、焊接工艺、船舶操作和维护等方面的内容。
4.疲劳监测和维护方法:介绍了船体疲劳监测和维护的方法。
包括结构应力监测、疲劳损伤识别和评估、疲劳裂纹的检测和修复等方面的内容。
并提供了相应的监测和维护工具和设备的使用指南。
船体结构疲劳强度指南的目的是为了帮助船舶设计和维护工程师正确评估和处理船体疲劳破坏问题,确保船舶的安全运行和寿命。
船体疲劳强度评估和控制是船舶设计和维护的关键环节,对于船舶的性能和可靠性具有重要影响。
船舶设计阶段,通过科学的疲劳强度评估和改进措施的设计,可以最大限度地提高船体的疲劳寿命,减少疲劳破坏带来的安全风险和维修成本。
船舶维护阶段,通过定期的疲劳监测和维护,可以及时发现和修复船体的疲劳损伤,防止其进一步发展和扩大,并延长船舶的使用寿命。
船舶强度与结构设计复习
第2章 船体外载荷
• 波谷在船中:船舶下沉,增加排水量,真实波面 应该位于参考波面以上。
• 真实波面C-C就是待求的。
第2章 船体外载荷
第1章 船体结构基础
第1章 船体结构基础
• 船体结构各构件的作用 ②总纵强度
表示船体梁抵抗弯曲、剪切和扭转变形的能力。 在抵抗总纵弯曲时,所有的纵向构件都是有效的, 包括船底板、舷侧板、甲板板、纵舱壁以及纵骨。横 向构件如横舱壁以及其上的加强筋,肋板,肋骨,甲 板横梁等横向构件是不参与抵抗总纵弯曲的。 ③横向强度 狭义上:横向强度是表示抵抗横向变形的能力; 广义上:在研究横向变形能力时,考虑力的传递 机理以及相应的结构变形。
长上的差值产生分布载荷。
每单位船长上的差额就构成作用在船体梁上的 分布载荷。船体梁在这个载荷作用下将发生总纵弯 曲变形,并在船体梁断面上产生剪力和弯矩。
第2章 船体外载荷
N
x
x
0
q(
x)dx
剪力载荷曲线的一次积分
M
x
x
0
N
(
x)dx
x
0
x
0
qxdxdx
弯矩载荷曲线的二次积分
应。 • 弯矩曲线在两端的斜率为零,弯矩曲线在两端与x
轴相切。
第2章 船体外载荷
精度要求:
第2章 船体外载荷
• 对于端点不封闭的情况,线性内插修正实际上就 是按线性比例修正。
• 各用一条直线把剪力曲线和弯矩曲线封闭起来, 也就是用此直线作为 x 轴,则在右端点处分别有
N(L) =0,M(L) =0。
第2章 船体外载荷
4、载荷曲线 ①载荷曲线性质 ②载荷曲线与剪力、弯矩曲线的关系※ 5、调整平衡位置的方法 ①逐步近似法 ②直接法 6、规范波浪弯矩、剪力计算公式
船体结构强度直接计算指南 概述
一般情况下取满载工况和压载工况为计算工况。
#)!)% 船舶的横摇惯性半径
在船舶设计阶段,船舶的横摇惯性半径可按下式求得:
油船和散装货船: " ) !* !(压载)
" ) !# !(满载)
集装箱船:
" ) !% !
#)!)* 船舶的横摇临界阻尼系数:
在船舶设计阶段,船舶的横摇临界阻尼系数可按下式求得:
!"# 应力 !"#"! 结构中任一点的主应力 在平面应力状态下结构任一点的主应力为:
! !!
! !"
# !$ $
#
(!"
% $
!$
)$
#
"$"$
% & ’’$
! !$
! !"
# !$ $
%
(!"
% $
!$
)$
#
"$"$
% & ’’$
!"#"$ 相当应力 在船体结构强度直接计算中有时采用相当应力!&(或称 ()* +,-.应力)来衡量应力的许用程度。平面应力状态的相当应力按下式确定:
)
$( "
!&"’ )/")/]345!#
&
*#
*
!
" !
# 为其他值
式中:" ———波浪圆频率,678 9 5; %$ " # ———有义波高,’; &’ ———波浪跨零周期,5;
"! 345!# ———能量扩散函数; # ———组合波与主浪向之间的夹角,80:6005。
# 波浪资料采用 ;<=) 建议的波浪资料; $ 进行波浪载荷长期预报时认为对应每一周期的波高呈
船舶结构强度分析及优化
船舶结构强度分析及优化概述船舶在海上航行时需要面对各种自然环境和工作负荷,因此船舶结构强度的分析和优化显得非常重要。
船舶结构强度分析是通过计算分析和试验方法对船体结构进行强度验算,以判断船体是否满足各种安全标准。
而船舶结构优化则是指通过减轻船体自重和强化重要结构部位的方法,提高船体结构的承载能力。
本文将分别从船舶结构强度分析和优化两个方面详细介绍相关内容。
一、船舶结构强度分析船舶结构强度分析主要包括板材强度分析、结构件强度分析、细部强度分析等。
其中,板材强度分析是指通过计算确定船舶板材的破坏强度,从而判断板材是否满足承载要求。
结构件强度分析则是通过计算和试验确定船舶主要结构件的承载能力,包括龙骨、牛腿等。
细部强度分析则是对船舶细节部位进行验算,保证细部区域不会对船舶整体结构产生影响。
在进行船舶结构强度分析时,需要考虑以下因素:1.载荷类型航行时,船舶需要面对各种不同类型的载荷,包括海浪、风浪、货船载货重量、船员人数等。
通过考虑各种载荷类型的影响,确定船舶各部位的强度计算公式。
2.材料性能船舶的材料性能对其结构强度有着决定性的影响。
因此,在进行结构强度计算时需要考虑其材料性能,包括板材强度、结构件强度、船壳材料等。
3.船舶设计参数船舶的设计参数是决定船舶结构形式和强度的重要因素。
因此在进行结构强度计算时,需要考虑船舶设计参数对结构强度的影响。
二、船舶结构优化船舶结构优化旨在降低船舶自重,增强重要结构部位的承载能力,从而提升船体结构的强度性能和经济性能。
船舶结构优化主要包括以下方面。
1.材料优化选择高强度轻质材料既可以减轻船体自重,又可以提高船体结构承载能力。
船体所采用的材料应能够满足船体的功能要求,但同时也要具有合理的价格。
2.结构形式优化通过改变船舶结构形式,可以实现船体强度优化。
例如通过改变船壳形状或者布局,增加耐波性和航空性能,减小波浪的影响同时增加船体安全性。
3.细节优化对船舶细节进行优化也是提高船体结构强度的重要方法。
集装箱船结构强度直接计算指南
表 !"#"%"$
, ! " + 处最大 扭矩 , -.,
注: ($) 表中各工况的波浪载荷 (弯矩) 均指以设计波方法模拟施加于全船模型的对应节点。 (!) 对于按无限航区设计的船舶, 预报在其生命周期内可能经受的最大波浪载荷主要包括在世界各海域内航行时经 受的海况, 用出现各种周期与波高的波浪出现的概率来表达。建议采用 /0.1 推荐的波浪散布图谱。二维或三 维波浪理论计算出在波浪谱各概率水平下的长期预报值。直接计算的概率水平取最大垂向波浪弯矩预报值量 级与按规范计算值相对应的概率水平。将船体置于确定的规则波上, 波浪外载荷对船体的作用可采用设计波来 模拟, 而该设计波所具有的波长、 相位和波高产生的载荷响应相当于长期预报值。
(!") 显示满足或不满足强度标准的结果表格输出; (!#) 必要时, 对结构的建议修改方案, 包括修改后的应力评估和屈曲特性。 !$!$% 算方案。 !$!$( 计算程序如采用不同于本社 &)*+,-- 系统中所列的, 则送审单位还应提供所采用 对拟进行全船结构有限元分析的船, 设计部门应在设计周期的早期与 &&’ 研讨计
!! 1 2
首端节点 !: 沿纵向、 横向和垂向的线位移约束, 即:
!" # !! # !$ # 2
!"-"# 条件如下: 节点 -: 沿垂向的线位移约束, 即: 节点 #、 尾封板水平桁材距纵中剖面距离相等的左 (节点 #) 、 右 (节点 -) 各一节点处, 约束
!$ # 2
!"$ !"$". !"$"! 许用应力 板应力指的是板单元中点处的中面应力。 各板材 (包括桁材腹板) 的许用应力为: ["% ] 1 .32 第6页 4( ’ 55!
船体结构强度课设
一、说明本船主要运输矿石及钢材,兼顾煤碳及水泥熟料等货物。
航行于长江武汉至宁波中国近海航区及长江A、B级航区。
船舶结构首尾为横骨架形式,中部货舱区采用双底双舷、单甲板、纵骨架式形式,所有构件尺寸均按CCS《国内航行海船建造规范》(2006)要求计算。
1、主要尺度设计水线长:L WL107.10米计算船长:L 104.10米型宽:B 17.5米型深:D 7.6米结构计算吃水:d 5.8米2、主要尺度比长深比:LB= 104.117.5= 5.95>5宽深比:BD= 17.57.6= 2.30 ≤2.5舱口宽度比:bB l= 10.417.5=0.594 <0.6舱口长度比:l Hl BH=2833.6= 0.833 >0.73、肋距及中剖面构件布置:尾~#10及#140~首肋距为600mm#10~#140 肋距为700mm本船规范要求的标准肋距为:S = 0.0016L+0.5 = 0.0016×104.1+0.5= 0.667 mm (以下均同)二、外板1、船底板(2.3.1.3)(1)船中0.4区域船底t1 = 0.043s (L+230) F b= 0.043×0.667×(104.1+230) 1= 9.58 mm取F b=1,不折减t2 = 5.6s(d+h1)F b= 5.6×0.667×(5.8+1.16)×1= 9.854 mm不大于0.2d,其中C=8.00,则h1=0.26C=2.08,1=0.2d=1.16(2)船端0.075L区域(2.3.1.4)t = (0.035L+6) s s b= (0.035×104.1+6)0.7 0.667= 9.88 mm(3)船首底板加强(2.15.3)a、加强范围及长度分段垂向范围为:0.014B = 0.014×17.5 = 0.245 m高度纵向范围:X = (0.65 - C b2)·L = (0.65 -0.82)×104.1= 26.025m长度,并划分为三段长度,分别计算三段长度及修正系数c。
船体强度与结构设计 第3章
3.1 局部强度计算的力学模型
骨材支承条件的简化
M
M
假设固定端受到的弯矩是M,固定端发生的转角
是 ,则 M和 之间的关系是
M M
K
式中 称作弹性固定端的柔性系数,K 称作弹性
固定端的刚性系数。
局部结构或构件采用何种边界条件,要根据所关心的
结构(计算结构)与相邻结构之间的相对刚度以及计 算结构受力后的变形特点来确定。
shipstrengthandstructuraldesign31局部强度计算的力学模型32船体骨材的带板33典型船体结构的局部强度计算第33章船体结构局部强度计算第33章船体结构局部强度计算shipstrengthandstructuraldesign船体在外力作用下除发生总纵弯曲变形外各局部结构也会因受到局部载荷的作用而发生变形失稳或破坏
Ship Strength and Structural Design
第3章 船体结构局部强度计算 船体的主体结构主要由船底、甲板、舷侧和舱壁 组成,在外载荷的作用下,传统的船体结构局部 强度的计算,是把船体结构分离成各种板架、刚 架、连续梁和板来进行计算。因此,局部强度又 可分为板架的强度、肋骨刚架的强度、骨材的强 度和板的强度。
船底纵骨 肋板
l
Ship Strength and Structural Design
l
3.1 局部强度计算的力学模型
骨材支承条件的简化
例:甲板纵骨,如图所示。 甲板纵骨在船舶中垂弯曲时受轴向压力的作用, 在计算甲板纵骨的稳定性时,根据其变形特点, 可以把甲板纵骨简化为两端自由支持的单跨梁。
甲板纵骨 强横梁
座的刚性系数。
v
R
A
Ship Strength and Structural Design
第11章船舶强度
按船舶腐蚀程度确定允许负荷量;
舱内货物重量分布应均匀;
装载重大件货物时应加衬垫;使横跨相应骨 材。若配于二层舱或上甲板,安排在甲板下 有支柱的位置,必要时临时补加支撑;
自动舱盖上不能装货或只能装轻货;
固体散货应合理平舱;
装载重货时应限制其落底速度,局部区域承 载过重时,校核局部受力。
四、扭转强度 (Torsional strength)
(一)定义 船舶结构抵抗船体沿船长方向发生弯
曲或变形的能力。 (二)船体纵向弯曲或变形的原因
船舶所受重力和浮力沿船长方向分布 不一致造成。
(三)负荷曲线、剪力曲线和弯矩曲线
重量曲线(Weight curve)
p(x)
浮力曲线(Buoyancy curve)
b(x)
负荷曲线(Load curve)
(kN m)
(六)船舶总纵强度的校核方法
1、经验法(舱容比配货法)调整值的两种取法
Pi
Vi .ch
Vi .ch
Q
Pi Pi Pi Pi (110%)
舱别 NO.1 NO.2 NO.3 NO.4 NO.5 Total
货舱容积 3075 舱容比% 14.58
4119 4210 5719 19.53 19.96 27.12
(四)船体剪切变形
单位长度的船体,其前后两端受到 大小相等、方向相反的切力作用,则该 段船体将出现剪切变形。
(五)船体拱垂变形
单位长度的船体,前后两端受到大 小相等,方向相反的弯矩作用,则该段 船体将发生弯曲变形。
弯曲应力的最大值出现在龙骨板或 上甲板。
1、中拱(Hogging) 船体受正弯矩作用,中部的浮力大于 重力,首尾部的浮力小于重力;船舶上甲 板受拉,船底受压,发生中部上拱的变形。
船舶结构的强度设计及其结构优化
船舶结构的强度设计及其结构优化船舶是一种大型水上运输工具,由于需要在海洋等恶劣环境下运行,其结构强度尤为重要。
本文将介绍船舶结构的强度设计及其结构优化的相关内容。
一、船舶结构强度设计根据船舶所受力的不同分为船体结构和船载设备。
船体结构是船舶主要结构,其承载着风浪、海况、载货等各种横向、纵向应力。
船载设备则是指在船体上的各种设备,如主机、辅机等设备。
船载设备相对于船体结构,受到的力相对较小。
根据船舶的功能、载重量、运行区域、船型、设计标准等多种因素进行强度设计。
船舶强度设计主要包括100%载荷和不同载荷情况下的计算。
在100%载荷下,对船体结构进行强度计算,以满足各项强度要求。
在不同载荷情况下,则需对船体结构进行振动、疲劳、可靠性和船体姿态改变等计算,以保证船舶在不同工况下的安全运行。
设计过程中,需考虑船体形状及各部件的安装位置、可操作性、可维修性和预防腐蚀等问题。
船舶的强度设计需考虑的因素很多,且相互关联,如何将各项要素综合考虑成为造船工程师需要解决的难题。
二、船舶结构的优化船舶结构优化可以通过多种方式实现,例如运用新材料、优化船体形状结构、调整特定部位厚度等。
以下是几种常用的优化方法:1. 借鉴飞机结构设计思想:飞机航空工业中有很多先进的设计思想值得借鉴。
通过改进船体结构,设计出更加轻量化的船舶,降低船舶自重,提高承载能力。
2. 运用新材料:随着科技的不断进步,新材料不断涌现,如高强度钢材、复合材料等。
运用这些材料可以在保证强度的同时实现减重和减少船舶阻力等目标。
3. 优化船体结构:在船体结构中采用优化的强度计算方法,提高船体抗弯、抗扭和抗压强度,从而实现船体结构整体优化。
4. 针对特定部位进行厚度调整:通过电子计算机模拟,确定船舶特定部位,特别是吃水线以上部位的结构大小,对其进行厚度调整,从而实现船体结构置换和优化。
在实际应用中,可以通过不同方法的结合来完成船舶结构的优化。
例如,通过采用新材料,可以制造更轻量化的船舶,然后在船体结构上进行进一步优化。
船舶结构强度分析及设计优化
船舶结构强度分析及设计优化首先,对于船舶结构的强度分析,可以采用有限元法来进行模拟计算。
有限元法是一种将复杂结构分割成若干有限单元,并在每个单元内进行力学分析的方法。
通过数值计算,可以得到每个单元的应力、应变及变形等结果,从而进一步得到整个船体结构的强度情况。
在进行有限元分析时,需要考虑各种工况下的载荷作用,包括静态荷载、动态荷载、水流荷载以及海浪荷载等。
同时,还需考虑材料的强度和疲劳寿命等因素,以保证船舶结构在使用寿命内不会发生破坏。
其次,船舶结构的设计优化是指在满足强度要求的前提下,通过优化设计,使船舶的结构更加轻量化和高效化。
优化设计可以采用多目标优化方法,将结构的重量和成本等指标作为目标函数,建立优化模型。
通过改变结构的几何形状、材料的选择、构件的布局等,来寻求最佳的设计方案。
在进行优化设计时,需要考虑多种约束条件,如强度、稳定性、可靠性、制造工艺等,以及几何形状的限制等。
通过不断的迭代计算和优化过程,最终得到满足要求的最优设计方案。
船舶结构强度分析及设计优化的好处是多方面的。
首先,通过强度分析,可以确保船舶在各种工况下具有足够的强度和稳定性,从而提高船舶的安全性和可靠性。
其次,通过设计优化,可以降低船舶的结构重量和成本,提高船舶的经济性和运营效益。
此外,强度分析和设计优化还可以为后续的船舶改进和性能提升提供基础。
总之,船舶结构强度分析及设计优化是一项重要且复杂的工作,它需要运用数值模拟和优化方法来对船舶结构进行分析和设计,以满足强度要求、提高经济性和安全性。
这是一个综合性的工程,需要考虑多个因素和约束条件,并进行多方面的优化和验证。
只有通过系统的、科学的分析和设计,才能够使船舶结构更加安全、经济和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.极限弯矩:是指在船体剖面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限(在受拉伸时)或构件的临界应力(在受压缩时)的总纵弯曲力矩。
2.总强度:从整体上研究船体梁变形规律和抵抗破坏的能力,通常称为总强度。
3.计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态。
4.剖面模数:W=I/Z,表征船体结构抵抗弯曲变形能力。
5.纵向强力构件:纵向连续并能够有效地传递总纵弯曲应力的构件习惯上被称为纵向强力构件。
6.安全系数:是考虑强度计算中的许多不确定性,为保证设计结构必要的安全度而引入的强度储备。
7.许用应力:是指在结构设计预计的各种工况下,船体结构构件所容许承受的最大应力值。
8.强度储备系数:Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M>n, n称为强度储备系数,Mj/M也表明船体结构所具有的承受过载的能力的大小。
9.局部强度:从局部上研究船体梁变形规律和抵抗破坏的能力,通常称为局部强度。
10.带板:为估算骨架的承载能力,把一定宽度的板计算在骨架剖面中,即作为它的组成部分来计算骨架梁的剖面积、惯性矩和剖面模数等几何要素,这部分板称为带板。
11.剖面利用系数:实际剖面模数与理想剖面模数的比值,表明了材料在剖面中分布的合理程度。
12.剖面模数比面积:产生单位剖面模数(W2/3)所需的剖面积。
Cw=F/W2/3
13.计算剖面:可能出现最大弯曲应力的剖面。
14.甲板室:上层建筑中宽度与船宽相差较大的围蔽建筑物。
1.集装箱船为什么要进行扭转强度计算,产生扭矩的原因是什么?
集装箱船具有大开口的技术特征,舱口宽度一般达到甚至超过船宽的85%,舱口长度可以达到舱壁间距的约90%,使得扭转强度的重要性上升到与总纵强度同等的地位。
船舶在斜浪中航行、船舶倾斜、船舶横摇
2.船体强度计算应包括下述内容:
(1)确定作用在船体和各个结构上的载荷的大小及性质,即所谓外力问题。
(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各个作用中的任何一种作用时的载荷,即结构的极限状态分析(亦称求载荷效应的极限值),即所谓内力问题。
(3)确定合适的强度标准,并检验强度条件。
3.简述计算船体梁所受剪力弯矩的步骤。
P10
(1)计算重量分布曲线;
(2)计算静水浮力曲线;
(3)计算静水载荷曲线;
(4)计算静水剪力及弯矩;
(5)计算静波浪剪力及弯矩;
(6)将静水剪力及弯矩和静波浪剪力及弯矩叠加,即得总纵弯矩和剪力
4.简述坦谷波绘制步骤。
P23
5.纵向强力构件分为四类:
(1)只承受总纵弯曲的纵向强力构件,称为第一类构件,如不计甲板横荷重
的上甲板;
(2)同时承受总纵弯曲和板架弯曲的纵向强力构件,称为第二类构件,如船底纵桁,内底板;
(3)同时承受总纵弯曲,板架弯曲及纵骨弯曲的纵向强力构件,或者同时承受总纵弯曲,板架弯曲及板的弯曲(横骨架式)的纵向强力构件,称为第三类构件,如纵骨架式中的船底纵骨或横骨架式中的船底板;
(4)同时承受总纵弯曲,板架弯曲。
纵骨弯曲及板的弯曲的纵向强力构件,称为第四类构件,如纵骨架式中的船底板。
6.局部强度计算步骤
①首先,应根据结构受力与变形特点,把实际复杂的结构抽象为可以用力学方法计算的简化模型(称为力学模型或计算模型);②然后,对这个力学模型进行内力和应力分析并进行强度校核。
7.扭矩曲线的具体求法,作用在船体上的扭转外力主要是哪些力引起的?P150 (1)沿船长用横剖面将波切断,确定各横剖面上的波面曲线;
(2)求各横剖面上浮力对扭心轴的力矩,作出分布力矩曲线;
(3)作出它的积分曲线,得扭矩曲线。
三种成因是:(1)船舶在斜浪中航行时引起的扭转力矩;
(2)船舶倾斜时引起的扭矩;
(3)船舶横摇时引起的扭矩。
8.扭转强度计算的标准状态:
(1)船体直立状态;
(2)船的航向角与波浪进行方向的夹角取作α=45。
(3)取坦谷波,有效波长等于船长,即λ/cos45。
=L,同时取波高h为波长λ的1/20;
(4)船与波浪的相对位置是把船中设在波峰上(中拱)或设在波谷上(中垂),并且通常不作史密斯修正。
9.船体梁强度计算中荷载、剪力、弯矩的正负号规定?P7
10.如何判断船体构件是否需要折减?如何计算折减系数?
当船体总纵弯曲时,纵向骨架梁在计算载荷下是不允许丧失稳定性的,因此在船体构件中只有板可能丧失稳定性。
在经过总纵强度的第一次近似计算后,求得的某些板的压应力如果大于相应构件的临界应力,表明该构件失稳,这时,应该对这种构件进行折减。
折减的方法是:将纵向强力构件分为刚性构件和柔性构件,与刚性骨架梁相毗连的每一侧宽度等于该板短边长度0.25倍的那部分作为刚性构件的板承受按梁的公式计算的总纵弯曲应力,其余的柔性构件部分只承受等于其临界应力的压应力。
将柔性构件用某个刚性构件代替,但要保持剖面上承受的压力值保持不变,。