【全国百强校】江苏省海安高级中学2020-2021学年高一下学期期中考试数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【全国百强校】江苏省海安高级中学【最新】高一下学期期
中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知全集U =R ,{|1}A x x =>,2{|1}B x x =>,那么()U
A B 等于( )
A .{|11}x x -<≤
B .{|11}x x -<<
C .{|1}x x <-
D .{|1}x x ≤-
2.直线30()x m m R ++=∈的倾斜角为( ) A .30
B .60︒
C .120︒
D .150︒
3.已知非零向量m ,n 的夹角为3
π,且(2)n m n ⊥-+,则||||m n =( ) A .2
B .1
C .
1
2
D .
13
4.已知函数f (x )={log 2
x,x >0x 2,x ≤0 ,若f(4)=2f(a),则实数a 的值为()
A .-1或2
B .2
C .-1
D .-2
5.已知ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,a b ==,60A =,
则B =( )
A .45
B .60
C .120
D .135
6.如图,为测量A,C 两点间的距离,选取同一平面上的B,D 两点,测出四边形ABCD 各边的长度(单位:km)分别为AB=5,BC=8,CD=3,DA=5,若A ,B ,C ,D 四点共圆,则AC 的长为()
A .5 km
B .6 km
C .7 km
D .8 km
7.关于直线,,a b l 以及平面,αβ,下面命题中正确的是( ) A .若//,//a b αα,则//a b B .若//,a b a α⊥,则b α⊥ C .若,//a a αβ⊥,则αβ⊥
D .若,a b αα⊂⊂,且,l a l b ⊥⊥,则l α⊥ 8.已知函数f(x)=Asin(x ωϕ+ )(A>0,ω>0,2
2
π
π
ϕ-
<<
)的部分图象如图所示.若横
坐标分别为-1、1、5的三点M,N,P 都在函数f(x)的图象上,则sin ∠MNP 的值为( )
A .
35
B .
35
C .45
-
D .
45
9.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,E 、F 为CD 上两点,且EF 的长为定值,则下面四个值中不是定值的是( )
A .点P 到平面QEF 的距离
B .直线PQ 与平面PEF 所成的角
C .三棱锥P QEF -的体积
D .△QEF 的面积
10.如图所示,已知PA ⊥面ABC ,AD BC ⊥于D ,1BC CD AD ===,令PD x =,
BPC θ∠=,则( )
A .2
tan 2x
x θ=+ B .2
tan 1x x θ=
+ C .21
tan 2
x θ=+
D .21
tan 1
x θ=+
二、填空题
11.若tan(2)2αβ+=,tan 3β=-,则tan()αβ+=__________.
12.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧剪下一个顶角为
4
π
的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积为________cm 3.
13.已知ΔABC 中,角A,B,C 的对边分别为a,b,c ,且5tanB =6ac a 2+c 2−b 2
,则sinB 的值是___.
14.已知()()74,1,1
x
a x a x f x a x ⎧--<=⎨
≥⎩
是-∞+∞(,)
上的增函数,那么a 的取值范围是______.
15.已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是______.
16.在等腰三角形ABC 中,AB AC =,D 在线段AC 上,AD kAC =(k 为常数,且01k <<),(BD l l =为定长),则ABC ∆的面积最大值为_______.
三、解答题
17.三角形ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,且a 2+c 2=b 2+ac . (1)若cosA =1
3,求sinC 的值;
(2)若b =√7,a =3c ,求三角形ABC 的面积.
18.如图所示,在三棱柱111ABC A B C -中, 11AA B B 为正方形,11BB C C 是菱形,平面11AA B B ⊥平面11BB C C .
(1)求证://BC 平面11AB C ; (2)求证:1B C ⊥ 1AC ;
(3)设点E,F,H,G 分别是111111,,,B C AA A B B C 的中点,试判断,,,E F H G 四点是否共面,并说明理由.
19.已知直线12:210:280,l x y l ax y a ,++=+++=且12l l //.