集成运算放大器的线性应用电路

合集下载

集成电路运算放大器的线性应用

集成电路运算放大器的线性应用

高开环增益
输入端几乎不吸收电流, 使得输入信号源不受负
载影响。
输出端具有很低的内阻, 可以驱动较大的负载。
无反馈时的电压放大倍数 极高,使得运算放大器具
有很高的放大能力。
高共模抑制比
对共模信号(两个输入端共 有的信号)有很强的抑制能
力,提高了抗干扰性能。
常见集成电路运算放大器类型
通用型运算放大器
高精度运算放大器
故障诊断与排除方法
01 02 03 04
当运算放大器出现故障时,首先检查电源和接地是否正常,排除电源 故障。
检查输入信号是否正常,以及输入电路是否存在短路或开路现象。
观察运算放大器的输出信号是否正常,如有异常则检查反馈电路和元 件是否损坏。
使用示波器等测试工具对运算放大器进行测试,进一步确定故障原因 并进行修复。
参考运算放大器的典型应 用电路,选择合适的外围 元件和参数。
应用注意事项与技巧
01 在使用运算放大器前,应对其进行充分的测 试和验证,确保其性能稳定可靠。
02
合理设计运算放大器的输入和输出电路,避 免引入不必要的噪声和失真。
03
注意运算放大器的电源和接地设计,确保电 源稳定且接地良好。
04
根据应用需求选择合适的反馈电路和元件, 以实现所需的放大倍数和带宽。
音频滤波器
通过配置运算放大器和外围元件,构成 各种滤波器,如低通、高通、带通等, 对音频信号进行频率选择和处理。
传感器信号调理电路
传感器信号放大电路
01
针对传感器输出的微弱信号,利用运算放大器进行放大,提高
信号的幅度和信噪比。
传感器信号滤波电路
02
去除传感器信号中的噪声和干扰,提取有用的信号成分,提高

集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。

2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。

3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。

2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。

2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。

五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。

将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。

2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。

3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验

6 积分器
模拟电路实验箱-集成运算放大器的线性应用

一、实验目的

于 勤
1、掌握用集成运算放大器构成各种基
本运算电路的方法;


2、掌握用集成运算放大器构成的各种
于 专
基本运算电路的调试和测试方法;
学 以
3、通过实验初步掌握集成运算放大器 的使用方法。


模拟电路实验箱-集成运算放大器的线性应用
匠心智拓(天津)科技有限公司
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱
模拟电路实验箱-集成运算放大器的线性应用

一 实验目的
精 于
二 实验设备

三 实验原理

四 实验内容
精 于
五 讨论题

六 实验报告

以 1 放大器调零
2 反相比例放大器
致 用
3 同相比例放大器
4 加法器
5 减法器
技 端之间,便构成同相比例放大器电
精 路。如右图所示。其运算关系为:
于 专
Uo=(1+Rf/R1)Ui
该式表明,输出电压与输入电
学 压是比例运算关系。

若R1不接或Rf=0,则为跟随
致 用
器。
Uo=Ui
模拟电路实验箱-集成运算放大器的线性应用
业 1. 按图接好电路,在反相端加入交流信号Ui=1KHz,
∞ 100K

模拟电路实验箱-集成运算放大器的线性应用
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱-集成运算放大器的线性应用

3.4、加法器

电子技术基础--第七章--集成运算放大器的线性应用和非线性应用

电子技术基础--第七章--集成运算放大器的线性应用和非线性应用
u u uO N ( N )0 R1 Rf
i1 i f 0
u O (1
Rf R1
)u i
u I 0 R1i1
uI i2 i1 R1
i1
uI R1
0 u M R2 i2
u M R2 i 2 R2 uI R1
0 u M R3i3
减法器的输出电压为两个输入信号之差乘以放大系数 Rf/R1, 故又称它为差分放大器。 为减小失调误差 R1//Rf=R2//R3
(五)反相积分运算电路
duC i 2 C dt
uC 0 uO
duo i2 C dt
u I 0 R1i1
i1 i2 0
du uI (C o ) 0 R1 dt
vI T
(同相过零比较器)
O

2
3
4
t
电压传输特性
vO
vO VOH
VOH O t
O VOL
vI
VOL
思考
1.若过零比较器如图所示,则它 的电压传输特性将是怎样的? 2.输入为正负对称的正弦波时, 输出波形是怎样的?
+VCC vI + A -VEE vO
vI T 2
+VCC vI + A -VEE vO
具体电路的工作原理,其它问题也就迎刃而解了。
比例运算电路 加法电路
减法电路 积分电路
微分电路
一、运算电路
• (一)反相比例运算电路 • (二)同相比例运算电路
(一)反相比例运算电路
i1 i f 0
u N uo R f i f
if u N uO u O Rf Rf

集成运放的线性应用电路

集成运放的线性应用电路

集成运放的线性应用电路首先需要熟悉理想集成运放基本特性:1)开环差模增益(放大倍数)Aod=∞;2)差模输入电阻Rid=∞;3)输出电阻Ro=0;这是理解电路的基础。

uo=Aod*(up-un)。

uo=Aod*(up-un)其次还需要清楚,运放的组成是三极管所组成的单元,需要(电源)才能够正常工作,为此实际工作时,需要有电源为其供电提供输出能量。

最后,必须清楚的是,uo输出的范围在供电电源电压之内变化,如果理论输出值大于电压电压范围,则运放处于非线性区,只能输出最大值或最小值,这种情况下是不能进行线性运算的。

结论:运放处在放大区必然需要负反馈电路结构;因uo一定,其除以Aod,便可以得到up-un=uo/Aod=0的结果,必有虚短up=un 的特性;因Rid=∞,必有虚断ip=0,in=0的特性。

例题1(1)电压串联负反馈组态;(2)补偿电阻功能在于使运放外电路平衡,即同相端与反相端对地电阻相等。

这时需要采用这一特性,即ui=0时,uo=0。

所以有R5=R1//(R2+R4//R3);(3)因ip=0A,所以up=0V,所以un=0V(相当于接地,术语“虚地”);Ro 由于是电压负反馈,电路具有稳定电压功能,所以Ro=0;(4)在M点采用节点(电流)法,需要提前标注好电流方向,然后列方程即可。

i3=i2+4(M点节点电流);i1+i2=in(反向端节点电流,in=0);i1=(ui-0)/R1;i2=(uM-0/R2);i3=(uo-uM)/R3;i4=(uM-0)/R4由此可推导出:uo=R3*uM*(1/R2+1/R3+1/R4),uM=-R2/R1。

例题2uo1=-(Rf)/R1*ui(反向比例运算);uo2=-R/R*uo1=-uo1(反向比例运算);uo=uo2-uo1=uo2-uo1=-uo1-uo1=-2uo1=2Rf/R1*ui当Rf=R1时,uo=2ui。

集成运算放大器的线性应用基础.pptx

集成运算放大器的线性应用基础.pptx

R3
=
R1 R2 R1 +49 R2
第50页/共54页
50
3. 有限的开环增益和带宽带导致的误差
Auf
(
j
)=
UO Ui
=
1+
1
- R2 / R1 ( 1 + R2 ) +
Auo
R1
j Auo H
1 + R2 / R1
第51页/共54页
51
4. 有限的压摆率带耒的误差
定义:压摆率SR
SR = duo (V / s )
的 运 算 , 并 要 求 对 ui1 、 ui2 的 输 入 电 阻 均 大 于 等 于 100
k。
15
第16页/共54页
2. 同相相加器
uo
=
1 +
Rf R
R3 || R2 R1 + R3 || R2
ui1
+
R3 || R1 R2 + R3 || R1
ui2
R1 = R2
=
1
+
Rf R
R3 || R1 R1 + R3 || R1
21
第22页/共54页
22
第23页/共54页
23
2.3.5 微分器
uo
(t)
=
-RC
dui (t dt
)
利用积分器和相加器求解微分方程
d2uo (t dt 2
)
+
10
duo (t) dt
+
2uo
(t)
=
ui
(t)
duo (t) dt
=
ui

实验六 集成运算放大器的线性应用(最全)word资料

实验六 集成运算放大器的线性应用(最全)word资料

实验六集成运算放大器的线性应用(最全)word资料实验六 集成运算放大器的线性应用一、设计目的1.熟悉µA741集电路使用技术要求。

2.掌握µA741的运算电路的组成,并能验证运算的功能。

二、电路结构及说明1.反相放大器电路结构:理想条件下,表达式:1f i o u R Ru u A -==。

说明:21R R =时电路保持平衡。

2.同相放大器电路结构理想条件下,表达式:1f i o u 1R R u u A +==。

说明:21R R = ,f 3R R =电路保持平衡,减少输入引起失调电压的误差。

3.反相比例加法器电路结构 理想条件下,表达式)(B A 4fo u u R R u +-=。

说明:43R R =,543//R R R =电路保持平衡;单电源供电,利用分压方式得A u 、B u 。

4.差动减法器电路结构 理想条件下,达式)(B A 3fo u u R R u --=。

说明:43R R =电路保持平衡。

5.反相积分器电路结构理想条件下,表达式:dt t u CR u )(1i 1o ⎰-=。

说明:输入方波信号,输出是输入对时间的积分,负号表示输入与输出反相。

当输入电压为方波时,输出电压为三角波,其输出电压的峰值为:)2(211P -SP P -OP TC R u u -=(1)C 为反馈元件。

f R 为分流电阻,它是给直流反馈提供通路避免失调电压在输出端产生积累电荷,使积分器产生饱和,f R 取大些可改善积分线性。

(2)21R R =保持电路平衡。

(3)当选择时间常数T C R ==1τ时,那么:P -SP 1P -SP P -OP 41)2(21u T C R u u -=-=。

(其中T 表示信号频率的周期) 三、实验仪器1. 直流稳压电源 一台 2.函数信号发生器 一台 3.示波器 一台 4.晶体管毫伏表 一台 5.数字万用表 一块 四、设计要求和内容1.反相放大器。

集成运算放大器的线性应用

集成运算放大器的线性应用
积分电路中的R和C 互换就可得到基本微分
电路。 本电路反相输入端同样有“虚地”,根
据理想运放“虚断”的概念可得:
iC
iR
C
d (ui u ) dt
u
uo R
整理可得:
uo
RC
dui dt
若输入为方波信号,且 RC T / 2
则输出为尖顶脉冲波。
此外,我们可以看到微分运算电路对
信号的突变非常灵敏,对信号的缓慢变化反
件 RP RN 代入得:
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui3
3. 加减运算电路
对而u对i1、uui、i23来u说来i4,说R,f 引入R引的f 入是的电是压电并压联串负联反负馈,
反馈。 根据“虚短”和“虚断”的概念可得:
ui1 u ui2 u u uo
R1
R2
Rf
ui3 u ui4 u u
反相比例运算电路引入的是深度电压并联负反馈,输输出入电电阻阻为为::RRi oui0ii
ui iR1
R1
2. 同相比例运算电路
图中引入深度电压串联负反馈,输入电压经
平衡电阻R',加至运放同相端。
根据理想运放“虚短”和“虚断”的概
念,得u: u ui iR1 iRf

整iR1理得0 :R1u

iRf
R3
R4
R5
整理得:
uo
Rf RN
( RP R3
ui3
RP R4
ui 4
RN R1
ui1
RN R2
ui2 )
将电路参数平衡条件 RP RN 代入得:
在理想情况下, 该电路具有很好的抑制共 模信号的能力。但是它有输入电阻低和增益调

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验佘新平编写一、 实验目的1.了解集成运放的使用方法;2.熟悉集成运放的双电源和单电源供电方法;3.掌握集成运放构成各种运算电路的原理和测试方法。

二、 实验仪器及器件 1.双踪示波器; 2.直流稳压电源; 3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA741 2块、瓷片电容0.01uF2个、电阻10k 10个、20k 5个、30k 2个、50k 2个、100k 2个、5.1k 1个、3.3k 1个、680k 1个,10k 电位器3个。

三、 预习要求1.熟悉集成电路芯片uA741的引脚图及功能; 2.掌握集成运放的工作特点;3.掌握构各种运算电路的形式及工作原理。

四、实验原理(1)集成运放简介集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电路。

集成运放uA741的电路符号及引脚图如图1所示。

图1 uA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。

(a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。

如:uA741的7脚和4脚。

(b )输出端:只有一个输出端。

在输出端和地(正、负电源公共端)之间获得输出电压。

如:uA741的6脚。

最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。

这表明集成运放的输出电阻很小,带负载能力较强。

调零V - V + -V cc调零 +V cc NC V O(c )输入端:分别为同相输入端和反相输入端。

如:uA741的3脚和2脚。

输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压V ic max。

集成运算放大器的线性应用

集成运算放大器的线性应用

电路与电子技术
集成运算放大器的线性应用
集成运算放大电路
1.4
仪用放大器分析与应用
1.仪用放大器原理
集成运算放大器的线性应用
仪用放大器由三个运算放大器组成, 如图所示。同相放大器A1 、 A2 构成输入级, 信号从A3 输出。按理想运放分析, 有
集成运算放大电路
1.4
仪用放大器分析与应用
2.集成仪用放大器及其应用
电路与电子技术
集成运算放大电路
1.1
比例运算电路
集成运算放大器的线性应用
1.反相输入比例运算电路
图所示为反相输入比例运算电路。Rf 为反馈电阻, R1 、RP 为 输入端电阻。该电路引入了电压并联负反馈。
集成运算放大电路
1.1
比例运算电路
集成运算放大器的线性应用
2.同相输入比例运算电路
同相输入比例运算电路如图所示, 其中, Rf 为反馈电阻; R 1 、RP 为输入端电阻, RP 起限流保护作用。该电路的反馈类 型为电压串联深度负反馈。故可认为输入电阻为无穷大, 输出
集成运算放大器的线性应用来自成运算放大电路1.4仪用放大器分析与应用
2.集成仪用放大器及其应用
集成运算放大器的线性应用
AD522的引脚功能如图所示, AD522 的基本应用如图所示
集成运算放大电路
1.4
仪用放大器分析与应用
2.集成仪用放大器及其应用
集成运算放大器的线性应用
AD522的引脚功能如图所示, AD522 的基本应用如图所示
电阻为零。
集成运算放大电路
集成运算放大器的线性应用
1.2
加法和减法运算电路
1.加法运算电路
图所示加法电路接成反相放大器, 它是属于多端输入的电压并 联负反馈电路。对反相输入节点可写出下面的方程式。

集成运放的线性应用

集成运放的线性应用
由上述比例电路可知,运算放大器的闭环放大倍数决定于 外围元件的参数,与开环放大倍数无关。
三、减法运算电路
四、加法运算电路
五、积分运算电路
六、微分运算电路
七、对数运算电路
利用PN结伏安特性所具有的指数规律,将二极管或者三极管 分别接入集成运放的反馈回路和输入回路,可以实现对数运算和指 数运算,而利用对数运算、指数运算和加减运算电路相组合,便可 实现乘法、除法、乘方和开方等运算。
八、指数运算电路
平衡,要求平衡电阻 R2=R1//Rf。该比例电路的反馈是深度电压并联负反馈。其输入 电阻和输出电阻均不高。
二、同相比例运算电路
为了保证集成运放差动输入级的静态平衡,也要求平衡电 阻R2=R1//Rf。该比例电路的反馈是深度电压串联负反馈。其输 入电阻很高,输出电阻较低。
集成运放的线性 应用
集成运算放大器是一种具有高电压放大倍数、 输入电阻很大、输出电阻很小的直接耦合多级放大 电路。当外部接入不同的线性或非线性元器件组成 输入和负反馈电路时,可以灵活地实现各种特定的 函数关系。在线性应用方面,可组成比例、减法、 加法、积分、微分等模拟运算电路。
一、反相比例运算电路

《电工电子技术》课件——课6-集成运算放大器的线性应用

《电工电子技术》课件——课6-集成运算放大器的线性应用

i1 = if
i1
ui R1
iF
CF
duc dt
ui C duc
R1
F dt
du
CF
o
dt
1
uo R1CF uidt
积分电路的波形变换作用
6. 微分运算电路
RF
+
ui –
C1 R2
– ++
+ u–o
由虚短及虚断性质可得
i1 = if
C dui uo
1 dt
R
F
uo
RF C1
dui dt
三、集成运算放大器的线性应用
1. 反相比例运算 (1)电路结构
① ui加至反相输入端u② Rf构成电压并联负反馈 ③ R2=R1//Rf
if RF
+ i1 R1 i– –
ui
++
– R2 i+
+ uo –
(2)电压放大倍数
∵ 虚断,i+= i– = 0
∴ i1 if
i1
ui u R1
if
u u0 R
F
∵ 虚短 ∴ u– = u+ = 0
RF
&+ u–o
∵要求静态时u+、 u- 对地电阻相 同
∴平衡电阻 R2 = R1 // RF
反相比例运算电压放大倍数
结论: ① Auf为负值,即 uo与 ui 极性相反。∵ ui 加在反相输入端。
② Auf 只与外部电阻 R1、RF 有关,与运放本身参数无关。 ③| Auf | 可大于 1,也可等于 1 或小于 1 。 R1=RF 时Auf =-1,称为反向器。

集成运算放大器的线性应用

集成运算放大器的线性应用
湖南 工厂
集成运算放大器的线性应用
一、加法运算电路
根据式(9-5)和式(9-6)有u1≈u2(或u+≈u-),ii≈0,因此

式(9-9)表明,输出电压等于各个输入电压按不同比例运算之和。 若令R1=R2=R3=RF,则有
式(9-10)表明,输出电压等于各输入电压之和;式中的负号表示 输出电压与输入电压相位相反。
所以
集成运算放大器的线性应用
四、微分电路
由式(9-14)可知,输出电压uo与输入电压ui之间呈微分关系,-RFC1为微 分常数,负号表明两者在相位上是相反的。
若ui为正阶跃电压,因阶跃的瞬间C1相当于短路,故输出电压uo为负的最 大值。随着C1的充电,iF逐渐减小,输出电压随之衰减,其波形如图9-18所示。 所以,微分电路除用来实现微分运算外,还可以用于波形发生器和自动控制中 的调节器。
集成运算放大器的线性应用
二、减法运算电路
利用运放电路的双端输入可以进行减法运算,如图9-13所示。减数输入信号 ui1经R1加在反相输入端,被减数输入信号ui2经R2加在同相输入端,构成典型的差 动输入放大电路。
根据式(9-5)和式(9-6)可知
由此可得
u+≈u- ii≈0
二、减法运算电路
பைடு நூலகம்因u1≈u2,于是
由式(9-12)可知,当ui1=ui2时,输出电压uo为零,电路对共模信号无放大作用。
集成运算放大器的线性应用
三、积分运算电路
在反相输入运算电路中,用电容CF代替电阻RF作为反馈元件,就成为积 分运算电路,如图9-15所示。
由式(9-5)和式(9-6)可知
u+≈u-(或u2≈u1)
因u2=0,所以

第十七讲 集成运放的线性应用

第十七讲 集成运放的线性应用

7-4-1 比例运算电路
——uO与ui之间是比例的关系,可实现比例运算。 之间是比例的关系,可实现比例运算。
运放的三种输入方式: 运放的三种输入方式: (1)反相输入 (2)同相输入 (3)差分输入
ui
+
uO ui
+
uO
ui1 ui2
+
uO
一、 反相比例运算电路
1、电路结构 、
if ui
R1 R'
=∞ 模 输 入 电 阻: rid = ∞ 出 电 阻: rO = 0 模 抑 制 比: K CMR = ∞
rO KCMR IIB 0 ∞ 0 IIO 0 UIO BW 零点漂移 0 ∞ 0 ∞
AOd rid ∞
二、 集成运放的电压传输特性
1、线性区 当差模输入信号较小时, 当差模输入信号较小时,输 出与输入是线性的关系。 出与输入是线性的关系。 uO UOH 0 非线 性区 UOL 线 性 区
i =i =0
3、理想运放的输出端为理想电压源 由于理想运放rO=0,因此运放的输出端可以等效为内 , 阻为0的理想电压源 的理想电压源。 阻为 的理想电压源。
四、 理想运放工作在非线性区时的特点
1、输出电压的值只有两种可能:或等 输出电压的值只有两种可能: 于正向饱和值;或等于负向饱和值。 于正向饱和值;或等于负向饱和值。 理想特性 uO UOH 0 非线 性区 UOL
= i− = 0 输出和输入是反相比例关系, 输出和输入是反相比例关系, 或称之为反相放大器。 或称之为反相放大器。 ii = i f ; i+ R′ = 0; ⇒u+ = 0; “虚地”的好处是:运放的共模输 虚地” 虚地 的好处是: 由虚短: + 由虚短: u = u − 入电压为0 共模抑制比高。 入电压为0,共模抑制比高。 ⇒u− = u+ = 0; —“虚地”是反相输入方式独有的一个重要特点。 虚地” 虚地 是反相输入方式独有的一个重要特点。

第五章-集成运算放大器的线性应用全篇

第五章-集成运算放大器的线性应用全篇

ui1
R
ui2
R
-Δ ∞
R3 i3
+
+
uO1
-Δ ∞
+
u0
+
加/减运算电路
实现将若干个输入信号之和或之差按比例 放大的电路,称为加/减运算电路。
反相加法器
同相加法器
减法器
加减器
加法与减法运算电路(1)
i3
ui3
if Rf
➢反相加法器(Summing Amplifer)
R3
电路结 构特点
Rf引入深度负反馈 输入信号均加入反向端
(1
Rf R1
)ui
比例运算电路(5)
输入电阻
rif
ui I
ui 0
因为电路引入电压负反馈, 输出电阻 ro=0
if Rf
i1 R1 I- -Δ ∞
+
+
+
+
ui
R’
u0 -
-
ui R’
当Auf=1时,称为电压跟随器。
此电路是电压并联
Rf
负反馈,输入电阻大,
输出电阻小,在电路
-Δ ∞ +
+
u0 ui
_
uo1= ui1=-1V
+
ui1
+
R1
R2
R1
R1
_
+
ui2
+
RP uo2= ui2(1+R2/R1)=3V
R2
_
uo
+
+
R2
uo=
R2 R1
(uo2- uo1)
=(20/10)[3-(-1) ]

集成运算放大器的线性应用

集成运算放大器的线性应用
uN ≈uP ≈0 这种情况,常将集成运算放大器输入端N称为“虚地”端。
同相比例运算电路如下图所示。
它就是项目三中所述的同相放大组 态。输入信号 ui 通过电阻 R2 加到集成运 算放大器的同相输入端,而输出信号通 过反馈电阻 RF 回送到反相输入端,构成 深度电压串联负反馈,反相端则通过电 阻 R1 接地。 R2 同样是直流平衡电阻,应 满足 R2 R1 // RF。
同相比例运算电路
根据运算放大器输入端“虚断”可得 iN ≈ 0 ,故有 i1 ≈ iF ,因此由可得
0 uN ≈ uN uo
R1
RF
由于 uN ≈uP ≈ui ,所以可求得输出电压 uo 与输入电压 ui 的关系为
uo
1
RF R1
uP
1
RF R1
ui
可见
u

o
ui
同相成比例,故称为同相比例运算电路,其比例系数为
将式进行变换,得
uo
(1
RF R1
)uP
(1
RF R1
)(
R2
//
R3
ቤተ መጻሕፍቲ ባይዱ)(
ui1 R2
ui2 ) R3
(4-1)
uo
R1 RF R1RF
RF (R2
//
故可求得输出电压为
uo ≈ uN ui2 RF R1 R2
uo
RF
(
ui1 R1
ui2 R2
)
可见,此电路实现了反相加法运算。若 RF R1 R2 ,则 uo (ui1 ui2 ) 。 由此可见,这种电路在调节一路输入端电阻时,不影响其他路信号产生的输
出值,因而调节方便,使用得比较多。
如下图所示为同相输入求和运算电路,它是利用同相比例运算电路实现的。 图中,输入信号 、 ui1 ui2 均加至运算放大器同相输入端。为使直流电阻平衡,要 求 R2 // R3 R1 // RF 。

集成运算放大器的线性应用

集成运算放大器的线性应用
集成运算放大器的线性应用
一、理想集成运放的条件
开环差模放大倍数: AUO= 输入电阻:Ri=∞
输出电阻:Ro=0
二、理想集成运放的分析依据
线性区:虚短(u+=u-) 虚断(i+=i-=0) 非线性区: U+> U-时,Uo=UOPP U+< U-时,Uo= -UOPP 电路中有负反馈!
虚短不存在
I I 0
Rif = R1不高 低
uO 与 uI 同相,放大倍数可大于或 等于 1
Rif = (1 + Aod) Rid 高 低
uO RF Auf 1 uI RI
实现反相比例运算;电压并联负 反馈; “虚地”
实现同相比例运算;电压串联负反 馈; “虚短”但不“虚地”
2
集成运算放大器的线性应用
1. 反相加法电路 2. 同相加法电路
Rf

R
ui1 ui 2
R1 R2
uo
uI 1 uI 2 uI 3 uO Rf ( ) R1 R 2 R3
R2 Rf uo (1 )ui1 R1 R2 R R1 Rf (1 )ui2 R1 R2 R
3
集成运算放大器的线性应用
3. 减法电路
Rf
ui 2 ui1
R2
R

R1
uo
Rf Rf R uo (1 )ui1 ui 2 R2 R R1 R1
4
虚断
1
电路开环工作或引入正反馈!
集成运算放大器的线性应用
两种比例运算电路之比较
反相输入 电 路 组 成
R1
同相输入
Rf

uo
ui R2

集成运放的线性应用

集成运放的线性应用

4.1.2 差动放大电路的基本形式
差动放大电路是一种具有两个输入端且 电路结构对称的放大电路,其基本特点是只 有两个输入端的输入信号间有差值时才能进 行放大,即差动放大电路放大的是两个输入 信号的差,所以称为差动放大电路。
1.电路构成与特点
图3.1所示为差动放大电路的基本形式, 从电路结构上来看,它具有以下特点。
(1)共模电压放大倍数Auc
(2)共模抑制比KCMR
4.1.3 差动放大电路的输入、输出形式 当信号从一个输入端输入时称为单端 输入;从两个输入端之间浮地输入时称为 双端输入;当信号从一个输出端输出时称 为单端输出;从两个输出端之间浮地输出 时称为双端输出。因此,差动放大电路具 有四种不同的工作状态:双端输入,双端 输出;单端输入,双端输出;双端输入, 单端输出;单端输入,单端输出。
放大倍数,u+ 和u- 分别为同相输入端和反 相输入端电压。
对于理想运放,Aod=∞;而uo为有限值, 工作在线性区时,有:u+-u-≈0,即:
u+≈ u这一特性称为理想运放输入端的“虚 短”。“虚短”和“短路”是截然不同的两 个概念,“虚短”的两点之间,仍然有电压, 只是电压十分微小;而“短路”的两点之间, 电压为零。
1. 运放工作在线性工作区时的特点
在集成运放应用电路中,运放的工作 范围有两种情况:工作在线性区或工作在 非线性区。 线性工作区是指输出电压uo与输入电 压ui 成正比时的输入电压范围。在线性工 作区,集成运放uo 与ui 之间关系可表示为:
uo=Aodui=Aod(u+-u-)
式中,Aod为集成运放的开环差模电压
同相比例运算电路又称为同相放大 器,其电路如图4.16所示。输入电压加 在同相输入端,为保证运放工作在线性 区,在输出端和反相输入端之间接反馈 电阻Rf构成深度电压串联负反馈,R′为

模拟电子技术基础课件第8章集成运算放大电路的线性应用

模拟电子技术基础课件第8章集成运算放大电路的线性应用
16
3.差动输入特点
利用“虚短”、“虚断 ”和叠加原理,并利用静 态 平 衡 条 件 ( R1=R2 , R3=RF ),可以求出Uo 与 Ui2和Ui1的差成比例。
输出电压Uo只与输入的差模部分有关,输入的共 模电压和运放偏置电流引起的误差被消除 。
17
电路静态平衡条件
由于集成运放输入级一般 采用差动电路,要求输入电 路两半的参数对称。 Rn=Rp Rn :运放反相端到地之间 向外看的等效电阻; Rp:运放同相端到地之间 向外看的等效电阻。
Ri 100k
可以看出,该电路的比例系数为-50,输入电 阻得到了提高而反馈电阻不必很大。
30
8.2.3 加减运算电路
1. 加法运算电路 (1)反相端输入
U U 0
1) 节点电流法求解:
I f I i1 I i 2 I i 3 U i1 U i 2 U i 3 R1 R2 R3
2
本章的重点和难点
重点: 掌握基本运算电路(比例、加减、积分、 微分、对数、指数、乘法、除法)运算电路的 工作原理和运算关系,利用“虚短”和“虚断 ”的概念分析这些运算电路输出电压和输入电 压的运算关系。 理解模拟乘法器在运算电路中的应用。
3
本章的重点和难点
难点: 运算电路运算关系的分析和识别;对数、指 数运算电路和有源滤波电路的分析计算。
RF 整理得: O U i U R
输入电阻: Ri R
输出电阻:Ro 0
电压并联负反馈
R R // R f
'
20
2.同相比例运算电路
U U Ui
I I 0
U 0 Uo U R RF
整理得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档