数字信号处理试卷及详细答案
数字信号处理考试试题及答案
数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x(n)的长度为N,h(n )的长度为M ,则其卷积和的长度L 为 N+M—1。
4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率-离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样.6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x (n )一定绝对可和。
7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。
8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高.10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。
11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器.12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。
14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法.15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
二、选择题(20分,每空2分)1。
数字信号处理试卷及答案
数字信号处理试卷及答案数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为。
2.线性时不变系统的性质有律、律、律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换就是( )A 、1 B 、δ(ω) C 、2πδ(ω) D 、2π2.序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度就是 ( )A 、 3 B 、 4 C 、 6 D 、 73.LTI 系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为 ( )A 、 y(n-2)B 、3y(n-2)C 、3y(n)D 、y(n)4.下面描述中最适合离散傅立叶变换DFT 的就是( )A 、时域为离散序列,频域为连续信号B 、时域为离散周期序列,频域也为离散周期序列C 、时域为离散无限长序列,频域为连续周期信号D 、时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号A 、理想低通滤波器B 、理想高通滤波器C 、理想带通滤波器D 、理想带阻滤波器6.下列哪一个系统就是因果系统( )A 、y(n)=x (n+2) B 、 y(n)= cos(n+1)x (n) C 、 y(n)=x (2n)D 、y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件就是其系统函数的收敛域包括( )A 、实轴B 、原点C 、单位圆D 、虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A、有限长序列B、无限长序列C、反因果序列D、因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件就是A、N≥MB、N≤MC、N≤2MD、N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A、0B、∞C、 -∞D、1三、判断题(每题1分, 共10分)1.序列的傅立叶变换就是频率ω的周期函数,周期就是2π。
数字信号处理试题及答案
数字信号处理试题及答案一、单项选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的采样频率是模拟信号频率的()倍。
A. 2B. 1C. 1/2D. 1/4答案:A2. 在数字信号处理中,下列哪个不是傅里叶变换的性质?()A. 线性B. 时域和频域的对称性C. 能量守恒D. 时移性答案:C3. 下列哪种滤波器可以同时具有低通和高通的特性?()A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 带阻滤波器答案:C4. 在数字信号处理中,下列哪个算法是用于信号的频域分析?()A. 快速傅里叶变换(FFT)B. 离散余弦变换(DCT)C. 离散沃尔什变换(DWT)D. 离散哈特利变换(DHT)答案:A5. 以下哪种方法不是数字信号处理中的滤波方法?()A. 有限冲激响应(FIR)滤波B. 无限冲激响应(IIR)滤波C. 卡尔曼滤波D. 线性预测编码答案:D二、填空题(每空1分,共20分)1. 数字信号处理中,离散时间信号的采样过程称为________。
答案:采样2. 在数字信号处理中,信号的频域表示通常通过________变换获得。
答案:傅里叶3. 一个理想的低通滤波器的频率响应在截止频率以下为________,截止频率以上为________。
答案:1;04. 快速傅里叶变换(FFT)是一种高效的________算法。
答案:傅里叶5. 在数字滤波器设计中,窗函数法可以用于设计________滤波器。
答案:FIR三、简答题(每题10分,共30分)1. 简述数字信号处理中,离散时间信号与连续时间信号的主要区别。
答案:离散时间信号是指在时间上离散的信号,其值仅在特定的时间点上定义,而连续时间信号则在时间上连续。
离散时间信号通常通过采样连续时间信号获得,而连续时间信号则在时间上没有间隔。
2. 描述数字滤波器的两种主要类型及其特点。
答案:数字滤波器主要分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
数字信号处理的技术考试试卷(附答案)
数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。
这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。
2. 什么是信号的量化?请说明量化的过程。
3. 简述数字信号处理的应用领域。
4. 请解释什么是数字滤波器的频率响应。
5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。
1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。
数字信号处理试题和答案
二.选择填空题
1、δ(n)的 z 变换是 A 。
A. 1
B.δ(w)
C. 2πδ(w)
D. 2π
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率 fs
与信号最高频率 fmax 关系为: A 。
A. fs≥ 2fmax
A.h(n)=δ(n)
B.h(n)=u(n)
C.h(n)=u(n)-u(n-1)
D.h(n)=u(n)-u(n+1)
21.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆
B.原点
C.实轴
D.虚轴
22.已知序列 Z 变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列
。
A. 2y(n),y(n-3) B. 2y(n),y(n+3)
C. y(n),y(n-3)
D. y(n),y(n+3)
9、用窗函数法设计 FIR 数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带
比加三角窗时
,阻带衰减比加三角窗时
。
A. 窄,小
B. 宽,小
C. 宽,大
D. 窄,大
10、在 N=32 的基 2 时间抽取法 FFT 运算流图中,从 x(n)到 X(k)需 B 级蝶形运
B。
A. N/2
B. (N-1)/2
C. (N/2)-1
D. 不确定
7、若正弦序列 x(n)=sin(30nπ/120)是周期的,则周期是 N= D 。
A. 2π
B. 4π
C. 2
数字信号处理及答案
《数字信号处理》考试试卷(附答案)一、填空(每空 2 分 共20分)1.连续时间信号与数字信号的区别是:连续时间信号时间上是连续的,除了在若干个不连续点外,在任何时刻都有定义,数字信号的自变量不能连续取值,仅在一些离散时刻有定义,并且幅值也离散化㈠。
2.因果系统的单位冲激响应h (n )应满足的条件是:h(n)=0,当n<0时㈡。
3.线性移不变系统的输出与该系统的单位冲激响应以及该系统的输入之间存在关系式为:()()*()()()m y n x n h n x m h n m ∞=-∞==-∑,其中x(n)为系统的输入,y(n)为系统的输出,h(n)w 为系统的单位冲激响应。
㈢。
4.若离散信号x (n )和h (n )的长度分别为L 、M ,那么用圆周卷积)()()(n h n x n y N O=代替线性卷积)()(n x n y l =*h (n)的条件是:1N L M ≥+-㈣。
5.如果用采样频率f s = 1000 Hz 对模拟信号x a (t ) 进行采样,那么相应的折叠频率应为 500 Hz ㈤,奈奎斯特率(Nyquist )为1000Hz ㈥。
6.N 点FFT 所需乘法(复数乘法)次数为2N ㈦。
7.最小相位延迟系统的逆系统一定是最小相位延迟系统㈧。
8.一般来说,傅立叶变换具有4形式㈨。
9.FIR 线性相位滤波器有4 种类型㈩。
二、叙述题(每小题 10 分 共30分) 1.简述FIR 滤波器的窗函数设计步骤。
答:(1)根据实际问题所提出的要求来确定频率响应函数()j d H e ω;(2.5分)(2)利用公式1()()2j j d d h n H e e d πωωπωπ-=⎰来求取()d h n ; (2.5分)(3)根据过渡带宽及阻带最小衰减的要求,查表选定窗的形状及N 的大小;(2.5分)(4)计算()()(),0,1,...1d h n h n w n n N ==-,便得到所要设计的FRI 滤波器。
数字信号处理期末试卷(含答案)
数字信号处理期末试卷(含答案)数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率fs的归一化,其值是连续Ω与数字频率ω之间的映射变换关系为Ω=2tan(ωT/2)。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。
2、双边序列z变换的收敛域形状为圆环或空集。
3、某序列的DFT表达式为X(k)=∑x(n)Wkn,由此可以看出,该序列时域的长度为N,变换后数字频域上相邻两个频率样点之间的间隔是2π/M。
4、线性时不变系统离散时间因果系统的系统函数为H(z)=(8(z^2-z-1))/(2z^2+5z+2),则系统的极点为z=1/2,z=-2;系统的稳定性为不稳定。
系统单位冲激响应h(n)的初值h(0)=4;终值h(∞)不存在。
5、如果序列x(n)是一长度为64点的有限长序列(0≤n≤63),序列h(n)是一长度为128点的有限长序列(0≤n≤127),记y(n)=x(n)*h(n)(线性卷积),则y(n)为64+128-1=191点的序列,如果采用基2FFT算法以快速卷积的方式实现线性卷积,则FFT的点数至少为256点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。
7、当线性相位FIR数字滤波器满足偶对称条件时,其单位冲激响应h(n)满足的条件为h(n)=h(N-1-n),此时对应系统的频率响应H(ejω)=H(ω)ejφ(ω),则其对应的相位函数为φ(ω)=-N/2ω。
8、巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器是三种常用低通原型模拟滤波器。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
(×)2、已知某离散时间系统为y(n)=T[x(n)]=x(5n+3),则该系统为线性时不变系统。
(完整)数字信号处理试卷及答案,推荐文档
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理试题及答案
数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。
要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。
以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。
2. 解释频率抽样定理(Nyquist定理)。
3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。
请解释它们的区别,并举例说明各自应用的情况。
2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。
它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。
DSP可以实现信号的滤波、变换、编码、解码、增强等功能。
2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。
数字信号处理试卷及答案
数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。
–[ ] B. 采样频率必须是信号最高频率的两倍。
–[ ] C. 采样频率必须是信号最高频率的四倍。
–[ ] D. 采样频率必须大于信号最高频率的两倍。
2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。
–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。
–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。
–[ ] D. DFT和DTFT是完全相同的。
3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。
–[ ] B. 抽样频率必须是信号最高频率的两倍。
–[ ] C. 抽样频率必须是信号最高频率的四倍。
–[ ] D. 信号频率必须是抽样频率的两倍。
5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。
–[ ] B. 具有无限阶。
–[ ] C. 比其他类型的滤波器更加陡峭。
–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。
…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。
2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。
完整word版,数字信号处理期末试题及答案汇总,推荐文档
数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理期末试卷含答案
数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的数学表示通常采用______。
A. 连续时间函数B. 离散时间序列C. 连续时间序列D. 离散时间函数答案:B2. 在数字信号处理中,采样定理是由谁提出的?A. 傅里叶B. 拉普拉斯C. 香农D. 牛顿答案:C3. 下列哪一项不是数字滤波器的类型?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 线性滤波器答案:D4. 数字信号处理中,傅里叶变换的离散形式称为______。
A. 傅里叶级数B. 傅里叶变换C. 离散傅里叶变换(DFT)D. 快速傅里叶变换(FFT)答案:C5. 在数字信号处理中,频域分析通常使用______。
A. 时域信号B. 频域信号C. 频谱D. 波形答案:C二、填空题(每题2分,共20分)1. 数字信号处理中,对连续信号进行采样后得到的信号称为______。
答案:离散时间信号2. 离散时间信号的傅里叶变换是______的推广。
答案:连续时间信号的傅里叶变换3. 数字滤波器的系数决定了滤波器的______特性。
答案:频率响应4. 在数字信号处理中,信号的采样频率必须大于信号最高频率的______倍。
答案:25. 快速傅里叶变换(FFT)是一种高效的算法,用于计算______。
答案:离散傅里叶变换(DFT)三、简答题(每题10分,共30分)1. 简述数字信号处理与模拟信号处理的主要区别。
答案:数字信号处理涉及离散时间信号,而模拟信号处理涉及连续时间信号。
数字信号处理使用数字计算机进行信号处理,模拟信号处理则使用模拟电路。
2. 解释什么是采样定理,并说明其重要性。
答案:采样定理指出,为了能够无失真地从其样本重构一个带限信号,采样频率必须大于信号最高频率的两倍。
这一定理的重要性在于它为信号的数字化提供了理论基础。
3. 描述离散傅里叶变换(DFT)与快速傅里叶变换(FFT)之间的关系。
答案:离散傅里叶变换是将时域信号转换到频域的数学工具,而快速傅里叶变换是一种高效计算DFT的算法。
(完整)数字信号处理期末试卷及答案..,推荐文档
A一、选择题(每题 3 分,共 5 题)j ( n-)1、x(n) =e 36,该序列是。
A.非周期序列B.周期N =6C.周期N = 6D. 周期N = 22、序列x(n) =-a n u(-n -1) ,则X (Z ) 的收敛域为。
A.Z <aB.Z ≤aC.Z >aD.Z ≥a3、对x(n) (0 ≤n ≤ 7) 和y(n) (0 ≤n ≤ 19) 分别作 20 点 DFT,得X (k ) 和Y (k ) ,F (k ) =X (k ) ⋅Y(k ), k = 0, 1, 19 ,f (n) =IDFT[F (k )], n = 0, 1, 19 ,n 在范围内时,f (n) 是x(n) 和y(n) 的线性卷积。
A. 0≤n ≤ 7B. 7 ≤n ≤19C.12 ≤n ≤19D. 0 ≤n ≤ 194、x1 (n) =R10 (n) ,x2 (n) =R7 (n) ,用 DFT 计算二者的线性卷积,为使计算量尽可能的少,应使 DFT 的长度N 满足。
A. N > 16B. N = 16C. N < 16D. N ≠ 165.已知序列 Z 变换的收敛域为|z|<1,则该序列为。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题 3 分,共 5 题)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是信号,再进行幅度量化后就是信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须,这就是奈奎斯特抽样定理。
3、对两序列 x(n)和 y(n),其线性相关定义为。
4、快速傅里叶变换(FFT)算法基本可分为两大类,分别是:;。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,,和四种。
⎧a n 三、x(n) =⎨-b n n ≥ 0求该序列的 Z 变换、收敛域、零点和极点。
(10 分)n ≤-1⎩∑ ∞四、求 X (Z ) =1(1- z -1)(1- 2z -1),1 < z < 2 的反变换。
(完整word版)数字信号处理试卷及答案(word文档良心出品)
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列B.右边序列C.左边序列D.双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x(n)和y(n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。
5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
数字信号处理试卷及详细答案(三套)
数字信号处理试卷答案完整版一、填空题:(每空1分,共18分)1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是连续(连续还是离散?)。
2、 双边序列z 变换的收敛域形状为圆环或空集。
3、 某序列的DFT 表达式为∑-==1)()(N n knMWn x k X ,由此可以看出,该序列时域的长度为N ,变换后数字频域上相邻两个频率样点之间的间隔是Mπ2。
4、 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为2,2121-=-=z z ;系统的稳定性为不稳定。
系统单位冲激响应)(n h 的初值4)0(=h ;终值)(∞h 不存在。
5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为64+128-1=191点点的序列,如果采用基FFT2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为256点。
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Tω=Ω。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT =Ω或)2arctan(2T Ω=ω。
7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --=,此时对应系统的频率响应)()()(ωϕωωj j e H eH =,则其对应的相位函数为ωωϕ21)(--=N 。
8、请写出三种常用低通原型模拟滤波器巴特沃什滤波器、切比雪夫滤波器、 椭圆滤波器。
二、判断题(每题2分,共10分)1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
数字信号处理考试试题及答案
8、线性相位FIR 数字滤波器的单位脉冲响应h(n ) 应满足条件h(n)= 士h(N -n - 1)。
9. IIR 数字滤波器的基本结构中,直接型运算累积误差较大;级联型运算累积误差较小;并联型运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括低通、高通、带通、带阻滤波器。
11. 若滤波器通带内群延迟响应 = 常数,则为线性相位滤波器12. x(n)= A cos(| 3n)|的周期为 14\ 7 )13. 求 z 反变换通常有围线积分法 (留数法)、部分分式法、长除法等。
第 1 页共 7 页A. 零点为z= ,极点为 z=0B. 零点为z=0,极点为z=C. 零点为z= ,极点为 z=1D. 零点为z= ,极点为z=24.下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构? (CA.直接型B.级联型C.频率抽样型D.并联型5.以下关于用双线性变换法设计IIR 滤波器的论述中正确的是( B )。
A.数字频率与模拟频率之间呈线性关系B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是s 平面到 z 平面的多值映射D.不宜用来设计高通和带阻滤波器6.对连续信号均匀采样时,采样角频率为Ωs,信号最高截止频率为Ωc,折叠频率为( D )。
A. ΩsB. ΩcC. Ωc/2D. Ωs/2 7.下列对 IIR 滤波器特点的论述中错误的是( C )。
A.系统的单位冲激响应h(n)是无限长的 B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限 z 平面 (0<|z|<∞ )上有极点第 2 页共 7 页8. δ (n)的 z 变换是 ( A )。
A. 1B. δ (w)C. 2 πδ (w)D. 2 π9.设x(n) , y(n) 的傅里叶变换分别是X(e j O ), Y(e j O ),则x(n) . y(n) 的傅里叶变换为 ( D ) .A. X(e j O ) *Y(e j O )B. X(ej O ) .Y(e j O )C.X(e j O ) . Y(e j O )D.X(e j O )*Y(e j O )10.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 4
W40
1
W40
W
1 4
2 W40 W42
3 W40 W43
(2)
Q0 (0) x(0) x(2) 2 3 5 Q0 (1) x(0) x(2) 2 1 1
Q1 (0) x (1) x(3) 1 4 5 Q1 (1) x(1) x(3) 1 4 3
X (0) Q0( 0) Q1 (0) 5 5 10
8(2 ) k
15 (3)k ] (k ) 2
故系统全响应为
y(k) y zi (k) yzs (k) [ 9 12(2)k 15 (3) k ] (k )
2
2
解二、( 2) 系统特征方程为 2 3 2 0 ,特征根为: 1 1 , 2 2 ;
故系统零输入响应形式为
yzi ( k ) c1 c2 (2) k
的有限长序列 (0 n 127 ) ,记 y(n) x(n) h( n) (线性卷积) ,则 y(n) 为 64+128-1 =
191 点
点的序列, 如果采用基 2FFT 算法以快速卷积的方式实现线性卷积,
点数至少为 256 点。
则 FFT 的
6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率
( 3) 试写出利用 FFT 计算 IFFT 的步骤。
解:( 1)
x(0)
Q0 ( 0)
x(2)
Q0 (1)
x(1)
1Q1 (0)
j
x(3)
Q1(1)
1
1
j
4 点按时间抽取 FFT 流图
X (0) X (1) X (2) X (3)
r k0
1
0 W20 W20
1 W20 W21
加权系数
l k
0
1
0
W
h(n)
2
1 34
0 12
n
1
2
图1
试求:( 1)该系统的频率响应 H (e j ) ;
( 2)如果记 H (e j )
H(
)e j
(
)
, 其中,
H
(
) 为 幅度函数 (可以取负值) ,
(
)为
相位函数,试求 H ( ) 与 ( ) ;
( 3)判断该线性相位 FIR 系统是何种类型的数字滤波器?(低通、高通、带通、带阻)
,
说明你的判断依据。
(4)画出该 FIR 系统的 线性相位型 网络结构流图。
解:( 1) h( n) (2,1,0, 1, 2)
H (e j )
4
h( n) e j n
n0
h(0) h(1) e j
h(2) e j 2
h(3)e j 3
h( 4) e j 4
2 e j e j3 2e j 4 2(1 e j 4 ) ( e j e j 3 )
与数字频率 之间的
映射变换关系为
。用双线性变换法将一模拟滤波器映射为数字滤波器时, T
与数字频率 之间的映射变换关系为
2 tan(
)或
T2
T 2arctan( ) 。
2
模拟频率
7 、当线性相位 FIR 数字滤波器满足 偶对称 条件时,其单位冲激响应
h (n) 满足的条件为
h(n) h( N 1 n) ,此时对应系统的频率响应
15 (3) k ] (k )
2
2
y(k) y zi (k) 四 、回答以下问题:
yzs (k)
9 [
12(2) k
2
15 (3) k ] (k ) 2
( 1) 画出按 时域抽取 N 4 点 基 2FFT 的信号流图。
( 2) 利用流图计算 4 点序列 x(n) (2,1,3,4) ( n 0,1,2,3)的 DFT 。
1 2z 1 1 3z 1 2z 2
z2 2 z z2 3z 2
系统频率响应 H ( e j ) H ( z) z e j
e2 j
2e j
e2 j
3e j
2
解一:( 2)对差分方程两端同时作 z 变换得
Y (z) 3z 1[Y (z) y( 1) z] 2z 2 [Y (z) y( 1) z y( 2) z2 ] X ( z) 2z 1 X (z)
n0
N
,变换后数字频域上相邻两个频率样点之间的间隔是
2 。
M
4、 线性时不变系统离散时间因果系统的系统函数为
H (z)
8( z2 z 1)
2 z2
5z
,则系统的极点为
2
1
z1
2 , z2
2
;系统的稳定性为
不稳定
。系统单位冲激响应 h( n) 的初值
h(0) 4 ;终值 h( ) 不存在
。
5、 如果序列 x( n) 是一长度为 64 点的有限长序列 (0 n 63) ,序列 h(n ) 是一长度为 128 点
数字信号处理试卷答案
完整版 一、填空题: (每空 1 分,共 18 分)
1、 数字频率 是模拟频率 对采样频率 f s 的归一化,其值是
连续 (连续还是离散?) 。
2、 双边序列 z 变换的收敛域形状为
圆环或空集
。
3、 某序列的 DFT 表达式为 X ( k)
N1
x
(n
)W
kn M
,由此可以看出,该序列时域的长度为
X (1) Q0 (1) W41Q1(1) 1 j 3
即:
X ( 2) Q0 (0) W42Q1( 0) 5 5 0
X ( 3) Q0 (1) W43Q1 (1)
X (k) (10, 1 3 j ,0, 1 3 j ), k 0,1,2,3
1 3j
( 3) 1)对 X (k ) 取共轭,得 X (k) ;
()
2 2
(3) H (2 ) 4 sin[2(2 )] 2 sin(2 ) 4sin(2 ) 2sin( ) H ( )
故 当 0 时,有 H (2 ) H (0) H (0) ,即 H ( ) 关于 0 点奇对称, H (0) 0 ;
当
时,有 H ( ) H ( )) ,即 H ( ) 关于 点奇对称, H ( ) 0
将初始条件 y( 1) 1, y( 2) 2 带入上式得
1 yzi ( 1) c1 c2 ( ) 1
2 1 yzi ( 2) c1 c 2 ( ) 2 4
解之得 c1 3 , c2 4 ,
故系统零输入响应为:
y zi ( k) 3 4( 2) k
k0
系统零状态响应为
Yzs ( z)
1
H (z)X (z)
2e j 2 ( e j 2 ej 2 ) e j 2 ( e j e j ) e j 2 [4 j sin( 2 ) 2 j sin( )]
(2) H (ej )
e
j2
j
e 2 [4 sin( 2
)
2 sin( )]
j( 2 )
e 2 [4 sin( 2 ) 2 sin( )]
H ( ) 4 sin(2 ) 2sin( ) ,
z2 2z
1
z2 3z 2 z 3
3 2 z1
8 z2
15 2 z3
即
3z
4z
Yzi ( z) z 1 z 2
Yzs ( z)
3 z
2 z1
对上两式分别取 z 反变换,得零输入响应、零状态响应分别为
8z z2
15 z
2 z3
y zi ( k) [3 4( 2) k ] ( k)
y zs( k )
3 [ 2
1z1 s2
1z1
4
1 (2
1
z z
1
1 )2
1 z1
2.828 2 1
z1
4
4(1 2 z 1 z 2 ) 0.2929(1 2z 1 z 2 )
13.616 z 2
(4)用 正准型 结构实现
x ( n)
1
1
0.2929 y( n)
z1
2
z1
1
0.1716
六、( 12 分) 设有一 FIR 数字滤波器,其单位冲激响应 h(n) 如图 1 所示:
即: Y (z)
3y( 1) 2z 1 y( 1) 2y ( 2) 1 3z 1 2z 2
1
(1 2 z 1) 3z 1 2z 2
X (z)
上式中,第一项为零输入响应的 z 域表示式,第二项为零状态响应的
z 域表示式,将初始状态及
激励的 z 变换 X (z)
z 代入,得零输入响应、零状态响应的
z3
z 域表示式分别为
2)对 X (k ) 做 N 点 FFT ; 3)对 2)中结果取共轭并除以 N 。
五、( 12 分) 已知二阶巴特沃斯模拟低通原型滤波器的传递函数为
1 H a ( s) s2 1.414s 1
试用双线性变换法设计一个数字低通滤波器,其
3dB 截止频率为
c 0.5 rad,写出数字滤波
器的系统函数,并用 正准型 结构实现之。 (要预畸,设 T 1)
Yzi ( z)
1 2z 1 1 3z 1 2z 2
z 2 2z z2 3z 2
Yzs( z)
1
1 2z 1 3z 1 2z 2
z z3
2
z 2z z2 3z 2
将 Yzi (z), Yzs (z) 展开成部分分式之和,得
z z3
Yzi ( z) z
z2
3
4
z2 3z 2 z 1 z 2
Yzs ( z) z
解:( 1)预畸
c
2 arctan(