一元一次方程追赶小明

合集下载

应用一元一次方程—追赶小明课件

应用一元一次方程—追赶小明课件
准确地解决问题。
THANKS
然后,解这个一元一次方程,找到未知 数的值。
其次,根据问题描述,建立一元一次方 程。
最后,验证解的正确性,并解释结果。
鼓励学生在生活中多尝试用数学解决问题
01
数学并不是抽象的学科,而 是与我们的生活紧密相连的

02
鼓励学生多尝试用数学解决 实际问题,可以培养他们的 数学思维和解决问题的能力

03
在生活中遇到问题时,可以 尝试用数学模型进行描述和 解决,这样可以更加高效、
一元一次方程是数学中基础且重要的方程形式,它代表了一个未知数 与常数之间的线性关系。
一元一次方程的标准形式
一元一次方程的标准形式
ax + b = 0,其中a和b是常数,x是未知元一次方程具有特定的结构,其中未知数x的系数a不能为0,否则 不满足一元一次方程的定义。
解一元一次方程的方法
验证答案是否符合等量关系
将答案代入等量关系中,验证是否符合等量关系。
04
实际生活中一元一次方程 的应用
速度、时间、距离的关系
总结词
速度、时间、距离是实际生活中常见的量,它们之间存在密切的关系,可以通过一元一次方程来表示和解决。
详细描述
在速度、时间、距离的关系中,速度等于路程除以时间,或者路程等于速度乘以时间。通过设定未知数表示其中 一个量,可以建立一元一次方程来解决问题。例如,小明从家里骑自行车去学校,路程为10公里,速度为每小时 15公里,求需要的时间。
根据题目描述,建立等量关系,如“我走 的路程=小明走的路程+50”。
将等量关系中的未知数代入,列出方程, 如“60x=30x+50”。
解方程求出答案
对方程进行化简和求解,得到x 的值。

应用一元一次方程—追赶小明

应用一元一次方程—追赶小明
甲的行程=乙先走的行程+乙后走的行程。
3、相遇问题的相等关系:
甲的行程+乙的行程=两地的距离。
作业布置:
完成练习册本课时的习题
3、相遇后,当联络员再次追上七(1)学生时,用了 多长时间?此时联络员或七(1)班学生及七(2)班学生 离学校又有多远?或两个班的学生相距有多远?
4、当七(2)班学生追上了七(1)班学生时,用了多 长时间?此时他们离学校有多远?
谈谈这节课你有什么收获?
1、借助线段图理解题意。 2、追及问题的相等关系:
分析:1、应用题的类型:行程问题。 2、计算公式:路程=速度×时间。 3、相等关系:A、B两地的路程=小亮的行程+小明的行程。
x 4、若设小亮的速度为 千米/小时,可
x 解:若设小亮的速度为 千米/小时,根据题意,得
+
x 解方程,得 = 19
= 72
19 — 2 = 17
所以,小亮的速度为19千米/小时,小明的速度 为17 千米/小时。
分析:1、这是一道关于行程问题的应用题,在七(1)班学生、 七(2)班学生、联络员这三个对象中,他们的 速度 是已知的,而 他们的 行程和时间 是未知的,所以在提问时应从 行程和时间 两 方面来提。
2、在行程过程中,联络员先是追 七(1)班学生 ,后是与 七(2)学生 相遇,然后又去追 七(1)班学生 ,而七(2)班 学生一直都是在追 七(1)班学生 。
x 解方程,得 = 4
因此,爸爸追上小明用了4min。
(2)180×4=720(m)
1000 —720=280(m) 所以,追上小明时,距离学校还有280(m)。
小亮骑自行车
小亮骑自行车从A地到B地,小明骑自行车从B地到 A地,两人均匀速前进,2小时后,他们相遇。已知A、B 两地相距72千米,小亮的速度比小明的速度每小时快2千 米,求两人的速度。

5.6应用一元一次方程追赶小明课件(1)

5.6应用一元一次方程追赶小明课件(1)

400
6x
8x
拓展提高
小明和爸爸在环形跑道上练习跑步,已知环形跑道一圈长 400米,爸爸每秒跑8米,小明每秒跑6米. (1)两人从同一处同时同向出发,经过多少秒首次相遇? (变式)如果爸爸在小明前面8米处同时同向出发,那么 经过多少秒两人首次相遇?
400 6x
8
8x
拓展提高
小明和爸爸在环形跑道上练习跑步,已知环形跑道一 圈长400米,爸爸每秒跑8米,小明每秒跑6米. (2)两人从同一处同时反向出发,经过多少秒首次相遇? (变式)如果两人在跑道上相距8米处同时反向出发,那 么经过多少秒两人首次相遇?
180x米 相遇 80x米 80米


1000米
巩固练习
育红学校七年级学生步行到郊外旅行。 (1)班的学生组成前队,步行速度为4千 米/时,(2)班的学生组成后队,速度为 6千米/时。前队出发1小时后,后队才出 发,同时后队派一名联络员骑自行车在两 队之间不间断地来回进行联络,他骑车的 速度为12千米/时。
解:由问题1得后队追上前队用了 2小时,因此 联络员共行进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行 了24千米。
巩固练习 育红学校七年级学生步行到郊外旅行。(1)班的学 生组成前队,步行速度为4千米/时,(2)班的学生组 成后队,速度为6千米/时。前队出发1小时后,后队才 出发,同时后队派一名联络员骑自行车在两队之间不间 断地来回进行联络,他骑车的速度为12千米/时。
问题1:后队追上前队用了多长时间 ? 问题2:后队追上前队时联络员行了多少路程? 问题3:联络员第一次追上前队时用了多长时间? 问题4:当后队追上前队时,前、后队行走了多 少路程?
巩固练习 育红学校七年级学生步行到郊外旅行。(1)班的学 生组成前队,步行速度为4千米/时,(2)班的学生组 成后队,速度为6千米/时。前队出发1小时后,后队才 出发,同时后队派一名联络员骑自行车在两队之间不间 断地来回进行联络,他骑车的速度为12千米/时。

《应用一元一次方程—追赶小明》一元一次方程

《应用一元一次方程—追赶小明》一元一次方程
购物优惠问题
在购物时,商家经常会推出各种优惠活动。利用一元一次 方程,我们可以计算出最优惠的购物方案。
分配问题
在资源有限的情况下,如何合理地分配资源使得利益最大 化,也是一元一次方程可以解决的问题。
其他数学问题
二元一次方程组
一元一次方程是二元一次方程组 的基础,掌握一元一次方程的解 法有助于解决更复杂的数学问题
检验解的正确性
代入检验
将解代入原方程,检查左右两边 是否相等。
增根检验
检查解是否产生增根,如果产生增 根则该解无效。
定义域检验
检查解是否符合原方程的定义域, 如果超出定义域则该解无效。
CHAPTER 04
应用扩展
实际生活中的问题
速度、时间、距离问题
例如,在日常生活中,我们经常遇到需要计算速度、时间 和距离的问题。通过一元一次方程,我们可以方便地解决 这些问题。
《应用一元一次方程—
追赶小明》一元一次方
汇报人:

2023-12-07
CONTENTS 目录
• 引入 • 建立一元一次方程 • 解一元一次方程 • 应用扩展 • 总结与反思
CHAPTER 01
引入
故事引入
01
பைடு நூலகம்
02
03
故事背景
在一个美丽的公园里,我 和小明正在玩耍。我跑得 比小明快,所以我要追赶 小明。
建立数学模型
d:起始时我和小明之间的距离(单位:米) 建立数学方程
在 t 分钟内,小明会跑 v × t 米。
建立数学模型
当我们追上小明时,两者跑的距离相等,因此 v × t = v × t + d。 方程形式:d = 0
在同样的时间 t 内,我会跑 v × t + d 米(因 为我需要先跑完起始距离d,然后才能追上小 明)。

56应用一元一次方程——追赶小明

56应用一元一次方程——追赶小明

56应用一元一次方程——追赶小明追赶小明小明是一个活泼好动的孩子,非常喜欢跑步。

有一天,小明在学校里参加了一次1500米的长跑比赛。

比赛开始后不久,小明发现有一个同学比他快了一些。

小明决定加快自己的速度,追赶上那个同学。

小明知道,自己跑完1500米需要的时间是8分钟,而那个同学跑完同样的距离只需要6分钟。

小明想知道,他要想在比赛结束前追赶上那个同学,他需要以多快的速度跑步。

首先,我们设小明的速度为x米/分钟,那个同学的速度为y米/分钟。

根据题意可得以下一元一次方程:1500=8x(1)1500=6y(2)我们可以通过联立方程(1)和方程(2)来求解x和y的值。

通过方程(2)可以得到y=1500/6=250米/分钟。

将y=250代入方程(1),得到1500=8x,解得x=1500/8=187.5米/分钟。

所以,小明的速度为187.5米/分钟,即每分钟小明能跑过187.5米的距离。

为了追赶上那个同学,小明需要以比他快的速度跑。

那个同学的速度为250米/分钟,所以小明的速度需要大于250米/分钟。

假设小明的速度为250+z米/分钟,其中z为任意正数。

那么,小明追赶那个同学所需的时间为:追赶时间=1500/(250+z)假设追赶时间为T分钟,代入上述公式可得:T=1500/(250+z)在这个等式中,只要z>0,T就会小于8分钟。

也就是说,小明只需要以比那个同学快的任何速度跑,就能在比赛结束前追赶上他。

比如说,如果小明的速度为251米/分钟,那么他追赶那个同学所需的时间为:T=1500/(250+1)=1500/251可以看出,不论小明的速度有多快,只要他的速度大于那个同学的速度,他都能在比赛结束前追赶上他。

通过以上的例子,我们可以发现,追赶问题中,解一元一次方程可以帮助我们找到问题的答案。

在这个例子中,方程的解告诉我们小明需要以多快的速度跑步才能追赶上那个同学。

这不仅能帮助我们理解数学中的方程解法,还能让我们更好地应用数学知识解决实际生活中的问题。

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明
解:36 km/h=10 m/s,则4.87n+5.4(n-1)=20×10,
解得n=20. 答:n的值是20.
课堂检测
能力提升题
操场一周是400米,小明每秒跑5米,小华骑自行车每秒10 米,两人绕跑道同时同地相背而行,则两个人何时相遇?
解:设经过x秒两人第一次相遇,
小明
依题意,得 10x+5x=400,
解:设战斗是在开始追击后x小时发生的. 根据题意,得 8x-5x=25-1. 解得 x=8.
答:战斗是在开始追击后8小时发生的.
探究新知
议一议 根据下面的事实提出问题并尝试去解答. 育红学校七年级学生步行到郊外旅行.七(1)班的学生组成 前队,步行的速度为4千米/小时,七(2)班的学生组成后队, 速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/小时. 问题1:后队追上前队用了多长时间?
解:设后队追上前队用了x小时,由题意 列方程得: 6x=4x+4 . 解方程得:x=2.
答:后队追上前队时用了2小时.
探究新知
问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时,因此联络员共行 进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米. 问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 由题意列方程得: 12x = 4x + 4.
北师大版 数学 七年级 上册
5.6 应用一元一次方程 ——追赶小明
导入新知 龟兔赛跑
素养目标
2. 通过分析追及问题中的数量关系,从而建立方程解 决实际问题.进一解决实际问题,进一步感知数学 在生活中的作用.

应用一元一次方程---追赶小明

应用一元一次方程---追赶小明
10x+5x=400, 解得x= 80 .
3
答:经过 80 秒两人第
3
一次相遇
环形跑道问题:设v甲>v乙,环形跑道长s米,经过t 秒甲、乙第一次相遇.
一般有如下两种情形:
①同时同地、同向而行: v甲t-v乙t=s. ①同时同地、背向而行: v甲t+v乙t=s.
例2 小明和他的哥哥早晨起来沿长为400 m的
6x+4x=100. 解得:x=10. 答:经过10秒后两人相遇.
(2)如果小丽站在百米跑道起跑处,小红站在她面前10 米处,两人同时同向起跑,几秒后小丽追上小红?
题目中已知些什么?用图表示出来.
10米
小红跑的路程 (4x)
小丽跑的路程 (6x)
追及点
等量关系:小丽所跑的路程-小红所跑的路程=10米.
分析:当爸爸追上小明时,两人所走路程相等.
解:(1)设爸爸追上小明用了x分钟,则此题的
数量关系可用线段图表示.
80×5
80x
180x
据题意,得 80×5+80x=180x. 化简,得 100x=400. x=4.
答:爸爸追上小明用了4分钟. (2)180×4=720(米),1000-720=280(米).
答:追上小明时,距离学校还有280米.
在审题过程中,如果能把文字语言变成图 形语言——线段图,即可使问题更加直观,等 量关系更加清晰.我们只要设出未知数,并用代 数式表示出来,便可以得到方程.
例题讲解
例1 小丽和小红每天早晨坚持跑步,小红每秒跑 4米,小
丽每秒跑6米.
(1)如果她们从100米跑道的两端相向跑,那么几秒 之后两人相遇? (2)如果小丽站在百米跑道起跑处,小红站在她面前10米 处,两人同时同向起跑,几秒后小丽追上小红?

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计
2.选做题:
(1)探索一元一次方程的其他解法,比较各种解法的优缺点。
(2)研究一元一次方程在实际问题中的应用,总结出至少三个不作业质量。
(2)书写工整,步骤清晰,方便教师批改和指导。
(3)完成后认真检查,确保无误。
4.作业提交时间:
下节课前将作业交给课代表,由课代表统一交给教师。
(2)培养学生熟练掌握一元一次方程的解法,并在实际运算中避免出错。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,激发学生的学习兴趣,引导学生主动参与课堂。
(2)采用探究式教学法,鼓励学生自主探究、合作交流,培养学生的创新能力和团队合作精神。
(3)运用多媒体辅助教学,通过动态演示、图像展示等手段,增强学生对一元一次方程的直观认识。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的学习既有挑战性,也具有可行性。学生对实际问题情境具有较强的兴趣,但将实际问题抽象成数学模型的能力尚需培养。此外,学生在解决实际问题时,可能存在以下问题:
1.对问题的分析不够深入,难以正确列出相应的一元一次方程。
(2)一元一次方程的解法及注意事项;
(3)如何避免在解一元一次方程时出现错误。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括以下类型:
(1)列出一元一次方程解决实际问题;
(2)解一元一次方程;
(3)应用一元一次方程解决实际问题。
3.加强一元一次方程解法的训练,提高学生的运算速度和准确率。
4.针对不同学生的学习情况,给予个性化的指导和鼓励,帮助学生克服恐惧心理,树立学习信心。

应用一元一次方程--追赶小明

应用一元一次方程--追赶小明
3、小明用4分钟绕学校操场跑了两圈(每圈400米),
那么他的速度为 200 米/分。
小明每天早上要在7:50之前赶到距家1000米的学校 上学.一天,小明以80米/分的速度出发.5分钟后,小明 的爸爸发现他忘了带语文书.于是,爸爸立即以180米/分 的速度去追小明。
(1)爸爸追上小明用了多长时间?
相遇问题:
A走的路程
相遇处
B走的路程
A
B
A与B之间相隔的路程
等量关系:
A走的路程+B走的路程=A与B之间相隔的路程
小 结:
1、这节课你学到了什么知识? 2、谈谈你的收获?
作业:P192 习题5.10 问题解决1
85×0.4
85x
110x
南京
北京
1170
解:设两车行驶了x小时相遇,
根据题意,得
85×0.4+85x+110x=1170
解得
x≈5.83
答:轿车行驶了约5.83小时两车相遇。
追及问题:
B
A与B之间相隔的路程 A
A后走的路程
B追A追到地方
B所走的路程
等量关系: A与B之间相隔的路程+A后走的路程=B所走的路程
根据题意,得 85x+110x=1170
化简
195x=1170
x=6
答:两车行驶了6小时相遇。
轿车方向
南京到北京的路程为1170公里。客车从南京开出,每小时
行驶85公里,轿车从北京开出,每小时行驶110公里,
(2)客车先开出24分钟,两车相向而行,轿车行驶了多少
小时两车相遇? (结果精确到0.01)
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
80×5

5.6一元一次方程-追赶小明(教案)

5.6一元一次方程-追赶小明(教案)
4.能够运用一元一次方程解决类似“追赶小明”的问题,提高学生解决问题的能力。
5.培养学生的逻辑思维能力和团队合作精神,激发学生学习数学的兴趣。
二、核心素养目标
本节课的核心素养目标如下:
1.让学生掌握一元一次方程的基本概念和解题方法,培养数学抽象、逻辑推理的素养。
2.通过实际问题“追赶小明”,培养学生数学建模、问题解决的能力,强化数学与生活实际的联系。
其次,在实践活动和小组讨论环节,我发现同学们在解决实际问题时还是有些束手无策。这说明我们在将理论知识应用到实际问题中还有一定的距离。为了提高同学们的应用能力,我计划在接下来的课程中,多设计一些贴近生活的案例,让大家在实际操作中感受一元一次方程的魅力。
此外,小组讨论环节,同学们的参与度很高,但部分小组在分享成果时,表达不够清晰,逻辑性不强。针对这一问题,我将在下一节课加强同学们的表达能力训练,提高他们的逻辑思维。
-解释:学生需要理解解的含义,不仅仅是一个数值,而是实际问题中具有实际意义的答案,如小明追上朋友的时间。
四、教学流程
(一)导入新ቤተ መጻሕፍቲ ባይዱ(用时5分钟)
同学们,今天我们将要学习的是《一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同时间、不同地点开始行走,最后在某一点相遇的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程的奥秘。
-学会解一元一次方程的步骤,包括移项、合并同类项、系数化为1。
-能够运用一元一次方程解决实际问题,如“追赶小明”问题。
-举例:通过具体例题,如“小明以每分钟50米的速度跑步,他的朋友每分钟比他快10米,朋友出发5分钟后,小明开始追赶。问小明需要多少时间才能追上朋友?”来讲解一元一次方程的应用。

应用一元一次方程-追赶小明

应用一元一次方程-追赶小明
解决实际问题
通过应用一元一次方程,可以解 决许多实际问题,例如追赶小明
的问题。
提高数学应用能力
通过解决实际问题,可以提高学生 的数学应用能力和问题解决能力。
培养逻辑思维
解决实际问题需要严密的逻辑思维 和推理能力,通过解决实际问题可 以培养学生的逻辑思维和推理能力 。
THANKS
感谢观看
适用于解决实际问题
一元一次方程在实际生活中有广泛的应用, 例如购物时计算找零、计算时间等。
方程的局限性
仅适用于匀速直线运动
一元一次方程只能描述匀速直线运动 ,对于变速运动或曲线运动则不适用 。
无法描述复杂情况
一元一次方程无法描述复杂的情况, 例如多物体相互作用或多个未知数的 情况。
实际应用的意义
详细描述
在解决追赶小明问题时,首先需要明确起始状态,包括起始时间、小明和追赶 者的起始位置以及两者的速度。这些信息是构建一元一次方程的基础。
追赶过程分析
总结词
分析追赶过程中的变量和关系
详细描述
在追赶过程中,我们需要考虑时间、距离和速度等变量,以及它们之间的相互关系。例如,距离 = 速 度 × 时间。通过这些变量和关系,我们可以建立一元一次方程来描述追赶过程。
最终状态分析
总结词
确定追赶结果
详细描述
在分析完追赶过程后,我们需要确定最终状态,即追赶者是 否追上了小明,以及追赶者和小明的位置。通过解一元一次 方程,我们可以得出追赶者和小明的最终位置,从而判断追 赶结果。
04
CATALOGUE
问题的反思与总结
方程的适用性
适用于描述匀速直线运动 问题
一元一次方程可以用来描述匀速直线运动中 的距离、速度和时间之间的关系,例如追赶 小明的问题。

应用一元一次方程——追赶小明

应用一元一次方程——追赶小明

【小组讨论1】行程问题中路程、速度和时间三个 量之间有何关系?
【反思小结】
活动二:A,B两地间的路程为360千米,甲车从A地出发 开往B地,每小时行驶72千米.甲车出发25分钟后,乙车从 B地出发开往A地,每小时行驶48千米. (1)几小时后两车相遇? (2)两车相遇后,各自仍按原速度和原方向继续行驶.那么 相遇以后两车相距100千米时,甲车从出发共行驶了多少 小时?
72
25 60
+x
+48x=360.解得x=
2
3 4
.
答:2
3 4
小时后两车相遇.
(2)设相遇以后两车相距100千米时,甲车共行驶了x小 时
,根据题意,得72x+48

x
25 60
=360+100.
解这个方程,得x=4. 答:甲车共行驶了4小时.
【小组讨论2】育红学校七年级学生步行到郊外旅行. 七(1)班的学生组成前队,步行速度为4km/h,七 (2)班的学生组成后队,速度为6km/h.前队出发1h 后,后队才出发,同时后队派一名联络员骑自行车
在两队之间不间断地来回进行联络,他骑车的速度 为12km/h. 根据上面的事实提出问题并尝试去解答.
【反思小结】解决这类问题,可先由浅入深地分析问题 情况,再从中提取素材编写问题.审题知,两个队速度 已知,前队先行1小时,一名联络员的速度及行驶情况 已知,若把本题看作一道普通的同向追及问题,可直接 提出关于追及时间的问题;若注意到联络员行驶时间等 于后队追上前队所用时间,则可提出联络员所走路程方 面的问题;进一步挖掘素材,还看提出具有一定思维深 度的问题,如求联络员从出发到第一次回到后队所用时 间等,这类问题就综合了同向的追及问题和相向的相遇 问题,求解时需将过程分段分析,分别求出所需时间.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用一元一次方程——追赶小明
〖教学目标〗
1.知识:能充分利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用。

2.能力:借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程的模型作用,培养学生文字语言、符号语言、图形语言的转换能力。

3.情感:通过开放性的问题,为学生提供思维的空间,培养学生的创新意识,在合作与交流中学会肯定自己和倾听他人的意见。

〖教材分析〗
教材首先由一个实际事例“能追上小明吗”创设问题情境,激发学生探究解决问题的方法和结果,接着通过画“线段图”建立一元一次方程的办法来解决问题,旨在培养学生把生活中的实际问题转化为数学模型的能力。

教材还安排了“议一议”,内容是让学生根据事实提出问题,并尝试解答,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,进一步梳理所学知识,培养学生的数学能力。

本节课的重点是:认识追赶问题中的数量关系。

本节课的难点是:借助“线段图”分析复杂问题中的等量关系,从而建立方程。

〖教学设计〗
(一)引入新课
多媒体展示:
1.若小明每秒跑4米,那么他5秒能跑()米。

2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为()米/分。

3.小明家距离火车站1500米,他以4米/分的速度骑车到达火车站需()分钟。

师:上面三个题都是关于路程、速度、时间的问题,它们之间有何关系?
生:路程=速度×时间,知道这三个量中的两个就可以求出另一个(分别找
三名学生回答上面的问题)
师:下面我们根据路程、速度、时间之间的关系来讨论几个较为复杂的问题:能追上小明吗(板书)。

(二)讲授新课
1.提出问题
在我们的生活中,一些同学有一种很不好的习惯――丢三落四,常常害得父母操心,小明今天就犯了这样的错误:小明每天早上要在7:50之前赶到距家1000米的学校上学。

一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。

于是爸爸立即以180米/分的速度去追小明。

问题:(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校还有多远?
(多媒体出示例题时,问题(1)(2)事先没有直接给出,而是先问学生看到题之后想到什么。

大部分学生问小明爸爸有没有追上小明,教师马上追问:“你估计能追上小明吗?”绝大部分学生又说:“能”。

此时才给出问题(1)(2)。

) 说明:从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识。

2.分析问题
多媒体展示:制作动画演示爸爸追小明的过程。

(用直观、动态的演示使学生的注意力集中在“爸爸追小明”这个事件中,教师及时提出:在这一过程中,你们发现了哪些等量关系?)
说明:这一问题,首先让学生自己来思考,探索解决问题的方法,通过电脑的演示,去发现,体会追赶问题的过程。

学生活动:学生已经有了自己的想法后,四人一组进行讨论交流,然后每组选一代表发言,最后总结出:①当爸爸追上小明时,两人所行的距离相等;②小明所行的总距离可以看做是两段距离之和;③小明所用的时间比爸爸所用的时间多5分钟;④小明先走“5分钟”加上爸爸追上他所用的时间等于爸爸全部所用的时间。

(课堂气氛活跃,学生积极回答问题,教师及时给予肯定和鼓励学生通过小组交流,既促进学生的合作探究,又提高了学生的语言表达能力。

)
师:能不能用简单的“线段图”表示他们所走的距离呢?
(学生通过思考,在练习本上动手画。

)
师:出示正确答案:
说明:列方程解决实际问题是一个数学化的过程,这个过程常常需要文字语言、图形语言和符号语言互相转换。

教学中适当加以渗透,以培养学生对三种语言进行转换的能力。

3.解决问题
师:路程、速度和时间三者之间有何关系呢?应如何求解出爸爸追上小明所需要的时间及追上时离学校还有多远呢?
学生活动:思考路程、速度和时间三者之间的关系,再列出方程求解。

根据线段图建立方程:80×5+80x=180x(解得:x=4)。

要求部分学生上讲台解答。

教师巡视检查教学效果。

(对学生的解题过程,要先让学生评判,让学生发现问题,教师不要直接给予评判。

)
4.问题拓展
师:刚才的结果表明,爸爸是在途中追上小明的,如果刚好在学校门口追上小明,要用多长时间?这时爸爸的速度又是多少?在什么情况下又追不上小明呢?
说明:这一提问,使问题本身变得更加开放,再度激活学生的思维,进一步培养学生发现问题、分析问题及解决问题的能力。

(三)课堂练习
多媒体展示:
小彬和小明每天早晨坚持跑步。

小彬每秒跑4米,小明每秒跑6米。

(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?
师:要求先画“线段图”,再解答。

学生活动:多数在练习本上解答,两位学生到黑板前板书。

(巩固新学的知识技能和方法,加深对相关知识和方法的理解。

教师在巡视
时发现有不同的解法及时进行介绍。

)
(四)议一议
多媒体展示:
育红学校七年级学生步行到郊外旅行。

(1)班的学生组成前队,步行速度为4千米/时,(2)班的学生组成后队,速度为6千米/时。

前队出发1时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。

根据上面的事实提出问题并尝试解答。

(教师鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间,后队追上前队时联络员行了多少路程等。

学生与同伴讨论、交流自己的问题和解决问题的过程。

)
说明:这是一个开放性的问题,旨在拓展学生思维,寻求个性发展。

让学生利用方程解决问题,在学生相互交流中提高分析和解决问题的能力。

(五)课堂小结
今天你们学到了什么知识?是怎样学到的?还有什么疑问?
说明:让学生自己总结,可以加深印象,提高学生学习的积极性,丰富了学生是学习“主人”的意识。

(六)课后作业
1.习题5.9第2题。

2.课本试一试[这是一个开放性问题,为学生提供了思维的空间,鼓励感兴趣的学生大胆思考,分多种情况进行讨论]。

〖教学反思〗
1.本课完成了教学目标,重点突出,时间安排合理,能调动学生的积极性,让学生积极参与教学。

2.需要反思的是:在教学中要减少教师的讲解,给学生充足的时间思考,教师做好学法指导,力求做到精而美,让学生学会学习。

这一点自己做得不好,总是什么都不放心,总想跟学生抢着说,今后需要改进。

3.应用题是学生学习的一个难点,必须激发学生的学习兴趣,让学生在教
师的指导下主动学习。

把这些理念,具体落实到教学中,有一定挑战性。

我将继续努力与学生共同发展。

〖案例点评〗
本节课的设计以学生为主体,按照新课标要求从学生已有的生活经验出发,创设有助于学生自主学习的情境,使学生在教师的指导下主动学习。

课堂教学的最高艺术是看学生而不是看教师,看学生能否在课堂中学到知识。

本课按新课标要求完成了教学目标,创设了丰富有趣的教学情境,激发了学生学习的兴趣,鼓励学生大胆提出问题。

“议一议”活动是本课设计较为成功之处,让学生在自主探究、合作交流中解决问题。

相关文档
最新文档