圆的有关证明与计算题专题
备战中考--第29讲圆的有关性质--(附解析答案)
备战2019中考初中数学导练学案50讲第29讲圆的有关性质【疑难点拨】1. 圆的定义在证题中的作用我们知道,定理是推理证明的重要依据,而定义在证题当中也有不可忽视的作用.利用圆的定义解某些几何问题,其特点是要找出到定点的距离等于定长的点,然后以定点为圆心定长为半径画圆,利用圆的有关性质使问题简捷、巧妙地得到解决.2. 垂径定理及其推论是证明两条线段相等,两条弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常常需要作垂直于弦的线段,构造直角三角形.垂径定理的应用类型:(1)如图(1),基于圆的对称性,下列五个结论:①弧AC=弧CB;②弧AD=弧DB;③AE=BE;④AB⊥CD;⑤CD是⊙O的直径,只要满足其中的两个,另外三个结论一定成立;(2)设半径 OA为 r,弦心距OE为 d,弦AB为 2a,由OE⊥AB得,AE=a,在Rt△AOE中,满足r2=d2,+a2,利用勾股定理可以对半径、弦、弦心距“知二求一”.3. 圆周角定理及其推论应用注意事项:(1)同圆的半径相等,有时还需要连接半径,用它来构造等腰三角形,有了等腰三角形,再利用等边对等角以及三线合一的性质来进行证明和计算;(2)当出现圆的直径时,往往通过作辅助线构造直径所对的圆周角是直角来进行证明或计算.(3)同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,它们所对的其余各组量也相等.(4)一条弦(除直径外)所对应的弧有优弧、劣弧之分,因此所对的圆周角也有两种情况:①优弧所对应的圆周角是钝角;②劣弧所对应的圆周角是锐角,这一组圆周角互补;一条弧只对着一个圆心角,却对着无数个圆周角.【基础篇】一、选择题:1.(2018·浙江临安·3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O 于B、C点,则BC=()A.B.C.D.2.(2018·山东威海·3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.53.(2018·浙江衢州·3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm4.(2018·山东青岛·3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70° B.55° C.35.5°D.35°5.(2018·湖北省宜昌·3分)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30° B.35° C.40° D.45°二、填空题:6.(2018·广东·3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.7.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.8.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.三、解答与计算题:9.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.10.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE ⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【能力篇】一、选择题:11.(2018•山东菏泽•3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°12.(2018•山东枣庄•3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2 C.2D.813.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75二、填空题:14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是.15.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为 cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答与计算题:16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.17.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 寸,CD= 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.18. (2017山东临沂)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【探究篇】19. 如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5. (1)如图①,若点P 是AB ︵的中点,求PA 的长; (2)如图②,若点P 是CB ︵的中点,求PA 的长.20.(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.第29讲圆的有关性质【疑难点拨】1. 圆的定义在证题中的作用我们知道,定理是推理证明的重要依据,而定义在证题当中也有不可忽视的作用.利用圆的定义解某些几何问题,其特点是要找出到定点的距离等于定长的点,然后以定点为圆心定长为半径画圆,利用圆的有关性质使问题简捷、巧妙地得到解决.2. 垂径定理及其推论是证明两条线段相等,两条弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常常需要作垂直于弦的线段,构造直角三角形.垂径定理的应用类型:(1)如图(1),基于圆的对称性,下列五个结论:①弧AC=弧CB;②弧AD=弧DB;③AE=BE;④AB⊥CD;⑤CD是⊙O的直径,只要满足其中的两个,另外三个结论一定成立;(2)设半径 OA为 r,弦心距OE为 d,弦AB为 2a,由OE⊥AB得,AE=a,在Rt△AOE中,满足r2=d2,+a2,利用勾股定理可以对半径、弦、弦心距“知二求一”.3. 圆周角定理及其推论应用注意事项:(1)同圆的半径相等,有时还需要连接半径,用它来构造等腰三角形,有了等腰三角形,再利用等边对等角以及三线合一的性质来进行证明和计算;(2)当出现圆的直径时,往往通过作辅助线构造直径所对的圆周角是直角来进行证明或计算.(3)同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,它们所对的其余各组量也相等.(4)一条弦(除直径外)所对应的弧有优弧、劣弧之分,因此所对的圆周角也有两种情况:①优弧所对应的圆周角是钝角;②劣弧所对应的圆周角是锐角,这一组圆周角互补;一条弧只对着一个圆心角,却对着无数个圆周角.【基础篇】一、选择题:1.(2018·浙江临安·3分)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O 于B、C点,则BC=()A.B.C.D.【考点】垂径定理和勾股定理【分析】根据垂径定理先求BC一半的长,再求BC的长.【解答】解:设OA与BC相交于D点.∵AB=OA=OB=6∴△OAB是等边三角形.又根据垂径定理可得,OA平分BC,利用勾股定理可得BD==3所以BC=6.故选:A.【点评】本题的关键是利用垂径定理和勾股定理.2.(2018·山东威海·3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.3.(2018·浙江衢州·3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B. cm C.2.5cm D. cm【考点】垂径定理【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.【点评】本题考查了垂径定理,关键是根据垂径定理得出OE的长.4.(2018·山东青岛·3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70° B.55° C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.(2018·湖北省宜昌·3分)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30° B.35° C.40° D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.二、填空题:6.(2018·广东·3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.8.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为(2,0).【考点】确定圆的条件;坐标与图形性质.【专题】网格型.【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)【点评】能够根据垂径定理的推论得到圆心的位置.三、解答与计算题:9.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.10.已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE ⊥AC,垂足为点E.求证:(1)△ABC是等边三角形;(2).【考点】等边三角形的判定;圆周角定理.【专题】证明题.【分析】(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.【解答】证明:(1)连接OD,得OD∥AC;∴∠BDO=∠A;又OB=OD,∴∠OBD=∠ODB;∴∠OBD=∠A;∴BC=AC;又∵AB=AC,∴△ABC是等边三角形;(2)如上图,连接CD,则CD⊥AB;∴D是AB中点;∵AE=AD=AB,∴EC=3AE;∴AE=CE.【点评】本题中作好辅助线是解题的关键,连接过切点的半径是圆中常见的辅助线作法之一.另外还要掌握等边三角形的判定和性质以及30°的直角三角形的性质.【能力篇】一、选择题:11.(2018•山东菏泽•3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°【考点】M5:圆周角定理;KD:全等三角形的判定与性质.【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=,∠OEB=90°是解题关键,又利用了圆周角定理.12.(2018•山东枣庄•3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.13.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠DOR的度数是()A.60 B.65 C.72 D.75【考点】三角形的外接圆与外心;等边三角形的性质;正方形的性质.【分析】根据等边三角形和正方形的性质,求得中心角∠POR和∠POD,二者的差就是所求.【解答】解:连结OD,如图,∵△PQR是⊙O的内接正三角形,∴PQ=PR=QR,∴∠POR=×360°=120°,∵四边形ABCD是⊙O的内接正方形,∴∠AOD=90°,∴∠DOP=×90°=45°,∴∠AOQ=∠POR﹣∠DOP=75°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.二、填空题:14.阅读下面材料:在数学课上,老师请同学思考如下问题:小亮的作法如下:老师说:“小亮的作法正确.”请你回答:小亮的作图依据是垂径定理.【考点】垂径定理的应用;作图—复杂作图.【分析】利用垂径定理得出任意两弦的垂直平分线交点即可.【解答】解:根据小亮作图的过程得到:小亮的作图依据是垂径定理.故答案是:垂径定理.【点评】此题主要考查了复杂作图以及垂径定理,熟练利用垂径定理的性质是解题关键.15.(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答与计算题:16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.【考点】圆心角、弧、弦的关系.【专题】几何综合题.【分析】(1)根据垂径定理知,弧CD=2弧BC,由圆周角定理知,弧BC的度数等于∠BOC 的度数,弧AD的度数等于∠CPD的2倍,可得:∠CPD=∠COB;(2)根据圆内接四边形的对角互补知,∠CP′D=180°﹣∠CPD,而:∠CPD=∠COB,∴∠CP′D+∠COB=180°.【解答】(1)证明:连接OD,∵AB是直径,AB⊥CD,∴.∴∠COB=∠DOB=∠COD.又∵∠CPD=∠COD,∴∠CPD=∠COB.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=∠COD,又∵∠CPD=∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.【点评】本题利用了垂径定理和圆周角定理及圆内接四边形的性质求解.17.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB= 1 寸,CD= 10 寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.【考点】垂径定理的应用;勾股定理.【分析】根据题意容易得出AB和CD的长;连接OB,设半径CO=OB=x寸,先根据垂径定理求出CA的长,再根据勾股定理求出x的值,即可得出直径.【解答】解:根据题意得:AB=1寸,CD=10寸;故答案为:1,10;(2)连接CO,如图所示:∵BO⊥CD,∴.设CO=OB=x寸,则AO=(x﹣1)寸,在Rt△CAO中,∠CAO=90°,∴AO2+CA2=CO2.∴(x﹣1)2+52=x2.解得:x=13,∴⊙O的直径为26寸.【点评】本题考查了勾股定理在实际生活中的应用;根据题意作出辅助线,构造出直角三角形,运用勾股定理得出方程是解答此题的关键.18. (2017山东临沂)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径.【解答】(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.【点评】本题考查了三角形的外接圆的性质、圆周角定理、三角形的外角性质、勾股定理等知识;熟练掌握圆周角定理是解决问题的关键. 【探究篇】19. 如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5. (1)如图①,若点P 是AB ︵的中点,求PA 的长; (2)如图②,若点P 是CB ︵的中点,求PA 的长.(1)如图①所示,连接PB ,∵AB 是⊙O 的直径且P 是AB ︵的中点,∴∠PAB =∠PBA =45°,∠APB =90°,又∵在等腰三角形△ABP 中有AB =13,∴PA =AB 2=132=1322(2)如图②所示:连接BC ,OP 相交于M 点,作PN⊥AB 于点N ,∵P 点为弧BC 的中点,∴OP ⊥BC ,∠OMB =90°,又因为AB 为直径∴∠ACB =90°,∴∠ACB =∠OMB ,∴OP ∥AC ,∴∠CAB =∠POB ,又因为∠ACB =∠ONP =90°,∴△ACB ∽△ONP ,∴AB OP =ACON,又∵AB =13,AC=5,OP =132,代入得ON =52,∴AN =OA +ON =9,∴在Rt △OPN 中,有NP 2=OP 2-ON 2=36,在Rt △ANP 中,有PA =AN 2+NP 2=117=313,∴PA =31320. (2016•宁夏)已知△ABC ,以AB 为直径的⊙O 分别交AC 于D ,BC 于E ,连接ED ,若ED=EC . (1)求证:AB=AC ; (2)若AB=4,BC=2,求CD 的长.(1)证明:∵ED=EC , ∴∠EDC=∠C ,∵∠EDC=∠B ,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B ) ∴∠B=∠C , ∴AB=AC ; (2)方法一: 解:连接AE , ∵AB 为直径, ∴AE ⊥BC , 由(1)知AB=AC ,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 相交B. 相切B. 相离D. 无法确定2. 一个圆的半径为4,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 4B. 3C. 5D. 63. 点A(2,3)与圆心O(0,0)的距离是多少?A. 2B. 3C. 4D. 54. 已知点P在圆上,OP=r,其中O是圆心,r是半径,那么点P与圆的位置关系是什么?A. 在圆内B. 在圆上C. 在圆外D. 不在圆上5. 圆的面积公式是什么?A. πr²B. 2πrC. πrD. πr³答案:1-A 2-A 3-C 4-B 5-A二、填空题6. 圆的周长公式是______。
7. 如果圆的半径增加1,那么它的周长将增加______。
8. 已知圆的直径为10,那么它的半径是______。
9. 圆的内接四边形的对角线的关系是______。
10. 如果一个点到圆心的距离等于半径,那么这个点是圆上的______。
答案:6-C=2πr 7-2π 8-5 9-互相平分 10-点三、计算题11. 已知圆的半径为7,求圆的周长和面积。
12. 已知圆的周长为44cm,求圆的半径。
答案:11. 周长:C = 2πr = 2 × 3.14 × 7 = 43.96cm面积:A = πr² = 3.14 × 7² = 153.86cm²12. 半径:r = C / (2π) = 44 / (2 × 3.14) ≈ 7cm四、解答题13. 已知点P(-3,4),求点P到圆心O(0,0)的距离。
14. 已知圆的半径为5,圆心在(1,1),求圆上任意一点(x,y)到圆心的距离公式。
答案:13. 点P到圆心O的距离为:d = √[(-3-0)² + (4-0)²] = √(9 + 16) = √25 = 514. 圆上任意一点(x,y)到圆心(1,1)的距离公式为:d = √[(x-1)² + (y-1)²],且d = 5五、证明题15. 已知圆O的半径为r,点A、B在圆上,证明弦AB的长度等于圆心O到弦AB的垂直距离的两倍。
圆单元测试题及答案解析
圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。
答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。
答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。
7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。
四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。
答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。
9. 一个圆的周长是44厘米,求这个圆的半径。
答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。
五、证明题10. 证明:圆的内接四边形的对角线互相平分。
答案:设圆内接四边形ABCD,连接对角线AC和BD。
由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。
根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。
同理∠CAD和∠ABD也相等。
因此,△ABC和△ADC是全等的,所以AC平分BD。
同理,BD平分AC。
所以圆的内接四边形的对角线互相平分。
六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。
初三数学有关圆的各地中考题汇编(含答案)
1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.2、(2011•衡阳)如图,△ABC 内接于⊙O ,CA=CB ,CD ∥AB 且与OA 的延长线交于点D .(1)判断CD 与⊙O 的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD 的长.3、(2011•杭州)在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.4、(2011•杭州)在△ABC 中,AB=√3,AC=√2,BC=1. (1)求证:∠A≠30°;(2)将△ABC 绕BC 所在直线旋转一周,求所得几何体的表面积.5、(2011•贵阳)在▱ABCD 中,AB=10,∠ABC=60°,以AB 为直径作⊙O ,边CD 切⊙O 于点E .(1)圆心O 到CD 的距离是 _________ .(2)求由弧AE 、线段AD 、DE 所围成的阴影部分的面积.(结果保留π和根号)6、(2011•抚顺)如图,AB 为⊙O 的直径,弦CD 垂直平分OB 于点E ,点F 在AB 延长线上,∠AFC=30°.(1)求证:CF 为⊙O 的切线.(2)若半径ON ⊥AD 于点M ,CE=√3,求图中阴影部分的面积.7、(2011•北京)如图,在△ABC ,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB .(1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin ∠CBF=√55,求BC 和BF 的长.8、(2010•义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE ̂的中点,OM 交AC 于点D ,∠BOE=60°,cosC=12,BC=2√3.(1)求∠A 的度数;(2)求证:BC 是⊙O 的切线 (3)求MD 的长度.9、(2010•沈阳)如图,AB 是⊙O 的直径,点C 在BA 的延长线上,直线CD 与⊙O 相切与点D ,弦DF ⊥AB 于点E ,线段CD=10,连接BD .(1)求证:∠CDE=2∠B ;(2)若BD :AB=√3:2,求⊙O 的半径及DF 的长.10、(2010•绍兴)如图,已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是AB ̂的中点,过点D 作直线BC的垂线,分别交CB 、CA 的延长线E 、F .(1)求证:EF 是⊙O 的切线;(2)若EF=8,EC=6,求⊙O 的半径.11、(2010•丽水)如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB=16cm ,.(1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.考点:扇形面积的计算;垂径定理。
圆的方程
圆方程及其应用1.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax+by=1与圆O 的位置关系是( )2.若P (2,﹣1)为圆(x ﹣1)2+y 2=25的弦AB 的中点,则直线AB 的方程是( )3.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) 5124.点P (4,﹣2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )5.已知两圆⊙C 1:x 2+y 2+D 1x+E 1y ﹣3=0和⊙C 1:x 2+y 2+D 2x+E 2y ﹣3=0都经过点A (2,﹣1),则同时经过点(D 1,E 1)和点(D 2,E 2)的直线方程为( )6.已知两圆相交于两点A (1,3),B (t ,﹣1),两圆圆心都在直线x+2y+c=0上,则t+c 的值是( ) 7.已知直线4x ﹣3y ﹣12=0与两坐标轴分别相交于A 、B 两点,圆C 的圆心在坐标原点,且与线段AB 有两个不同交点,则圆C 的面积的取值范围是( )A C.8.已知实数x,y满足x2+y2﹣4x+6y+12=0,则|2x﹣y﹣2|的最小值是()A B9.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为俩切点,那么的最小值为()A B11.已知圆C:x2﹣8x+y2﹣9=0,过点M(1,3)作直线交圆C于A,B两点,则△ABC面积的最大值为_________.12.若圆(x﹣a)2+(y﹣a)2=4上,总存在不同两点到原点的距离等于1,则实数a的取值范围是13.若方程有两个不等实根,则k的取值范围是14.已知圆C:(x﹣2)2+y 2=4,点P 是圆M:(x﹣7)2+y2=1上的动点,过P作圆C的切线,切点为E、F ,则的最大值是_________.15.在圆x2+y2=5x内,过点有n(n∈N*)条弦,它们的长构成等差数列,若a1为过该点最短弦的长,a n为过该点最长弦的长,公差,那么n的值是_____.16.直线l:x=my+n(n>0)过点,若可行域的外接圆的直径为,则实数n的值为_________.17.已知圆O以坐标原点为圆心,直线l:x+y﹣1=0被圆O截得的线段长为.(Ⅰ)求圆O的方程;(Ⅱ)设B(x,y)是圆O上任意一点,求的取值范围.18.直线y=kx+b与圆x2+y2=4交于A、B两点,记△AOB的面积为S(其中O为坐标原点).(1)当k=0,0<b<2时,求S的最大值;(2)当b=2,S=1时,求实数k的值.19.在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.(1)求圆O1的标准方程;(2)过定点P(a,b)作动直线l与圆O,圆O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.若d与d1的比值总等于同一常数λ,求点P的坐标及λ的值.20.已知圆O:x2+y2=1,圆C:(x﹣4)2+(y﹣4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;(Ⅰ)将两圆方程相减可得一直线方程l:x+y﹣4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;(Ⅱ)求切线长|PA|的最小值;(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.22d=<223.(2013•重庆)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,5 1 2=5﹣22,则,由此能够求出点5.(2011•黄冈模拟)已知两圆⊙C1:x2+y2+D1x+E1y﹣3=0和⊙C1:x2+y2+D2x+E2y﹣3=0都经过点A(2,垂直,可得=222()(﹣)(﹣)∪(﹣),=|a|<<或(﹣)∪(8.已知直线4x﹣3y﹣12=0与两坐标轴分别相交于A、B两点,圆C的圆心的坐标原点,且与线段AB有B<有:9.若方程有两个不等实根,则k的取值范围()),],)时,所以方程有两个不等实根时,22B化为圆的参数方程,将+5|=|2|的最小值是11.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为俩切点,那么的最小值为()B的长度,和夹角,并将PO=,=22,或3+2.此时.22其面积有一个边长为的正方形和四个以为直径的半圆的面积的和×+4=二.填空题(共7小题)13.已知圆C:x2﹣8x+y2﹣9=0,过点M(1,3)作直线交圆C于A,B两点,△ABC面积的最大值为.,则中,,.14.(2011•江西模拟)已知圆C:(x﹣2)2+y2=4,点P是圆M:(x﹣7)2+y2=1上的动点,过P作圆C的切线,切点为E、F,则的最大值是﹣2.,=,由此可得16.(2009•东城区二模)在圆x2+y2=5x内,过点有n(n∈N*)条弦,它们的长构成等差数列,若a1为过该点最短弦的长,a n为过该点最长弦的长,公差,那么n的值是5.圆心,半径垂直的弦是最短弦,所以由等差数列,17.直线l:x=my+n(n>0)过点,若可行域的外接圆的直径为,则实数n的值为3或5.的外接圆的直径为由可行域的外接圆的直径为=7=三.解答题(共7小题)20.(2012•泸州二模)已知圆O以坐标原点为圆心,直线l:x+y﹣1=0被圆O截得的线段长为.(Ⅰ)求圆O的方程;(Ⅱ)设B(x,y)是圆O上任意一点,求的取值范围.截得的线段长为(Ⅱ)设即可确定的距离为,截得的线段长为(Ⅱ)∵,∴的取值范围,21.(2010•广州模拟)直线y=kx+b与圆x2+y2=4交于A、B两点,记△AOB的面积为S(其中O为坐标原点).(1)当k=0,0<b<2时,求S的最大值;(2)当b=2,S=1时,求实数k的值.,解得.=当且仅当,即.,解得,,23.(2012•江苏二模)在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.(1)求圆O1的标准方程;(2)过定点P(a,b)作动直线l与圆O,圆O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.若d与d1的比值总等于同一常数λ,求点P的坐标及λ的值.,,﹣,∴24.(2011•湖北模拟)已知圆O:x2+y2=1,圆C:(x﹣4)2+(y﹣4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;(Ⅰ)将两圆方程相减可得一直线方程l:x+y﹣4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;(Ⅱ)求切线长|PA|的最小值;(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.)点时有.)点时有.26.已知圆M的方程为(x﹣2)2+y2=1,直线l的方程为y=2x,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)求的最小值;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.)利用向量的数量积公式,计算解之得)或(,,的最小值.的中点故其方程为解得或)和。
初中二年级几何学习技巧解密圆的性质与计算题
初中二年级几何学习技巧解密圆的性质与计算题在初中二年级的几何学习中,圆是一个非常重要且常见的概念。
学好圆的性质与计算是打下数学基础的关键。
本文将为大家介绍一些解密圆的性质与计算题的学习技巧。
一、圆的性质1. 圆的定义与要素:圆是由平面上每个点到一个确定点的距离相等的点的集合。
这个确定点叫做圆心,距离叫做半径。
在图形上表示为⚪。
2. 圆的直径与半径:圆的直径是通过圆心,并且两点都落在圆上的线段。
圆的直径等于两倍的半径,即直径=2半径。
3. 圆的周长与面积:圆的周长指的是围绕圆的一条线段的长度。
我们可以通过公式C=2πr来求得,其中C代表圆的周长,π是一个常数,约等于3.14,r 是圆的半径。
圆的面积指的是圆内部的所有点的集合。
我们可以通过公式A=πr²来求得,其中A代表圆的面积,π是一个常数,约等于3.14,r是圆的半径。
二、圆的计算题技巧1. 求圆的周长:如果题目给出了圆的半径,我们可以直接代入公式C=2πr来计算圆的周长。
示例题目:已知一个圆的半径为4cm,求其周长。
解析:根据公式C=2πr,将半径r=4cm代入,得到C=2π×4=8π≈25.12cm。
所以这个圆的周长约等于25.12cm。
2. 求圆的面积:如果题目给出了圆的半径,我们可以直接代入公式A=πr²来计算圆的面积。
示例题目:已知一个圆的半径为5cm,求其面积。
解析:根据公式A=πr²,将半径r=5cm代入,得到A=π×5²=25π≈78.54cm²。
所以这个圆的面积约等于78.54cm²。
3. 利用已知信息求圆的半径或直径:有时候题目给出的并不是圆的直径或半径,而是通过其他几何图形的信息来求解。
我们需要利用相关的几何关系进行运算。
示例题目:一个圆的直径是某条线段的长度的2倍,这条线段的长度为6cm,求该圆的周长和面积。
解析:根据题意可知,圆的直径等于6cm的2倍,即直径等于12cm。
中考数学《圆(一)》专题练习含答案解析
圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。
初中有关圆的试题及答案
初中有关圆的试题及答案一、选择题1. 下列哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = πd^2D. A = πr答案:A2. 圆的周长公式是什么?A. C = 2πrB. C = πdC. C = 2πdD. C = πr^2答案:A3. 如果一个圆的半径是5厘米,那么它的直径是多少?A. 10厘米B. 15厘米C. 20厘米D. 25厘米答案:A二、填空题4. 一个圆的半径是3厘米,那么它的周长是______厘米。
答案:18.845. 圆的面积是28.26平方厘米,那么它的半径是______厘米。
答案:3三、解答题6. 已知一个圆的直径是12厘米,求这个圆的面积。
答案:圆的面积= π × (直径/2)^2 = π × (12/2)^2 = 3.14 × 36 = 113.04 平方厘米。
7. 一个圆的周长是31.4厘米,求这个圆的半径。
答案:圆的半径 = 周长/(2π) = 31.4/(2 × 3.14) = 5 厘米。
四、计算题8. 一个圆的半径增加2厘米,它的面积增加了多少?答案:原圆的面积= π × r^2,新圆的面积= π × (r + 2)^2。
面积增加= π × (r + 2)^2 - π × r^2 = π × (r^2 + 4r + 4 - r^2) = 4πr + 4π。
假设原圆的半径为r,则面积增加= 4πr + 4π。
9. 一个圆的直径增加了2厘米,求新圆与原圆的面积差。
答案:原圆的面积= π × (直径/2)^2,新圆的面积= π × ((直径 + 2)/2)^2。
面积差= π × ((直径 + 2)/2)^2 - π × (直径/2)^2 = π × ((直径^2 + 4直径 + 4)/4 - 直径^2/4) = π × (直径+ 2)/2 = π × (直径/2 + 1)。
与圆有关的最值取值范围问题,附详细答案
与圆相关的最值(取值范围)问题,附详尽答案姓名1. 在座标系中,点 A 的坐标为 (3, 0),点 B 为 y 轴正半轴上的一点,点C 是第一象限内一点,且 AC=2.设 tan ∠ BOC=m ,则 m 的取值范围是 _________.2. 如图,在边长为 1 的等边 △ OAB 中,以边 AB 为直径作 ⊙ D ,以 O 为圆心 OA 长为半径作圆 O , C 为半圆 AB 上不与 A 、 B 重合的一动点,射线AC 交 ⊙ O 于点 E , BC=a , AC=b .( 1)求证: AE=b+ a ;( 2)求 a+b 的最大值;(3)若 m 是对于 x 的方程: x 2+ax=b 2+ab 的一个根,求 m 的取值范围.3. 如图,∠ BAC=60 °,半径长为 1 的圆 O 与∠ BAC 的两边相切,P 为圆 O 上一动点,以 P 为圆心, PA 长为半径的圆 P 交射线 AB 、AC 于 D 、 E 两点,连结DE ,则线段 DE 长度的最大值为 (). A .3 B . 63 3C .D .3 324.如图, A 点的坐标为(﹣ 2, 1),以 A 为圆心的⊙A 切 x 轴于点 B, P( m, n)为⊙A 上的一个动点,请研究 n+m 的最大值.5.如图,在Rt△ ABC中,∠ ACB=90 °, AC=4, BC=3,点 D 是平面内的一个动点,且 AD=2,M 为 BD 的中点,在 D 点运动过程中,线段CM 长度的取值范围是.6.如图是某种圆形装置的表示图,圆形装置中,⊙ O 的直径 AB=5,AB 的不一样侧有定点 C 和动点 P,tan ∠ CAB= .其运动过程是:点 P 在弧 AB 上滑动,过点 C 作 CP 的垂线,与PB的延伸线交于点Q.(1)当 PC=时,CQ与⊙O相切;此时CQ=.(2)当点 P 运动到与点 C 对于 AB 对称时,求 CQ的长;(3)当点 P 运动到弧 AB 的中点时,求 CQ 的长.(4)在点 P 的运动过程中,线段CQ 长度的取值范围为。
圆题目练习题
一、选择题1. 圆的定义是:A. 所有到定点距离相等的点的集合B. 所有到定直线距离相等的点的集合C. 所有到定线段距离相等的点的集合D. 所有到定圆距离相等的点的集合2. 圆的半径是指:A. 圆心到圆上任意一点的距离B. 圆上任意两点之间的距离C. 圆心到圆上最远点的距离D. 圆心到圆上最近点的距离3. 圆的直径是指:A. 圆心到圆上任意一点的距离B. 圆上任意两点之间的距离C. 圆心到圆上最远点的距离D. 圆心到圆上最近点的距离4. 圆的周长公式是:A. C = πdB. C = 2πrC. C = πr^2D. C = 2πr^25. 圆的面积公式是:A. S = πdB. S = 2πrC. S = πr^2D. S = 2πr^2二、填空题1. 圆的半径是r,则圆的直径是______。
2. 圆的周长是C,则圆的半径是______。
3. 圆的面积是S,则圆的半径是______。
4. 圆的直径是d,则圆的周长是______。
5. 圆的半径是r,则圆的面积是______。
三、计算题1. 已知圆的半径为5cm,求圆的周长和面积。
2. 已知圆的周长为31.4cm,求圆的半径和面积。
3. 已知圆的面积为78.5cm^2,求圆的半径和周长。
4. 已知圆的直径为10cm,求圆的周长和面积。
5. 已知圆的半径为7cm,求圆的周长和面积。
四、应用题1. 一个圆形花坛的半径为3m,求花坛的面积。
2. 一个圆形游泳池的直径为10m,求游泳池的面积。
3. 一个圆形蛋糕的半径为5cm,求蛋糕的面积。
4. 一个圆形桌子的直径为60cm,求桌子的面积。
5. 一个圆形房间的半径为4m,求房间的面积。
五、证明题1. 证明:圆的直径是圆的最长弦。
2. 证明:圆的半径相等。
3. 证明:圆的周长与直径的比值是一个常数,即π。
4. 证明:圆的面积与半径的平方成正比。
5. 证明:圆的周长与面积成正比。
六、判断题1. 圆的直径总是比半径长。
圆的高考知识点总结
圆的高考知识点总结一、圆的性质1. 圆的定义:平面上到定点距离等于定长的点的轨迹叫做圆。
2. 圆的标准方程:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r为半径。
3. 圆的性质:圆的性质包括圆心、半径、直径、弧、圆周长和面积。
4. 圆的弧长:弧长公式为S=rθ,其中S为弧长,r为半径,θ为圆心角的弧度数。
5. 圆的面积:圆的面积公式为A=πr^2,其中A为面积,r为半径,π≈3.14。
二、圆的相关概念1. 圆的切线:与圆相切的直线叫做圆的切线,切线与半径的夹角为90度。
2. 圆的切点:切线与圆的交点叫做圆的切点。
3. 关于圆的几何变换:包括平移、旋转、对称等几何变换。
4. 圆锥曲线的定义:平面上一个点到两定点的距离之比等于一个定值的轨迹称为圆锥曲线。
三、圆的相关性质1. 直径定理:直径等于周长的一半,即d=2r。
2. 平行切线定理:平行切线所切的弦长相等。
3. 关于弧和角的关系:圆心角、弧、半径、正切线之间有一定的关系。
4. 圆的几何关系:包括圆与圆的位置关系,圆与直线的位置关系等。
四、相关题型解析1. 圆的证明题:包括通过已知条件证明圆的性质等。
2. 圆的计算题:包括计算圆的周长、面积、半径、直径等。
3. 圆的几何问题:包括求解关于圆的几何问题,包括切线问题、相切问题等。
4. 圆的几何变换:包括求解通过平移、旋转、对称等几何变换后的圆的性质等。
五、应试技巧1. 熟练掌握圆的相关定理和性质,灵活运用解题。
2. 多做圆的计算题和几何问题,提高解题能力。
3. 善于分析题目,归纳规律,合理运用几何知识解决问题。
4. 必要时候灵活使用代数方法解题,提高解题效率。
总结:圆是高考数学中重要的几何知识点,掌握圆的相关定理、性质以及解题技巧对于高考数学至关重要。
在备考过程中,要多练习相关题型,理解圆的性质和运用方法,提高解题能力。
同时要善于发现圆与其他几何图形之间的联系,提高综合解题能力。
圆复习题大全及答案
圆复习题大全及答案一、选择题1. 圆的标准方程是()。
A. \((x-a)^2 + (y-b)^2 = r^2\)B. \((x-a)^2 + (y-b)^2 = 2r\)C. \((x-a)^2 + (y-b)^2 = 4r\)D. \((x-a)^2 + (y-b)^2 = r\)答案:A2. 圆的一般方程是()。
A. \(x^2 + y^2 + Dx + Ey + F = 0\)B. \(x^2 + y^2 + Dx - Ey + F = 0\)C. \(x^2 + y^2 - Dx + Ey - F = 0\)D. \(x^2 + y^2 - Dx - Ey - F = 0\)答案:A3. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 4答案:B二、填空题1. 圆的周长公式是 \(C = 2\pi r\),其中 \(r\) 代表圆的半径,\(\pi\) 是圆周率,其值约为 ________。
答案:3.141592. 圆的面积公式是 \(A = \pi r^2\),其中 \(r\) 代表圆的半径。
若圆的半径为 5,则其面积为 ________。
答案:78.54三、解答题1. 已知圆心为 \((2, -3)\),半径为 4,求该圆的方程。
答案:\((x-2)^2 + (y+3)^2 = 16\)2. 已知圆的方程为 \(x^2 + y^2 - 6x + 8y - 24 = 0\),求该圆的圆心和半径。
答案:圆心为 \((3, -4)\),半径为 5。
3. 已知两圆的方程分别为 \((x-1)^2 + (y+2)^2 = 9\) 和\((x+2)^2 + (y-3)^2 = 16\),求两圆的公共弦所在的直线方程。
答案:\(5x - 2y - 8 = 0\)四、证明题1. 证明:若两圆相切,则两圆心之间的距离等于两圆半径之和或之差。
答案:略2. 证明:若圆的直径垂直于弦,则该弦为圆的直径。
关于圆的几何证明计算题的解题方法
关于圆的几何证明计算题的解题方法经过圆心的弦是直径;圆上任意两点间的部分叫做圆弧,简称弧;圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;由弦及其所对的弧组成的图形叫做弓形。
(1)当两圆外离时,d>R_+r;(2)当两圆相外切时,d=R_+r;(3)当两圆相交时,R_-r<d<R_+r(R≥r);(4)当两圆内切时,d=R_-r(R>r);(4)当两圆内含时,d<R_-r。
其中,d为圆心距,R、r分别是两圆的半径。
如何判定四点共圆,我们主要有以下几种方法:(1)到一定点的距离相等的n个点在同一个圆上;(2)同斜边的直角三角形的各顶点共圆;(3)同底同侧相等角的三角形的各顶点共圆;(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若PA_*PB=PC_*PD,则它的四个顶点共圆。
1、作直径上的圆周角当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一条件来证明问题.2、作弦心距当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.3、过切点作半径当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性质来证明问题.4、作直径当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这一性质来证明问题.5、作公切线当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切线找到两圆之间的关系.6、作公共弦当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找出两圆的角之间的关系.7、作两圆的连心线若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直平分公共弦或;两相切圆的连心线必过切点来证明问题.8、作圆的切线若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利用弦切角定理来证明问题.9、一圆过另一圆的圆心时则作半径题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,还可以通过作圆的半径,利用同圆的半径相等来证明问题.10、作辅助圆当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。
初三数学圆专项练习题大全
初三数学圆专项练习题大全圆是数学中一个重要的几何概念,它在几何题中经常出现。
为了帮助初三学生更好地掌握圆的知识,以下是一份初三数学圆专项练习题的大全,包括了常见的圆的性质、弧与弦的关系、切线与割线等内容。
希望同学们通过这些练习题的训练,能够熟练掌握圆的相关知识,并能灵活运用于解题中。
1. 圆的面积计算题(1) 已知圆的半径为r,求圆的面积。
(2) 已知圆的直径为d,求圆的面积。
2. 圆的周长计算题(1) 已知圆的半径为r,求圆的周长。
(2) 已知圆的直径为d,求圆的周长。
3. 相关性质题(1) 在一个圆内,连接圆心和圆上一点A,再连接另一点B在圆上,证明线段AB是圆的半径。
(2) 若两圆相交于点A和点B,那么点A、点B与两圆心连线的关系是什么?(3) 圆的切线与半径的关系是什么?(4) 圆的割线与半径的关系是什么?4. 圆的切线与弦的关系题(1) 若AB是圆的切线,C是弦上一点,证明AB与直径AC的夹角等于角ACB。
(2) 若AD是圆的直径,B是圆上一点,证明ACB是直角。
5. 多边形与圆的关系题(1) 若一个正多边形的每个顶点均位于同一个圆上,那么这个正多边形的内角和是多少度?(2) 若一个正多边形的内角和等于360度,那么这个正多边形的每个顶点都位于同一个圆上吗?6. 圆的切线长度计算题(1) 已知切点A到圆心的距离为r,切线段AB的长度为x,求x的值。
7. 圆的弦长计算题(1) 已知弦CD的长度为x,求弦AB的长度。
8. 圆的切线长与切点到圆心距离关系题(1) 切线段AB长为12,切点到圆心的距离为5,求切点到圆的切线的长度。
以上是一部分初三数学圆专项练习题的大全,希望同学们能够认真训练,掌握圆的相关性质和计算方法。
通过不断的练习和巩固,相信你们一定能够在数学中取得更大的进步!。
圆的专项练习题
圆的专项练习题一、选择题1. 圆的周长公式是()。
A. C = πdB. C = 2πrC. C = πrD. C = 2πd2. 圆的面积公式是()。
A. S = πr²B. S = 2πrC. S = πdD. S = πd²3. 半径为5厘米的圆的周长是()厘米。
A. 31.4B. 15.7C. 62.8D. 3144. 半径为3厘米的圆的面积是()平方厘米。
A. 28.26B. 9C. 4.5D. 285. 圆的直径是半径的()倍。
A. 2B. 1/2C. 1/3D. 3二、填空题6. 半径为2厘米的圆的周长是________厘米。
7. 半径为4厘米的圆的面积是________平方厘米。
8. 如果一个圆的周长是31.4厘米,那么它的半径是________厘米。
9. 一个圆的直径是8厘米,那么它的半径是________厘米。
10. 如果一个圆的面积是78.5平方厘米,那么它的半径是________厘米。
三、计算题11. 一个圆形花坛的直径是20米,求这个花坛的周长和面积。
12. 一个圆形的钟表的半径是10厘米,求这个钟表的周长和面积。
13. 一个圆形水池的半径是15米,如果沿着水池的边缘铺设一条1米宽的小路,求这条小路的面积。
四、应用题14. 一个圆形的花园,半径为10米,现在要在花园周围铺设一条宽2米的环形小路,求这条小路的面积。
15. 一个圆形的水池,半径为5米,现在要在水池的中心建造一个圆形的喷泉,喷泉的半径为2米,求喷泉占据的面积。
五、解答题16. 某工厂需要制作一个圆形的金属盖子,直径为1米,求这个盖子的周长和面积。
17. 一个圆形的花坛,半径为15米,现在要在花坛的周围铺设一条宽1米的环形小路,求这条小路的面积。
18. 一个圆形的操场,半径为30米,如果沿着操场的边缘铺设一条宽5米的跑道,求这条跑道的面积。
六、证明题19. 证明:在一个圆中,任意两个直径所夹的圆心角相等。
圆的计算题与证明题
xx 1.(本小题满分14分)如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x 正半轴上,OA=312cm ,点B 在y 轴的正半轴上,OB=12cm ,动点P 从点O 开始沿OA 以32cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s.(1)求∠OAB 的度数.(2)以OB 为直径的⊙O ‘与AB 交于点M ,当t 为何值时,PM 与⊙O ‘相切?(3)写出△PQR 的面积S 随动点移动时间t 的函数关系式,并求s 的最小值及相应的t 值.(4)是否存在△APQ 为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.x 第一题解:(1)在Rt △AOB 中:tan ∠OAB=3331212==OA OB ∴∠OAB=30°(2)如图10,连接O ‘P ,O ‘M. 当PM 与⊙O ‘相切时,有∠PM O ‘=∠PO O ‘=90°,△PM O ‘≌△PO O ‘由(1)知∠OBA=60° ∵O ‘M= O ‘B∴△O ‘BM 是等边三角形 ∴∠B O ‘M=60°可得∠O O ‘P=∠M O ‘P=60° ∴OP= O O ‘·tan ∠O O ‘P=6×tan60°=36又∵OP=32t ∴32t=36,t=3 即:t=3时,PM 与⊙O ‘相切.(3)如图9,过点Q 作QE ⊥x 于点E∵∠BAO=30°,AQ=4t ∴QE=21AQ=2t AE=AQ ·cos ∠OAB=4t ×t 3223= ∴OE=OA-AE=312-32t∴Q 点的坐标为(312-32t ,2t ) S △PQR = S △OAB -S △OPR -S △APQ -S △BRQ=)32312(2212)32312(21)212(32213121221t t t t t t -⋅-⋅---⋅⋅-⋅⋅ =372336362+-t t=318)3(362+-t (60<<t )当t=3时,S △PQR 最小=318x(4)分三种情况:如图11.○1当AP=AQ 1=4t 时, ∵OP+AP=312∴32t+4t=312∴t=2336或化简为t=312-18○2当PQ 2=AQ 2=4t 时 过Q 2点作Q 2D ⊥x 轴于点D ,∴PA=2AD=2A Q 2·cosA=34t即32t+34t =312∴t=2 ○3当PA=PQ 3时,过点P 作PH ⊥AB 于点H AH=PA ·cos30°=(312-32t )·23=18-3t AQ 3=2AH=36-6t得36-6t=4t ,∴t=3.6综上所述,当t=2,t=3.6,t=312-18时,△APQ 是等腰三角形.2.已知:如图,ABC ∆内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q .(1)求证:P 是ACQ ∆的外心;(2)若3tan ,84ABC CF ∠==,求CQ 的长;(3)求证:2()FP PQ FP FG +=.2. 答案:(1)证明:∵C是AD的中点,∴AC CD=,∴∠CAD=∠ABC∵AB是⊙O的直径,∴∠ACB=90°。
中考数学十大题型专练卷-题型08 与圆有关的证明与计算题
题型08 与圆有关的证明与计算题一、单选题1.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°2.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .273.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°4.如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m5.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在AB 上的点D 处,且:1:3BD AD ''=(BD '表示BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:96.如图,边长为ABC ∆的内切圆的半径为( )A .1B C .2D .7.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A 2π- B 2π+ C .πD .2π-8.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( )A .4B .6.25C .7.5D .99.如图,AB 是O 的直径,C ,D 是O 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC BDB .AD OC ⊥ C .CEF BED ∆≅∆ D .AF FD =10.如图,在Rt ABC ∆中,90304ACB A BC ∠=︒∠=︒=,,,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .43π-B .23πC .13π-D .13π二、填空题11.如图,O 的两条相交弦AC 、BD ,60ACB CDB ︒∠=∠=,AC =则O 的面积是_______.12.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)13.如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,AB BF =,1CE =,6AB =,则弦AF 的长度为______.14.如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为__________.15.如图,在平面直角坐标系中,已知D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,,OC 与D 交于点C ,30OCA ∠=︒,则圆中阴影部分的面积为_____.16.如图,AB 是圆O 的弦,OC AB ⊥,垂足为点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则圆O 的半径为_____.17.如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________18.如图,在圆心角为90°的扇形OAB 中,2OB =,P 为AB 上任意一点,过点P 作PE OB ⊥于点E ,设M 为OPE ∆的内心,当点P 从点A 运动到点B 时,则内心M 所经过的路径长为_____.19.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.20.如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若=OA 影部分的面积为_____.三、解答题21.如图,ABC ∆内接于O ,直径AD 交BC 于点E ,延长AD 至点F ,使2DF OD =,连接FC 并延长交过点A 的切线于点G ,且满足//AG BC ,连接OC ,若1cos 3BAC ∠=,6BC =. (1)求证:COD BAC ∠=∠; (2)求O 的半径OC ;(3)求证:CF 是O 的切线.22.如图,Rt ABC ∆内接于O ,90,2ACB BC ∠=︒=.将斜边AB 绕点A 顺时针旋转一定角度得到AD ,过点D 作DE AC ⊥于点,,1E DAE ABC DE ∠=∠=,连接DO 交O 于点F .(1)求证:AD 是O 的切线;(2)连接FC 交AB 于点G ,连接FB 求证:2FG =G0GB •.23.如图1,有一个残缺的圆,请做出残缺圆的圆心O (保留作图痕迹,不写做法) 如图2,设AB 是该残缺圆O 的直径,C 是圆上一点,CAB ∠的角平分线AD 交O 于点D ,过点D 作O 的切线交AC 的延长线于点E .(1)求证:AE DE ⊥;(2)若3DE =,2AC =,求残缺圆的半圆面积.24.如图1,已知⊙O 外一点P 向⊙O 作切线P A ,点A 为切点,连接PO 并延长交⊙O 于点B ,连接AO 并延长交⊙O 于点C ,过点C 作CD PB ⊥,分别交PB 于点E ,交⊙O 于点D ,连接AD .(1)求证:△APO ~△DCA ; (2)如图2,当AD AO =时 ①求P ∠的度数;②连接AB ,在⊙O 上是否存在点Q 使得四边形APQB 是菱形.若存在,请直接写出PQCQ的值;若不存在,请说明理由.25.四边形ABCD 是O 的圆内接四边形,线段AB 是O 的直径,连结AC BD 、.点H 是线段BD 上的一点,连结AH CH 、,且,ACH CBD AD CH ∠=∠=,BA 的延长线与CD 的延长线相交与点P . (1)求证:四边形ADCH 是平行四边形;(2)若,AC BC PB ==,1)AB CD += ①求证:DHC ∆为等腰直角三角形; ②求CH 的长度.26.如图,点I 是ABC ∆的内心,BI 的延长线与ABC ∆的外接圆O 交于点D ,与AC 交于点E ,延长CD 、BA 相交于点F ,ADF ∠的平分线交AF 于点G .(1)求证:DG CA ;(2)求证:AD ID =;(3)若4DE =,5BE =,求BI 的长.27.如图,在矩形ABCD 中,2CD =,4=AD ,点P 在BC 上,将ABP ∆沿AP 折叠,点B 恰好落在对角线AC 上的E 点.O 为AC 上一点,O 经过点A ,P .(1)求证:BC 是O 的切线;(2)在边CB 上截取CF CE =,点F 是线段BC 的黄金分割点吗?请说明理由.28.宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,64BCD ∠=︒,60BC cm =,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置'E ,求'EE 的长.(结果精确到0.1cm ,参考数据:sin 640.90︒≈,cos640.44︒≈,tan64 2.05︒≈)29.(材料阅读):地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.(实际应用):观测点A在图1所示的O上,现在利用这个工具尺在点A处测得α为31︒,在点A所在子⊥.午线往北的另一个观测点B,用同样的工具尺测得α为67︒.PQ是O的直径,PQ ON∠的度数;(1)求POBOP=km,求这两个观测点之间的距离即O上AB的长.(π取3.1)(2)已知640030.如图,A B C D E 、、、、是O 上的5等分点,连接AC CE EB BD DA 、、、、,得到一个五角星图形和五边形MNFGH . (1)计算CAD ∠的度数;(2)连接AE ,证明:AE ME =; (3)求证:2ME BM BE =⋅.题型08 与圆有关的证明与计算题一、单选题1.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC =∠OCA =∠AOC ,得出△OAC 是等腰三角形,得出∠BOC =∠AOC =60°即可. 【详解】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D .【点睛】本题考查垂径定理,解题关键证明AC BC =. 2.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27【答案】D【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠= 903654AOB ∴∠=-= OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键 3.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°【答案】A【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数. 【详解】根据题意连接OC .因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯= 因为BD 为直径,所以可得23818058COD ︒︒︒∠=-= 由于COP ∆为直角三角形 所以可得905832P ︒︒︒∠=-= 故选A .【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值. 【详解】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .【点睛】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度.5.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在AB 上的点D 处,且:1:3BD AD ''=(BD '表示BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可. 【详解】解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒, 30OAM ∴∠=︒, 60AOM ∴∠=︒,且:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l ,802180lr ππ=, :2:9r l ∴=.故选:D .【点睛】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.6.如图,边长为ABC ∆的内切圆的半径为( )A .1BC .2D .【答案】A【分析】连接AO 、CO ,CO 的延长线交AB 于H ,如图,利用内心的性质得CH 平分∠BCA ,AO 平分∠BAC ,再根据等边三角形的性质得∠CAB =60°,CH ⊥AB ,则∠OAH =30°,AH =BH =12AB =3,然后利用正切的定义计算出OH 即可.【详解】设ABC ∆的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图, ∵ABC ∆为等边三角形,∴CH 平分BCA ∠,AO 平分BAC ∠,∵ABC ∆为等边三角形, ∴60CAB ︒∠=,CH AB ⊥,∴30OAH ︒∠=,12AH BH AB ===在Rt AOH ∆中,∵OHtan tan30AHOAH ︒∠==,∴1OH ==, 即ABC ∆内切圆的半径为1. 故选A .【点睛】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质.7.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A .42π- B .42π+ C .πD .2π-【答案】A【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,利用∠A 的正切值求出∠A =30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H , 则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,∠ABC =90°,AB =BC =2,tan ∠A =3BC AB ==, ∴∠A =30°,∴OH =12OA AH =AO •cos ∠A 32=,∠BOC =2∠A =60°, ∴AD =2AH =3,∴S阴影=S△ABC-S△AOD-S扇形BOD=2601123222360π⨯⨯-⨯⨯-2π,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.8.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )A.4B.6.25C.7.5D.9【答案】A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S △ABC =S △AOB +S △AOC +S △BOC , ∴11()22AB AC BC r AB AC ++=⋅, ∴r =2,∴S 四边形AEOF =r ²=4, 故选A .【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键. 9.如图,AB 是O 的直径,C ,D 是O 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC BDB .AD OC ⊥ C .CEF BED ∆≅∆ D .AF FD =【答案】C【分析】由圆周角定理和角平分线得出90ADB ∠=︒,OBC DBC ∠=∠,由等腰三角形的性质得出OCB OBC ∠=∠,得出DBC OCB ∠=∠,证出OC BD ,选项A 成立;由平行线的性质得出AD OC ⊥,选项B 成立;由垂径定理得出AF FD =,选项D 成立;CEF ∆和BED ∆中,没有相等的边,CEF ∆与BED ∆不全等,选项C 不成立,即可得出答案. 【详解】∵AB 是O 的直径,BC 平分ABD ∠,∴90ADB ∠=︒,OBC DBC ∠=∠, ∴AD BD ⊥, ∵OB OC =, ∴OCB OBC ∠=∠, ∴DBC OCB ∠=∠, ∴OCBD ,选项A 成立;∴AD OC ⊥,选项B 成立; ∴AF FD =,选项D 成立;∵CEF ∆和BED ∆中,没有相等的边, ∴CEF ∆与BED ∆不全等,选项C 不成立, 故选C .【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.10.如图,在Rt ABC ∆中,90304ACB A BC ∠=︒∠=︒=,,,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .43π-B .23πC .13π-D .13π【答案】A【分析】根据三角形的内角和得到60B ∠︒=,根据圆周角定理得到12090COD CDB ∠︒∠︒=,=,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt ABC ∆中,9030ACB A ∠︒∠︒=,=,60B ∴∠︒=, 120COD ∴∠︒=,4BC =,BC 为半圆O 的直径, 90CDB ∴∠︒=, 2OC OD ∴==,CD ∴==图中阴影部分的面积2120214136023COD COD S S ππ∆⋅⨯-⨯=扇形=﹣= 故选:A .【点睛】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积。
九年级数学上册第二十四章圆专题复习小专题七圆中常见的计算题课件新版新人教版114
A.20 3
B.40
C.20 5
D.45
10.如图,在☉O 中,OA=AB,OC⊥AB,交☉O 于点 C,那么下列结论错误
的是
( A )
A.∠BAC=30°
B. =
C.线段 OB 的长等于圆内接正六边形的半径
D.弦 AC 的长等于圆内接正十二边形的边长
11.如图,正六边形ABCDEF的边长为2,则该正六边形的外接圆与内切圆所形成的圆环面积为
PA=75 cm.若钢管的厚度忽略不计,则的长为
( A )
50
3
A. π cm
B.50π cm
25
3
C. π cm
D.50 3π cm
7.如图,已知在☉O 中,直径 MN=10,四边形 ABCD 是正方形,并且∠
POM=45°,则 AB 的长为
5 .
8.如图,AB=BC,以AB为直径的☉O交AC于点D,过点D作DE⊥BC,垂足为E.
的动点( D 不与 B,C 重合 ),若∠A=40°,则∠BDC 的度数是
( A )
A.25°或 155° B.50°或 155°
C.25°或 130° D.50°或 130°
4.( 潍坊中考 )如图,四边形ABCD为☉O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足
为E,连接BD,∠GBC=50°,则∠DBC的度数为( C )
中圆心角的度数为 120° .
类型 5 圆中分类讨论问题
18.在半径为 5 cm 的☉O 中,如果弦 CD=8 cm,直径 AB⊥CD,垂足为 E,那么 AE
的长为 2 cm 或 8 cm .
19.☉O 为△ABC 的外接圆,∠BOC=100°,则正比例函数 y= x 图象上的一个动点,☉P 的半径为 3,设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB《圆的证明与计算》专题研究圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.`(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
三、解题秘笈:1、判定切线的方法:}(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①要证直线垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线;(2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O的切线.(3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线.,(4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C,求证:CD是⊙O的切线.\2、与圆有关的计算:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程解决问题。
(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。
3、典型基本图型:图形1:如图1:AB 是⊙O 的直径,点E 、C 是⊙O 上的两点,基本结论有:(1)在“AC 平分∠BAE ”;“AD ⊥CD ”;“DC 是⊙O!(2)如图2、3,DE 等于弓形BCE 的高;DC =AE 的弦心距OF (或弓形BCE 的半弦EF )。
】(3)如图(4):AC 平分∠BAE 若CK ⊥AB 于K ,则: 》①CK=CD ;BK=DE ;CK=21BE=DC ;②⊿ADC ∽⊿ACB AC2=AD?AB图形2:如图:Rt ⊿ABC 中,∠ACB =90°。
点O 是AC 上一点,以OC 为半径作⊙O 交AC 于点E ,基本结论有:<(1)在“BO 平分∠CBA ”;“BO ∥DE ”;“AB 是⊙O 的切线”;“BD=BC ”。
四个论断中,知一推三。
图2图1图1A图2A图3AD 图4A"(2)①G 是⊿BCD 的内心;②;③⊿BCO ∽⊿CDE ⇒BO?DE=CO?CE=21CE 2; (3)在图(1)中的线段BC 、CE 、AE 、AD 中,知二求四。
图形3:如图:Rt ⊿ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于D ,基本结论有:【如右图:(1)DE 切⊙O ⇔E 是BC 的中点;(2)若DE 切⊙O ,则:①DE=BE=CE ;②D 、O 、B 、E 四点共圆⇒∠CED =2∠A③CD·CA=4BE 2, BABC BD CD R DE ==】图形特殊化:在(1)的条件下如图1:DE ∥AB ⇔⊿ABC 、⊿CDE 是等腰直角三角形;如图2:若DE 的延长线交AB 的延长线于点F ,若①31=EF DE ;②21=R BE…】图形4:如图,⊿ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点F ,图1图2CG=GD基本结论有:(1)DE ⊥AC ⇔DE 切⊙O ;(2)在DE ⊥AC 或DE 切⊙O 下,有:①⊿DFC 是等腰三角形;②EF=EC ;③D 是 的中点。
④与基本图形1的结论重合。
⑤连AD ,产生母子三角形。
?/图形5:如图:直线PR ⊥⊙O 的半径OB 于E ,PQ 切⊙O 于Q ,BQ 交直线PQ 于R 。
基本结论有:-(1)PQ=PR (⊿PQR 是等腰三角形); (2)在“PR ⊥OB ”、“PQ 切⊙O ”、“PQ=PR ”中,知二推一(3)2PR·RE=BR·RQ=BE·2R=AB 2^四、范例讲解: ¥1.△ABP 中,∠ABP =90°,以AB 为直径作⊙O 交AP 于C 点,弧⋂CF =⋂CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D.(1)求证:CD 为⊙O 的切线; (2)连BF 交AP 于E ,若BE =6,EF =2,求AFEF的值。
QR P E OA Q R P E OB Q R P E OA QRPEO B BF—2.直角梯形ABCD 中,∠BCD =90°,AB=AD+BC ,AB 为直径的圆交BC 于E ,连OC 、BD 交于F. ⑴求证:CD 为⊙O 的切线 ⑵若53 ABBE ,求DFBF 的值|3.如图,AB 为直径,PB 为切线,点C 在⊙O 上,AC ∥OP 。
(1)求证:PC 为⊙O 的切线。
!(2)过D 点作DE ⊥AB ,E 为垂足,连AD 交BC 于G ,CG =3,DE =4,求DBDG的值。
,4。
如图,已知△ABC 中,以边BC 为直径的⊙O 与边AB 交于点D ,点E 为 的中点,AF 为△ABC 的角平分线,且AF ⊥EC 。
(1)求证:AC 与⊙O 相切; (2)若AC =6,BC =8,求EC 的长)FOE CDBAO FH E DCBDAA5.如图,Rt △ABC ,以AB 为直径作⊙O 交AC 于点D , ,过D 作AE 的垂线,F 为垂足. (1)求证:DF 为⊙O 的切线; (2)若DF =3,⊙O 的半径为5,求tan BAC ∠的值.】—6.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点, ,过D 作直线BC 的垂线交直线AB 于点E ,F 为垂足. (1)求证:EF 为⊙O 的切线; (2)若AC =6,BD =5,求sin E 的值.!7.如图,AB 为⊙O 的直径,半径OC ⊥AB ,D 为AB 延长线上一点,过D 作⊙O 的切线,E 为切点,连结CE 交AB 于点F .(1)求证:DE=DF ; (2)连结AE ,若OF =1,BF =3,求tan A ∠的值.、8.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC ,以AB 上一点O 为圆心过B 、D 两点作⊙O ,⊙O 交AB 于点一点E ,EF ⊥AC 于点F.&(1)求证:⊙O 与AC 相切; (2)若EF =3,BC =4,求tan A ∠的值.BD=DEC…9.如图,等腰△ABC 中,AB=AC ,以AB 为直径作⊙O 交D ,DE ⊥AC 于E.(1)求证:DE 为⊙O 的切线; (2)若BC =,AE =1,求cos AEO ∠的值.(10.如图,BD 为⊙O 的直径,A 为的中点,AD 交BC 于点E ,F 为BC 延长线上一点,且FD=FE. >(1)求证:DF 为⊙O 的切线; (2)若AE =2,DE=4,△BDF 的面积为tan EDF ∠的值.、11、如图,AB 是⊙O 的直径,M 是线段OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E .(1)求证:CF 是⊙O 的切线; (2)设⊙O 的半径为1,且AC =CE =,求AM 的长.`12、如图,AB 是⊙O 的直径,BC ⊥AB ,过点C 作⊙O 的切线CE ,点D 是CE 延长线上一点,连结AD ,且AD+BC=CD .(1)求证:AD 是⊙O 的切线; (2)设OE 交AC 于F ,若OF =3,EF =2,求线段BC 的长.。
A F B;13、如图,△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,且CD=BD.(1)求证:BC是⊙O的切线;<(2)已知点M、N分别是AD、CD的中点,BM延长线交⊙O于E,EF∥AC,分别交BD、BN的延长线于H、F,若DH=2,求EF的长.14、如图,AB是半⊙O上的直径,E是⌒BC的中点,OE交弦BC于点D,过点C作交AD的平行线交OE的延长线于点F.且∠ADO=∠B.(1)求证:CF为⊙O的⊙O切线;(2)求sin∠BAD的值.15、如图,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.(1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长。