云南省昭通市2018-2019学年八年级下学期数学期末考试卷
云南省昭通市数学八年级下学期期末考试试卷
云南省昭通市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·连云港) 要使有意义,则实数x的取值范围是()A . x≥1B . x≥0C . x≥﹣1D . x≤02. (2分)(2019·邵阳模拟) 在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是()A . m<-1B . m>2C . -1<m<2D . m>-13. (2分)在统计中,样本的标准差可以反映这组数据的()A . 集中程度B . 分布规律C . 离散程度D . 数值大小4. (2分)下列直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A .B .C .D .5. (2分)(2019·毕节) 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A .B . 3C .D . 56. (2分)菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A . (3,1)B . (3,-1)C . (1,-3)D . (1,3)7. (2分)关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有()A . ①②③④B . ①③④C . ①②D . ③④8. (2分)如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y=于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积()A . 逐渐增大B . 逐渐减小C . 保持不变D . 无法确定二、填空题 (共6题;共6分)9. (1分) (2019九上·新蔡期末) 将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.10. (1分) (2019九上·镇江期末) 某单位要招聘1名英语翻译,张明参加招聘考试的成绩如表所示:成绩听说读写张明95909090若把听、说、读、写的成绩按4:3:2:1计算平均成绩,则张明的平均成绩为________.11. (1分)(2018·苏州模拟) 如图,已知点是一次函数图像上一点,过点作轴的垂线是上一点(在上方),在的右侧以为斜边作等腰直角三角形,反比例函数的图像过点,若的面积为6,则的面积是________.12. (1分)直角三角形两直角边的平方和等于________;反之,有两边的平方和等于________平方的三角形是直角三角形.13. (1分) (2018八上·长春期末) 已知,如图,网格中每个小正方形的边长为1,则四边形ABCD的面积为________.14. (1分)(2016·安陆模拟) 如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为________.三、综合题 (共10题;共74分)15. (5分) (2019七上·咸阳期中) 计算。
云南省昭通市八年级下学期数学期末考试试卷
云南省昭通市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2018·黔西南) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【考点】2. (2分)(2020·广西模拟) 下列命题正确的是()A . 概率是1%的事件在一次试验中一定不会发生B . 要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C . 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D . 随意翻到一本书的某页,页码是奇数是随机事件【考点】3. (2分) (2019九上·浙江期中) 下列说法正确的是()A . 抛一枚硬币,正面一定朝上B . 掷一颗骰子,朝上一面的点数一定不大于6C . 为了解一种灯泡的使用寿命,宜采用普查的方法D . “明天的降水概率为80%”,表示明天会有80%的地方下雨【考点】4. (2分) (2019八上·泉港期中) 如果关于x的方程无解,则m的值是()A . 2B . 0C . 1D . –2【考点】5. (2分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积v(单位:m3)满足函数关系式ρ=(k为常数,k≠0)其图象如图所示,则k的值为()A . 9B . -9C . 4D . -4【考点】6. (2分)如图,在平行四边形ABCD中,E是CD的中点,AD、BE的延长线交于点F,DF=3,DE=2,则平行四边形ABCD的周长为()A . 5B . 12C . 14D . 16【考点】二、填空题 (共10题;共14分)7. (1分) (2020七上·永吉期中) 吉林省人口约为27 170 000人,把27 170 000这个数据用科学记数法表示为________.【考点】8. (1分) (2018九下·鄞州月考) 一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为________ .【考点】9. (1分) (2020八下·奉化期中) 函数中自变量x的取值范围是________.【考点】10. (5分) (2017八上·宝坻月考) 对于分式,当x=________时,分式无意义;当x=________时,分式值为零.【考点】11. (1分)(2018·镇江) 反比例函数y= (k≠0)的图象经过点A(﹣2,4),则在每一个象限内,y随x的增大而________.(填“增大”或“减小”)【考点】12. (1分) (2020七下·新乡月考) 无理数的小数部分是________【考点】13. (1分)已知等腰三角形的两边长分别为2、5,则三角形的周长为________【考点】14. (1分) (2017七上·鄞州月考) m和n互为相反数,p和q互为倒数,a是绝对值最小的数,则的值为________【考点】15. (1分)(2017·阿坝) 如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y= 的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.【考点】16. (1分) (2019八下·太原期末) 从A,B两题中任选一题作答:A.如图,在ΔABC中,分别以点A,B为圆心,大于 AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。
云南省昭通市八年级下学期期末考试数学试题
云南省昭通市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·余姚月考) 若二次根式有意义,则x的取值范围是()A . x≥1B . x>1C . x≥-1D . x≤12. (2分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A . a<bB . a<3C . b<3D . c<﹣23. (2分) (2016八上·顺义期末) 以a、b、c为边长的三角形是直角三角形的是()A . a=3,b=5,c=7B . a=2,b=2,c=2C . a= ,b=3 ,c=3D . a= ,b= ,c=4. (2分)若函数y=与y=x+1的图象交于点A(a,b),则−的值为()A . -B .C . -3D . 35. (2分)(2019·泰安模拟) 以下是某初中九年级10名学生参加托球测试成绩成绩/个3540456070人数/人12421则这组数据的中位数、平均数分别是()A . 45,49B . 45,48.5C . 55,50D . 60,516. (2分) (2019七下·新乐期中) 如图,长方形ABCD中,AB=8,第一次平移长方形ABCD沿AB的方向向右平移6个单位,得到长方形A1B1C1D1 ,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移6个单位,得到长方形A2B2C2D2 ,……第n次平移将长方形An﹣1Bn﹣1Cn﹣1Dn﹣1的方向平移6个单位,得到长方形AnBn∁nDn (n>2),若ABn的长度为2018,则n的值为()A . 334B . 335C . 336D . 3377. (2分) (2017·平南模拟) 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A . 修车时间为15分钟B . 学校离家的距离为2000米C . 到达学校时共用时间20分钟D . 自行车发生故障时离家距离为1000米8. (2分)(2017·达州) 已知函数y= 的图象如图所示,点P是y轴负半轴上一动点,过点P 作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:①若点M1(x1 , y1),M2(x2 , y2)在图象上,且x1<x2<0,则y1<y2;②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;④当点P移动到使∠AOB=90°时,点A的坐标为(2 ,﹣).其中正确的结论个数为()A . 1B . 2C . 3D . 49. (2分)直线l1∥l2∥l3 ,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A .B .C .D .10. (2分)(2017·高青模拟) 如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A . 44°B . 54°C . 72°D . 53°二、填空题 (共8题;共8分)11. (1分)(2017·西秀模拟) 若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第________象限.12. (1分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是________13. (1分)(2019·名山模拟) 有一组数据:3,a,4,6,7,它们的平均数是5,则这组数据的方差是________.14. (1分) (2019九上·灌阳期中) 若的一元二次方程有两个不相等的实数根,则的取值范围是________.15. (1分)(2017·临沂模拟) 如图,反比例函数y= (k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为________.16. (1分)如图,经过点B(﹣4,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣2,﹣2),则不等式4x+2<kx+b<0的解集为________.17. (1分) (2020九下·武汉月考) 如图,⊙O 的半径为 3,AB 为圆上一动弦,以 AB 为边作正方形 ABCD,求 OD 的最大值________.18. (1分) (2020七上·扬州期末) 用火柴棒按如图所示方式搭图形,按照这种方式搭下去,搭第2020个图形需火柴棒的根数是________.三、解答题。
2018-2019学年度八年级下学期期末考试数学试卷(可编辑修改word版)
绝密★启用前2018-2019 学年度八年级下学期期末考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.选择题(本大题共6 小题,每小题3 分,共18 分,每小题只有一个正确选项)1.下列图形是中心对称图形的是()A.B.C.D.2.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2 B.< C.﹣2a<﹣2b D.﹣a>﹣b3.下列运算正确的是()A.(x﹣y)2=x2﹣y2 B.x3•x4=x12C.=x3 D.(x3y2)2=x6y44.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为()A.70°B.20°C.70°或20°D.40°或140°5.如图,P 为平行四边形ABCD 边AD 上一点,E、F 分别为PB、PC 的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定6.某密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2 分别对应下列六个字:中,爱,我,二,游,美,现将(x2﹣y2)a2﹣(x2﹣y2)b2 因式分解,结果呈现的密码信息可能是()A.我爱美B.二中游C.爱我二中D.美我二中二.填空题(本大题共6 小题,每小题3 分,共18 分)7.分解因式:x2﹣4x=.8.用不等式表示“a 与6 的差不是正数”:.9.在Rt△ABC 中,∠C=90°,∠A=30°,AB=6,则AC=.10.在平面直角坐标系中,点(3,4)关于原点对称的点的坐标是.11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于.12.如图,在平面直角坐标系中,O 为坐标原点,四边形ABCD 是平行四边形,点A、B、C的坐标分别为A(0,4),B(﹣2,0),C(8,0),点E 是BC 的中点,点P 为线段AD 上的动点,若△BEP 是以BE 为腰的等腰三角形,则点P 的坐标为.三.(本大题共5 小题,每小题6 分,共30 分)13.(1)化简:(a+2)2﹣2(2a﹣1);(2)解不等式组:.14.解不等式,并把解集表示在数轴上.15.先化简:()÷然后选取一个你认为合适的数作为x 的值代入求值.16.如图,平行四边形ABCD 中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1 中,作出∠DAE 的角平分线;(2)在图2 中,作出∠AEC 的角平分线.17.如图,已知∠BAC=60°,D 是BC 边上一点,AD=CD,∠ADB=80°,求∠B 的度数.四.(本大题共3 小题,每小题8 分,共24 分)18.已知关于x 的分式方程+=(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m 的值.19.如图,在Rt△ABC 中,∠ACB=90°,点D、E 分别在AB、AC 上,且CE=BC,连接CD,将线段CD 绕点C 按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.20.如图,已知△ABC 是等边三角形,点D、F 分别在线段BC、AB 上,DC=BF,以BF为边在△ABC 外作等边三角形BEF.(1)求证:四边形EFCD 是平行四边形.(2)△ABC 的边长是6,当点D 是BC 三等分点时,直接写出平行四边形CDEF 的面积.五.(本大题共2 小题,每小题9 分,共18 分)21.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4 元,用12000 元购进的科普书与用8000 元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000 元再购进一批文学书和科普书,问购进文学书550 本后至多还能购进多少本科普书?22.定义:如图1,点M,N 把线段AB 分割成AM,MN 和BN,若以AM,MN,BN 为边的三角形是一个直角三角形,则称点M,N 是线段AB 的勾股分割点.请解决下列问题:(1)已知点M,N 是线段AB 的勾股分割点,且BN>MN>AM.若AM=2,MN=3,求BN 的长;(2)如图2,若点F、M、N、G 分别是AB、AD、AE、AC 边上的中点,点D,E 是线段BC 的勾股分割点,且EC>DE>BD,求证:点M,N 是线段FG 的勾股分割点.六.(本大题12 题)23.小明同学在学习过程中得出两个结论,结论1:直角三角形中,60°内角的两夹边长是2倍的关系.结论2:在一个三角形中,如果60°内角的两夹边长是2 倍的关系,那么这个三角形是直角三角形.(1)上述结论1 .(填写“正确”或“不正确”)(2)上述结论2 正确吗?如果你认为正确,请你给出证明.如果你认为不正确,请你给出反例.(3)等边三角形ABC 边长为4,点P、Q 分别从A、B 出发,分别沿边AB、BC 运动,速度是每秒1 个单位长度,当P 点到达B 点时停止运动.请问当运动时间是多少秒时△ BPQ 是直角三角形?请你给出解题过程.2018-2019 学年度八年级下学期期末考试数学试卷参考答案一.选择题(本大题共6 小题,每小题3 分,共18 分,每小题只有一个正确选项)1.B.2.C.3.D.4.C.5.C.6.C.二.填空题(本大题共6 小题,每小题3 分,共18 分)7.x(x﹣4).8.a﹣6≤0 .9. 3 10.(﹣3,﹣4).11. 72°.12.(1,4)或(6,4)或(0,4).三.(本大题共5 小题,每小题6 分,共30 分)13.解:(1)原式=a2+4a+4﹣4a+2=a2+6;(2),由①得:x≥1,由②得:x<3,则不等式组的解集为1≤x<3.14.解:去分母得:x+5﹣2<3x+2,移项合并得:﹣2x<﹣1,解得:x>,15.解:原式=(﹣)÷=•=,∵x≠±1 且x≠0,∴取x=4,则原式=1.16.解:(1)连接AC,AC 即为∠DAE 的平分线;如图 1 所示:(2)①连接AC、BD 交于点O,②连接EO,EO 为∠AEC 的角平分线;如图2 所示.17.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.四.(本大题共3 小题,每小题8 分,共24 分)18.解:分式方程去分母得:2(x+2)+mx=x﹣1,整理得:(m+1)x=﹣5.(1)当m=4 时,(4+1)x=5,解得:x=﹣1经检验:x=﹣1 是原方程的解.(2)∵分式方程无解,∴m+1=0 或(x+2)(x﹣1)=0,当m+1=0 时,m=﹣1;当(x+2)(x﹣1)=0 时,x=﹣2 或x=1.当x=﹣2 时m=;当x=1 是m=﹣6,∴m=﹣1 或﹣6 或时该分式方程无解.19.证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC 和△EFC 中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.20.证明:(1)∵△ABC 是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD 是平行四边形;(2)解:过E 作EH⊥BC 交CB 的延长线于H,∵△ABC 和△BEF 是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D 是BC 三等分点,∴当CD=BC=2 时,平行四边形CDEF 的面积=2×=2 ,当CD=BC=4 时,平行四边形CDEF 的面积=4×2 =8 ,综上所述,平行四边形CDEF 的面积为2或8.五.(本大题共2 小题,每小题9 分,共18 分)21.解:(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得:,解得:x=8,经检验x=8 是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8 元和12 元.②设购进文学书550 本后还能购进y 本科普书.依题意得550×8+12y≤10000,解得,∵y 为整数,∴y 的最大值为466∴至多还能购进466 本科普书.22.(1)解∵点M,N 是线段AB 的勾股分割点,且BN>MN>AM,AM=2,MN=3,∴BN2=MN2+AM2=9+4=13,∴BN=;(2)证明∵点F、M、N、G 分别是AB、AD、AE、AC 边上的中点,∴FM、MN、NG 分别是△ABD、△ADE、△AEC 的中位线,∴BD=2FM,DE=2MN,EC=2NG,∵点D,E 是线段BC 的勾股分割点,且EC>DE>BD,∴EC2=DE2+DB2,∴4NG2=4MN2+4FM2,∴NG2=MN2+FM2,∴点M,N 是线段FG 的勾股分割点.六.(本大题12 分)23.解:(1)上述结论1 正确,如图1,∵∠C=90°,∠B=60°,∴∠A=30°,∴BC=AB,∴60°内角的两夹边长是2 倍的关系;故答案为:正确;(2)正确,如图2,取AB 的中点D,连接CD,∴BD=AD=AB,∵BC=AB,∴BC=BD,∵∠B=60°,∴△BDC 是等边三角形,∴∠BCD=∠BDC=60°,∵AD=CD,∴∠A=∠ACD=BDC=30°,∴∠ACB=90°,∴在一个三角形中,如果60°内角的两夹边长是2 倍的关系,那么这个三角形是直角三角形正确.(3)分两种情况考虑:(i)当PQ⊥BC 时,如图3 所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC 为等边三角形,∴∠B=60°,在Rt△BPQ 中,cos60°==,即=,解得:t=秒;(ii)当QP⊥AB 时,如图4 所示:由题意可得:AP=BQ=t,BP=4﹣t,∵△ABC 为等边三角形,∴∠B=60°,在Rt△BPQ 中,cos60°==,即=,解得:t=秒,综上所述,t 的值是秒或秒.第11 页(共10 页)。
云南省昭通市八年级下学期数学期末试卷
云南省昭通市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)能使分式的值为零的所有x的值是()A . x=1B . x=-1C . x=1或x=-1D . x=2或x=12. (2分)用科学记数法表示﹣0.0000064记为()A . ﹣64×10﹣7B . ﹣0.64×10﹣4C . ﹣6.4×10﹣6D . ﹣640×10﹣83. (2分)在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围()A . 3<x<5B . -3<x<5C . -5<x<3D . -5<x<-34. (2分)(2018·宁晋模拟) 在下图中,反比例函数的图象大致是()A .B .C .D .5. (2分) (2017八下·合浦期中) 在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A . 1:2:2:1B . 1:2:3:4C . 2:1:1:2D . 2:1:2:16. (2分)下列命题中,真命题是()A . 矩形的对角线相互垂直B . 顺次连结四边形各边中点所得到的四边形是矩形C . 等边三角形既是轴对称图形又是中心对称图形D . 对角线互相垂直平分的四边形是菱形7. (2分) (2017八下·卢龙期末) 下列命题正确的是()A . 对角线相等的四边形是矩形B . 对角线垂直的四边形是菱形C . 对角线互相垂直平分的四边形是矩形D . 对角线相等的菱形是正方形8. (2分)(2018·重庆) 下列命题正确的是()A . 平行四边形的对角线互相垂直平分B . 矩形的对角线互相垂直平分C . 菱形的对角线互相平分且相等D . 正方形的对角线互相垂直平分9. (2分)体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是甲=6.4,乙同学的方差是乙=8.2,那么这两名同学跳高成绩比较稳定的是()A . 甲B . 乙C . 甲乙一样D . 无法确定10. (2分)为备战升学体育考试,甲、乙、丙、丁四位同学都在积极地训练.在某天200米赛跑训练中,每人各跑了5次.据统计,他们的平均成绩都是26.2秒,甲、乙、丙、丁的成绩的方差分别是0.10,0.03,0.05,0.02.则当天这四位同学“200米赛跑”的训练成绩最稳定的是A . 甲B . 乙C . 丙D . 丁二、填空题 (共5题;共5分)11. (1分)各分母系数(都是整数)的最小公倍数与所有字母的________的积叫做最简公分母,它类似于小学分数中的________.12. (1分)(2017·渭滨模拟) 在平面直角坐标系中,已知点A、B的坐标分别为A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值=________.13. (1分)(2017·郯城模拟) 如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的序号).14. (1分)(2018·绍兴模拟) 如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为________.15. (1分) (2019九上·舟山期中) 根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐________.三、解答题 (共10题;共87分)16. (15分) (2018九上·南召期中) 先化简,再求值:,其中,.17. (5分)(2017·新吴模拟) 解下列各题(1)解方程: =1﹣(2)解不等式组:.18. (15分) (2017八上·曲阜期末) “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).19. (15分)(2020·云南模拟) 如图,在平面直角坐标系中,直线l经过原点,且与反比例函数图象 y=交于点 A(1,2),点B(m,-2).分别过A,B作AC⊥y轴于C,BD⊥y轴于D,再以AC,BD为半径作⊙A和⊙B.(1)求反比例函数的解析式及m的值;(2)求图中阴影部分的面积.20. (5分) (2019八下·汕头月考) 一个正方形的边长为a厘米,它的面积与长为20厘米,宽为8厘米的长方形的面积相等,求a的值。
云南省昭通市数学八年级下学期期末考试试卷
云南省昭通市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018九上·宜城期末) 在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标是()A . (﹣1,﹣2)B . (1,2)C . (2,﹣1)D . (1,﹣2)2. (2分) (2019九上·东河月考) 在中,,,,则AC等于()A . 18B . 2C .D .3. (2分) (2019八下·永康期末) 如图,E,F分别是矩形ABCD的边AB,CD上的点,将四边形AEFD沿直线EF折叠,点A与点C重合,点D落在点D处,已知AB=8,BC=4,则AE的长是()A . 4B . 5C . 6D . 74. (2分) (2016九上·乐至期末) 河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是()A . 5 米B . 10米C . 15米D . 10 米5. (2分) (2017九上·浙江月考) 若二次函数y=(a+1)x2+3x+a2﹣1的图象经过原点,则a的值必为().A . 1或﹣1B . ﹣1C . 0D . 16. (2分) (2015九上·宜昌期中) 一元二次方程x2﹣2x=0的一次项系数是()A . 2B . ﹣2C . 1D . 07. (2分) (2018九上·太仓期末) 如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E= ;④S△DEF=4 ,其中正确的是()A . ①②③B . ①②④C . ②③④D . ①②③④8. (2分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣2﹣1012y830﹣10则抛物线的顶点坐标是()A . (﹣1,3)B . (0,0)C . (1,﹣1)D . (2,0)二、填空题 (共6题;共6分)9. (1分) (2018九上·宝应月考) 如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)________.( 1 )图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.10. (1分) (2016九上·苍南月考) 点A(2,y1),B(3,y2)是抛物线上的两点,则y1与y2的大小关系为y1________y2(填“>”“<”或“=”).11. (1分) (2019八上·大庆期末) 在菱形ABCD中,对角线AC=30,BD=60,则菱形ABCD的面积为________.12. (1分)(2018·青浦模拟) 如果两个相似三角形周长的比是2:3,那么它们面积的比是________.13. (1分) (2019八下·包河期末) 如图,正方形ABCD的边长是5,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.14. (1分) (2017九上·黑龙江月考) 如图,在△ABC中,tanB= ,AB=10,AC=2 ,将线段AB绕点A旋转到AD,使AD∥BC,连接CD,则CD=________.三、综合题 (共10题;共84分)15. (5分) (2020七下·蚌埠月考) 计算:(1);(2).16. (5分) (2019九上·武汉月考) 解方程: x2-2x-9=0.17. (6分) (2019九上·利辛月考) 在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(顶点是网格线的交点)(1)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A1B1C1;(2)△A1B1C1的面积是________。
云南省昭通市八年级下学期数学期末考试试卷
云南省昭通市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2018八上·合肥期中) 直线的截距是()A .B .C .D .2. (2分) (2019七下·遂宁期中) 若关于x的方程2x-(2a-1)x+3=0的解为x=3,则a的值是()A . -2B . 0C . 1D . 23. (2分) (2018七下·黑龙江期中) 下列各式中是二元一次方程的是()A . x+y=3zB . ﹣3y=2C . 5x﹣2y=﹣1D . xy=34. (2分) (2019九下·温州竞赛) 下列事件中,是必然事件的是()A . 秀秀打开电视,正在播放广告B . 掷一枚质地均匀的硬币,一定正面向上C . 如果a2=b2 ,那么a=bD . 任意画一个n边形,其n个不共顶点的外角和是360°5. (2分) (2020八上·潜江期末) 已知一个三角形的两边长为5和10,则第三边的长可以为()A . 5B . 10C . 15D . 206. (2分)(2019·霞山模拟) 下列判断错误的是()A . 两组对边分别相等的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 两条对角线垂直且平分的四边形是正方形D . 四条边都相等的四边形是菱形二、填空题 (共12题;共13分)7. (1分) (2017八下·汶上期末) 已知函数:y= ,当x=2时,函数值y为________.8. (1分) (2017八上·深圳月考) 一次函数y=x+4的图象经过点P(a,b)和Q(c,d),则b(c-d)-a(c-d)的值为________9. (1分)(2018·龙岗模拟) 将一次函数的图象向下平移3个单位长度,相应的函数表达式为________.10. (1分)(1)16的算术平方根是________ ;(2)-27的立方根是________ .11. (1分) (2018八下·嘉定期末) 用换元法解方程时,如果设,那么所得到的关于的整式方程为________12. (1分)(2017·宿迁) 若关于x的分式方程 = ﹣3有增根,则实数m的值是________.13. (2分) (2016九上·常熟期末) 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出________球的可能性最大.14. (1分) (2019七下·东台月考) 一个凸 n 边形,其每个外角都等于30°,则n =________.15. (1分) (2019九上·崇明期末) 化简: ________.16. (1分)如图,△ABC和△ 关于点O成中心对称,那么连结线段、、,它们都经过点________,且________=________,________=________,________=________.17. (1分)(2018·青浦模拟) 如图,在△ABC中,点D是边AB的中点.如果,,那么________(结果用含、的式子表示).18. (1分) (2016七下·下陆期中) 如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C′的位置,若∠EFB=65°,则∠AED′等于________°.三、解答题 (共7题;共60分)19. (5分) (2018八下·嘉定期末) 解方程:20. (5分)(2017·宿州模拟) 解方程组:.21. (5分) (2018八下·嘉定期末) 已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)22. (5分)(2016·贵阳模拟) 暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险.半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?23. (15分)(2019·广州模拟) 如图,在矩形ABCD中,(1)尺规作图:作于点F;保留作图痕迹,不写作法(2)求证:.24. (15分)(2018·正阳模拟) 小明从家去体育场锻炼,同时,妈妈从体育场以米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以米/分的速度回家取伞,立即又以米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离(米)与小明出发的时间(分)之间的函数图像.(注:小明和妈妈始终在同一条笔直的公路上行走,图像上、、三点在一条直线上)(1)求线段的函数表达式.(写出自变量的取值范围)(2)求点坐标,并说明点的实际意义.(3)当的值为________时,小明与妈妈相距米.25. (10分) (2015八下·绍兴期中) 在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P 从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共60分) 19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
昭通市八年级下学期数学期末考试试卷
昭通市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列调查中,适合用抽样调查的是()①市场上某种食品的某种添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全省中学生一天的学习时间.A . ①②B . ①③C . ②③D . ①②③2. (2分)能判定四边形ABCD是平行四边形的条件是:∠A:∠B:∠C:∠D的值为()A . 1:2:3:4B . 1:4:2:3C . 1:2:2:1D . 1:2:1:23. (2分)如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A . 2:5:25B . 4:9:25C . 2:3:5D . 4:10:254. (2分)(2019·亳州模拟) 在同一平面直角坐标系中,函数y=ax+a(a≠0)与y= (a≠0)的图象可能是()A .B .C .D .5. (2分)(2012·资阳) 如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 有一组对边平行的四边形是梯形C . 一组对边相等,一组对角相等的四边形是平行四边形D . 对角线相等的平行四边形是矩形6. (2分)(2017·东营) 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC 面积的一半,若BC= ,则△ABC移动的距离是()A .B .C .D . ﹣7. (2分)已知a<0,那么点P(,2-a)关于x轴对称的对应点P'所在象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)(2016·南沙模拟) 在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1 ,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2 ,作第三个正方形A2B2C2C1 ,…,按这样的规律进行下去,第2016个正方形的面积为()A . 20×()4030B . 20×()4032C . 20×()2016D . 20×()20159. (2分) (2017八下·下陆期中) 下列说法中错误的是()A . 平行四边形的对角线互相平分B . 两组对边分别相等的四边形是平行四边形C . 矩形的对角线相等D . 有一组邻边相等且有一个角是直角的四边形是正方形10. (2分)已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为()A .B .C .D .二、填空题 (共10题;共18分)11. (1分) (2017九下·丹阳期中) 已知菱形ABCD的对角线AC、BD相交于点O ,AE⊥BC , BD =8,sin∠CBD=,则AE=________。
2018-2019学年八年级数学下学期期末考试卷
八年级数学下学期期末考试卷一、选择题:(每小题3分,共30分,每小题只有一个答案) 1.在数轴上表示不等式x ≥-2的解集,正确的是( )A B C D2.已知x y >,则下列不等式不成立的是 ( ). A .66x y ->- B .33x y > C .22x y -<- D .3636x y -+>-+3.函数y =kx +b (k 、b 为常数,k ≠0)的图象如右 图所示,则关于x 的不等式kx+b>0的解集为( ). A .x>0 B .x<0 C .x<2 D .x>2 4.下列从左到右的变形中,是分解因式的是( ) A .a 2–4a +5=a (a –4)+5B .(x +3)(x +2)=x 2+5x +6C .a 2–9b 2=(a +3b )(a –3b )D .(x +3)(x –1)+1=x 2+2x +2 5. 已知一个多边形的内角和是540°,则这个多边形是( ) A.四边形 B .五边形C.六边形D.七边形6. 如右图所示,DE 是线段AB 的垂直平分线, 下列结论一定成立的是( )A. ED=CDB. ∠DAC=∠BC. ∠C>2∠BD. ∠B+∠ADE=90°7.下列四个分式的运算中,其中运算结果正确的有( )①ba b a +=+211; ②()3232a a a =;③b a b a b a +=++22;④31932-=--a a a ; A .0个 B .1个 C.2个 D. 3个8.若将分式24a ba +中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( )A .扩大为原来的2倍 B.分式的值不变 C.缩小为原来的21D.缩小为原来的419.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的同学共有x 人,则根据题意可列方程( )A .32180180=+-x x B .31802180=-+xx C .3180180+-x x =2D .21803180=-+xx10. 如右图,点E的边CD 的中点,AD 、BE 的延长线相交于点F ,DF=3,DE=2 ABCD 的周长为( ) A .5 B .7 C .10 D .14 二、填空题:(每小题3分,共30分)11.不等式930x ->的非负整数解是 . 12.若a 2+kab +25b 2是一个完全平方式,则k = . 13、如图,在△ABC 中,∠C =90°,D 为BC 上的一点,且DA =DB ,DC =AC .则∠B = 度;(第13题图) (第14题图) (第15题图) 14、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于点D,∠A =30°,BD =1.5cm ,则AB= cm ;15.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可).16、当x 时,分式11x 2+-x 的值为零。
2018-2019学年第二学期八年级数学期末测试题及答案
第二学期期末数学测试题(本试卷满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.如图,在△中,,点是斜边的中点,,且,则∠()A.B.C.D.2.如图,在□ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH交于点O ,则该图中的平行四边形的个数为()A.7 B .8 C .9D.113.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个4.下列命题,其中真命题有()①4的平方根是2;②有两边和一角相等的两个三角形全等;③连接任意四边形各边中点的四边形是平行四边形.A.0个B.3个C.2个D.1个5.已知不等式组2112x x a≥,≥的解集是,则的取值范围为()新|课| 标|第|一| 网A. B.C. D.6.分式方程123x x的解为()A. B. C. D.7.下列条件中,能判定四边形是平行四边形的是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直8.要使分式有意义,则应满足()A .≠-1B .≠2C .≠±1D .≠-1且≠2 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为()A.24B.36C.40D.4810.若解分式方程441xm x x 产生增根,则()A. B.C.D.二、填空题(每小题3分,共24分)11.如图,在△中,∠,是△的角平分线,于点,.则∠等于______.12.关于的不等式组bax a bx 22,的解集为,则的值分别为_______. 13.若□的周长是30,相交于点,且△的周长比△的周长大,则= .14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为________.15.分解因式:__________.16.张明与李强共同清点一批图书,已知张明清点完本图书所用的时间与李强清点完本图书所用的时间相同,且李强平均每分钟比张明多清点本,则张明平均每分钟清点图书本.17. 若分式方程的解为正数,则的取值范围是.18.如图(1),平行四边形纸片的面积为,,.沿两条对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图(2)所示,则图形戊的两条对角线长度之和是___ .三、解答题(共66分)19.(6分)阅读下列解题过程:已知为△的三边长,且满足,试判断△的形状.解:因为,①所以.②新课标第一网所以.③所以△是直角三角形.④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为;(2)错误的原因为;(3)请你将正确的解答过程写下来.EACDB第1题图EACDB第11题图第3题图20.(6分)甲、乙两地相距,骑自行车从甲地到乙地,出发后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.21.(6分)为了提高产品的附加值,某公司计划将研发生产的件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?22.(8分)某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了本课外读物,有名学生获奖,请解答下列问题:(1)用含的代数式表示;(2)求出该校的获奖人数及所买课外读物的本数.23.(8分)如图,在□ABCD中,E、F分别是DC、AB上的点,且.求证:(1);(2)四边形AFCE是平行四边形.24.(8分)(2013?永州中考)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长25.(12分)在△中,,AB的垂直平分线交AC于点N,交BC的延长线于点M,.(1)求的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?26.(12分)如图,在由小正方形组成的的网格中,点、和四边形的顶点都在格点上.(1)画出与四边形关于直线对称的图形;(2)平移四边形,使其顶点与点重合,画出平移后的图形;(3)把四边形绕点逆时针旋转180°,画出旋转后的图形.期末检测题参考答案1.B 解析:因为点是的中点且,所以所在的直线是的垂直平分线,所以因为所以设则所以所以,所以∠.2.C 解析:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边形DEOH、DEFC、DHGA、BGOF、BGHC、BAEF、AGOE、CHOF和ABCD都是平行四边形,共9个.故选 C.3.C 解析:其中第一、三、四个图形既是轴对称图形又是中心对称图形,第二个图形只是轴对称图形,故选 C.4.D 解析: 4的平方根是,有两边和一角相等的两个三角形不一定全等.故命题①②都是假命题,只有命题③是真命题,故选 D.5.B 解析:由.232121212xxx,所以,得又由不等式组axx,1212的解集是,知6.C 解析:方程两边同乘,得x x 233,解得3x .经检验:3x 是原方程的解.所以原方程的解是3x .7.B 解析:利用平行四边形的判定定理知B 正确.8.D 解析:要使分式有意义,则,∴且,∴且.故选D .9.D解析:设,则,根据“等面积法”,得,解得,所以□的面积为.10.D解析:方程两边都乘,得又由题意知分式方程的增根为,把增根代入方程,得.11.解析:因为∠,所以又因为是△的角平分线,,所以. 因为所以,所以.又因为即,所以. 12.解析:解关于的不等式组,,b axa b x 22得.22b axb a x ,由关于的不等式组baxa b x 22,的解集为,知.333232babab a ,解得,,13.9 解析:△与△有两边是相等的,又△的周长比△的周长大3,新|课| 标|第| 一| 网其实就是比大3,又知AB +BC =15,可求得.14.解析:由图可知A 点坐标为,根据绕原点O 旋转后横纵坐标互为相反数,所以旋转后得到的坐标为,根据平移“上加下减”原则,知向下平移2个单位得到的坐标为.15.解析:16.20解析:设张明平均每分钟清点图书本,则李强平均每分钟清点图书(本,由题意列方程得,解得=20.经检验=20是原方程的解.17.<8且≠4 解析:解分式方程,得,得=8-.∵>0,且-4≠0,∴8->0且8--4≠0,∴<8且≠4.18.解析:因为,平行四边形的面积是,所以边上的高是.所以要求的两条对角线长度之和是.19.(1)③(2)忽略了的可能(3)解:因为,所以.所以或.故或.所以△是等腰三角形或直角三角形.20.解:设的速度为km/h ,则的速度为km/h .根据题意,得方程.6020335050xx解这个方程,得.经检验是原方程的根.所以.答:两人的速度分别为km/hkm/h .21.解:设甲工厂每天加工件产品,则乙工厂每天加工件产品,根据题意,得105.112001200xx,解得.经检验:是原方程的根,所以. 答:甲工厂每天加工40件产品,乙工厂每天加工60件产品. 22.解:(1).(2)根据题意,得,,3)1(5830)1(583x x x x 解不等式组,得156.2x因为为正整数,所以.当时,所以该校有6人获奖,所买课外读物共26本.23.证明:(1)∵四边形ABCD 为平行四边形,∴.又∵,∴,即.(2)∵,AF ∥CE ,∴四边形AFCE 是平行四边形.24.(1)证明:∵AN 平分∠BAC ,∴.∵BN ⊥AN ,∴∠ANB =∠AND =90°.在△ABN和△ADN中,∵∠1=∠2 ,AN=AN,∠ANB=∠AND,∴△ABN≌△ADN,∴BN= DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.25. 解:画出图形如图所示.(1)因为,所以∠∠.所以.因为MD是AB的垂直平分线,所以∠,所以∠∠.(2)同(1),同理可得.(3)AB的垂直平分线与底边BC的延长线所夹的锐角等于∠A的一半.(4)将(1)中的改为钝角,这个规律的认识无需修改,仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交,所成的锐角等于顶角的一半.26.分析:(1)找出四边形各顶点关于直线对称的对应点,然后顺次连接即可;(2)平移后顶点与点重合,可知其平移规律为先向下平移3个单位,再向左平移6个单位,继而根据平移规律找出各顶点的对应点,然后顺次连接;(3)根据旋转中心和旋转方向,找出旋转后各点的对应点,然后顺次连接.解:(1)所画图形如图所示,四边形即为所求.(2)所画图形如图所示,四边形即为所求.(3)所画图形如图所示,四边形即为所求.新课标第一网。
2018-2019学年八年级下期末数学试卷2(含答案解析)
2018-2019学年八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣22.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65 4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.109.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.810.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是.12.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD 的面积和对角线长.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试8085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是.24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.(3分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2B.a≥﹣2C.a<﹣2D.a>﹣2【解答】解:由题意得:a+2≥0,解得:a≥﹣2,故选:B.2.(3分)下列各式中,运算正确的是()A.=﹣2B.+=C.×=4D.2﹣【解答】解:A、=2,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4,故原题计算正确;D、2和不能合并,故原题计算错误;故选:C.3.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这15运动员的成绩的众数和中位数分别为()A.1.75,1.70B.1.75,1.65C.1.80,1.70D.1.80,1.65【解答】解:由表可知1.75m出现次数最多,有4次,所以众数为1.75m,这15个数据最中间的数据是第8个,即1.70m,所以中位数为1.70m,故选:A.4.(3分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象()A.向左平移5个单位B.向右平移5个单位C.向上平移5个单位D.向下平移5个单位【解答】解:要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象向上平移5个单位,故选:C.5.(3分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.每一条对角线平分一组对角【解答】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分,每一条对角线平分一组对角,;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:每一条对角线平分一组对角.故选:D.6.(3分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差 3.6 3.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵3.6<7.4<8.1,∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴乙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.故选:B.7.(3分)下列四个选项中,不符合直线y=3x﹣2的性质的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,﹣2)【解答】解:在y=3x﹣2中,∵k=3>0,∴y随x的增大而增大;∵b=﹣2<0,∴函数与y轴相交于负半轴,∴可知函数过第一、三、四象限;∵当x=﹣2时,y=﹣8,所以与x轴交于(﹣2,0)错误,∵当y=﹣2时,x=0,所以与y轴交于(0,﹣2)正确,故选:C.8.(3分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5B.6C.8D.10【解答】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=5.故选:A.9.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:A.10.(3分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4B.﹣6C.14D.6【解答】解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:的结果是5.【解答】解:=5,故答案为:512.(3分)设直角三角形的两条直角边分别为a和b,斜边为c,若a=6,c=10,则b=8.【解答】解:根据勾股定理得:a2+b2=c2,∵a=6,c=10,∴b===8,故答案为8.13.(3分)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD﹣AE=BC﹣AB=5﹣3=2.故答案为2.14.(3分)如图,▱OABC的顶点O,A,B的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为y=2x﹣7.【解答】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,∴平行四边形OABC的对称中心D(4,1),设直线QD的解析式为y=kx+b,∴,∴,∴该直线的函数表达式为y=2x﹣7,故答案为:y=2x﹣7.15.(3分)如图,▱ABCD中,E是BC边上一点,且AB=AE.若AE平分∠DAB,∠EAC =27°,则∠AED的度数为87°.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠DAE=∠AEB,∵∠EAB=∠EAD,∴∠EAB=∠AEB,∴BA=BE,∵AB=AE,∴AB=BE=AE,∴∠B=∠BAE=∠AEB=60°,∴∠EAD=∠CDA=60°,∵EA=AB,CD=AB,∴EA=CD,∵AD=DA,∴∠AED≌△DCA,∴∠AED=∠DCA,∵AB∥CD,∴∠ACD=∠BAC=60°+27°=87°,∴∠AED=87°.16.(3分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【解答】解:∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,故答案为.三、解答题(共8小题,共72分,下列各题解答应写出文字说明,证明过程或演算过程)17.(8分)计算:(4+)(4﹣)【解答】解:原式=42﹣()2=16﹣7=9.18.(8分)在正方形ABCD中,E是CD上的点.若BE=30,CE=10,求正方形ABCD的面积和对角线长.【解答】解:连接BD.∵ABCD为正方形,∴∠A=∠C=90°.在Rt△BCE中,BC=.在Rt△ABD中,BD=.∴正方形ABCD的面积=.19.(8分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.【解答】解:(1)∵一次函数图象过原点,∴,解得:m=3(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<3.20.(8分)A、B、C三名同学竞选学生会主席,他们的笔试和面试成绩(单位:分)分别用两种方式进行了统计,如表格和图1.A B C笔试859590面试908085(1)请将表格和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由300名学生评委进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能投一票),请计算每人的得票数.(3)若每票计1分,学校将笔试、面试、得票三项测试得分按3:4:3的比例确定个人成绩,请计算三位候选人最后成绩,并根据成绩判断谁能当选.【解答】解:(1)观察图象1可知:A的面试成绩为90分.故答案为90.条形图如图所示:(2)A的得票数:300×35%=105(人)B的得票数:300×40%=120(人)C的得票数:300×25%=75(人);(3)A的成绩:=93B的成绩:=96.5C的成绩:=83.5,故B学生成绩最高,能当选学生会主席.21.(8分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=﹣2x的图象与直线AB交于点P.(1)求P点的坐标.(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标.(3)若直线y=﹣2x+m与△AOB三条边只有两个公共点,求m的取值范围.【解答】解:(1)∵A(0,3)、点B(3,0),∴直线AB的解析式为y=﹣x+3,由,解得,∴P(﹣3,6).(2)设Q(m,0),由题意:•|m﹣3|•6=6,解得m=5或1,∴Q(1,0)或(5,0).(3)当直线y=﹣2x+m经过点O时,m=0,当直线y=﹣2x+m经过点B时,m=6,∴若直线y=﹣2x+m与△AOB三条边只有两个公共点,则有0<m<6.22.(10分)“端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.(1)求A商品、B商品的单价分别是多少元?(2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.(3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.【解答】解:(1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得,解得.答:A商品、B商品的单价分别是50元、40元;(2)当0<x≤10时,y=50x;当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;(3)设购进A商品a件(a>10),则B商品消费40a元;当40a=30a+200,则a=20所以当购进商品正好20件,选择购其中一种即可;当40a>30a+200,则a>20所以当购进商品超过20件,选择购A种商品省钱;当40a<30a+200,则a<20所以当购进商品少于20件,选择购B种商品省钱.23.(10分)菱形ABCD的对角线AC、DB相交于点O,P是射线DB上的一个动点(点P 与点D,O,B都不重合),过点B,D分别向直线PC作垂线段,垂足分别为M,N,连接OM.ON.(1)如图1,当点P在线段DB上运动时,证明:OM=ON.(2)当点P在射线DB上运动到图2的位置时,(1)中的结论仍然成立.请你依据题意补全图形:并证明这个结论.(3)当∠BAD=120°时,请直接写出线段BM,DN,MN之间的数量关系是MN=(BM+ND).【解答】证明:(1)延长NO交BM交点为F,如图∵四边形ABCD是菱形∴AC⊥BD,BO=DO∵DN⊥MN,BM⊥MN∴BM∥DN∴∠DBM=∠BDN,且BO=DO,∠BOF=∠DON∴△BOF≌△DON∴NO=FO,∵BM⊥MN,NO=FO∴MO=NO=FO(2)如图:延长MO交ND的延长线于F∵BM⊥PC,DN⊥PC∴BM∥DN∴∠F=∠BMO∵BO=OD,∠F=∠BMO,∠BOM=∠FOD ∴△BOM≌△FOD∴MO=FO∵FN⊥MN,OF=OM∴NO=OM=OF(3)如图:∵∠BAD=120°,四边形ABCD是菱形,∴∠ABC=60°,AC⊥BD∵∠OBC=30°∵BM⊥PC,AC⊥BD∴B,M,C,O四点共圆∴∠FMN=∠OBC=30°∵FN⊥MN∴MN=FN=(BM+DN)答案为MN=(BM+FN)24.(12分)如图1,▱ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的▱A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.【解答】解:(1)▱A′B′CD如图所示,A′(2,2t).(2)∵C′(6,t),A(2,0),=12t﹣×2×2t﹣×6×t﹣×4×t=9.∵S△OA′C∴t=.(3)∵D(0,t),B(6,0),∴直线BD的解析式为y=﹣x+t,∴线BD沿x轴的方向平移m个单位长度的解析式为y=﹣x+(6+m),把点A(2,2t)代入得到,2t=﹣+t+,解得m=8.。
2018—2019学年度第二学期期末教学质量检测八年级数学试题及答案
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
昭通市八年级下学期数学期末考试试卷
昭通市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共20分) (共10题;共20分)1. (2分)下列各式中,正确的是()A .B .C .D .2. (2分)从一副扑克牌中抽出如下四张牌,其中是中心对称图形的有()A . 1张B . 2张C . 3张D . 4张3. (2分)(2020·盐城模拟) 下列等式不成立的是()A .B .C .D .4. (2分)已知a,b,c为常数,且点Q(b,a)在第三象限,则关于x的方程bx2﹣cx﹣a=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定5. (2分) (2018九上·杭州月考) 一辆新汽车原价万元,如果每年折旧率为,两年后这辆汽车的价钱为元,则关于的函数关系式为()A .B .C .D .6. (2分)有下列说法:其中正确的有()①一组数据的中位数只有一个;②一组数据的众数肯定只有一个;③一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数;④一组数据中的一个数大小发生了变化,不一定会影响这组数据的方差.A . 1个B . 2个C . 3个D . 4个7. (2分) (2017八下·东城期中) 如图,已知矩形,,,点、分别是,上的点,点、分别是,的中点,当点在上从向移动而点不动时,若,则().A .B .C .D . 不能确定8. (2分)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A . 108°B . 72°C . 90°D . 100°9. (2分)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③CE= BF;④AE=BG.其中正确的是()A . ①②B . ①③C . ①②③D . ①②③④10. (2分)(2018·重庆) 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A .B . 3C .D . 5二、填空题(每小题3分,共30分) (共10题;共30分)11. (3分)(2016·桂林) 若式子在实数范围内有意义,则x的取值范围是________.12. (3分) (2019八上·湛江期中) 如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米又向左转30°,回到A点时一共走了________米。
2018-2019学年八年级数学下册期末考试试题(含答案)
2018-2019学年八年级数学下册期末考试试题一、选择题(每小题3分,共30分)1.下列各组数中,属于勾股数的是()A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,72.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.49.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2B.3C.4D.510.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1B.m<﹣1C.m≥﹣1D.m≤﹣1二、填空题(每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为.12.点P(﹣3,4)到x轴和y轴的距离分别是.13.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是.14.请你写出一个一次函数,使它经过二、三、四象限.15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是.16.如图在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为;(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.参考答案一、选择题1.下列各组数中,属于勾股数的是()A.1,,2B.1.5,2,2.5C.6,8,10D.5,6,7【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此判断即可.解:A、1,,2,因为不是正整数,故一定不是勾股数,故此选项错误;B、1.5,2,2.5,因为不是正整数,故一定不是勾股数,故此选项错误;C、因为62+82=102,故是勾股数.故此选项正确;D、因为52+62≠72,故不是勾股数,故此选项错误;故选:C.【点评】此题主要考查了勾股数的判定方法,比较简单,首先看各组数据是否都是正整数,再检验是否符合勾股定理的逆定理.2.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.∠B=30°B.AD=BDC.∠ACB=90°D.△ABC是直角三角形【分析】根据CD是△ABC的边AB上的中线,且CD=AB,即可得到等腰三角形,进而得出正确结论.解:∵CD是△ABC的边AB上的中线,∴AD=BD,故B选项正确;又∵CD=AB,∴AD=CD=BD,∴∠A=∠ACD,∠B=∠BCD,∴∠ACB=180°×=90°,故C选项正确;∴△ABC是直角三角形,故D选项正确;故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质的应用,直角三角形斜边上的中线等于斜边的一半.3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上【分析】根据角平分线的判定定理解答.解:如图所示DE为点D到AB的距离,∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上,故选:B.【点评】本题考查的是角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.4.一个多边形为八边形,则它的内角和与外角和的总度数为()A.1080°B.1260°C.1440°D.540°【分析】直接利用多边形的内角和与外角和定义分析得出答案.解:八边形的内角和为:(8﹣2)×180°=1080°,八边形的外角和为:360°,故八边形的内角和与外角和的总度数为:1440°.故选:C.【点评】此题主要考查了多边形的内角和与外角和,正确把握相关定义是解题关键.5.下列说法正确的是()A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形B.平行四边形既是中心对称图形,又是轴对称图形C.对角线相等的四边形是矩形D.只要是证明两个直角三角形全等,都可以用“HL”定理【分析】根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形既是中心对称图形,不是轴对称图形;对角线相等的四边形是矩形,等腰梯形的对角线也相等;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.解:A、顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;B、平行四边形既是中心对称图形,又是轴对称图形,说法错误;C、对角线相等的四边形是矩形,说法错误;D、只要是证明两个直角三角形全等,都可以用“HL”定理,说法错误;故选:A.【点评】此题主要考查了中心对称图形、直角三角形的判定、矩形的性质、中点四边形,关键是熟练掌握各知识点.6.已知点A(﹣2,y1),点B(﹣4,y2)在直线y=﹣2x+3上,则()A.y1>y2B.y1=y2C.y1<y2D.无法比较【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论(利用一次函数的性质解决问题亦可).解:∵点A(﹣2,y1)、点B(﹣4,y2)在直线y=﹣2x+3上,∴y1=7,y2=11.∵7<11,∴y1<y2.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.已知点M的坐标为(3,﹣4),则与点M关于x轴和y轴对称的M1、M2的坐标分别是()A.(3,4),(3,﹣4)B.(﹣3,﹣4),(3,4)C.(3,﹣4),(﹣3,﹣4)D.(3,4),(﹣3,﹣4)【分析】直接利用关于x,y轴对称点的性质分别得出答案.解:∵点M的坐标为(3,﹣4),∴与点M关于x轴和y轴对称的M1、M2的坐标分别是:(3,4),(﹣3,﹣4).故选:D.【点评】此题主要考查了关于x,y轴对称点的性质,正确掌握横纵坐标的关系是解题关键.8.有100个数据,落在某一小组内的频数与总数之比是0.4,那么在这100个数据中,落在这一小组内的数据的频数是()A.100B.40C.20D.4【分析】根据频率、频数的关系:频率=频数÷数据总数,可得频数=频率×数据总数.解:∵一个有100个数据的样本,落在某一小组内的频率是0.4,∴在这100个数据中,落在这一小组内的频数是:100×0.4=40.故选:B.【点评】本题考查频率、频数与数据总数的关系:频数=频率×数据总数.9.已知直线y=2x﹣4,则它与两坐标轴围成的三角形的面积是()A.2B.3C.4D.5【分析】先根据坐标轴的坐标特征分别求出直线y=2x﹣4与两坐标轴的交点坐标,然后根据三角形的面积公式计算.解:令y=0,则2x﹣4=0,解得x=2,所以直线y=2x﹣4与x轴的交点坐标为(2,0);令x=0,则y=2x﹣4=0,所以直线y=2x﹣4与y轴的交点坐标为(0,﹣4),所以此直线与两坐标轴围成的三角形面积=×2×|﹣4|=4.故选:C.【点评】本题考查了一次函数上点的坐标特征:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,此直线上的点的坐标满足其解析式.也考查了坐标轴上点的坐标特征以及三角形面积公式.10.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1B.m<﹣1C.m≥﹣1D.m≤﹣1【分析】由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,并且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.解:∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,并且﹣m﹣1≥0,由2m+1<0,得m<﹣;由﹣m﹣1≥0,得m≤﹣1.所以m的取值范围是m≤﹣1.故选:D.【点评】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.二、填空题(本大题10个小题,每小题3分,共30分)11.已知正方形的对角线为4,则它的边长为2.【分析】根据正方形的性质和勾股定理求边长即可.解:已知如图,∵四边形ABCD是正方形,∴AO=DO=AC=×4=2,AO⊥DO,∴△AOD是直角三角形,∴AD===2.故答案为:2.【点评】本题考查了勾股定理及正方形性质,属于基础题,比较简单.12.点P(﹣3,4)到x轴和y轴的距离分别是4;3.【分析】首先画出坐标系,确定P点位置,根据坐标系可得答案.解:点P(﹣3,4)到x轴的距离为4,到y轴的距离是3,故答案为:4;3.【点评】此题主要考查了点的坐标,关键是正确确定P点位置.13.点D、E、F分别是△ABC三边的中点,若△ABC的周长是16,则△DEF的周长是8.【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图,∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DF=BC,FE=AB,DE=AC;∴DF +FE +DE =BC +AB +AC =(AB +BC +CA )=×16=8, 故答案为:8.【点评】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.14.请你写出一个一次函数,使它经过二、三、四象限 答案不唯一:如y =﹣x ﹣1 . 【分析】根据已知可画出此函数的简图,再设此一次函数的解析式为:y =kx +b ,然后可知:k <0,b <0,即可求得答案. 解:∵图象经过第二、三、四象限, ∴如图所示:设此一次函数的解析式为:y =kx +b , ∴k <0,b <0.∴此题答案不唯一:如y =﹣x ﹣1. 故答案为:答案不唯一:如y =﹣x ﹣1【点评】此题考查了一次函数的性质.题目难度不大,注意数形结合思想的应用. 15.频数直方图中,一小长方形的频数与组距的比值是6,组距为3,则该小组的频数是 18 .【分析】根据“频数:组距=6且组距为3”可得答案. 解:根据题意知,该小组的频数为6×3=18, 故答案为:18.【点评】本题主要考查频数分布直方图,解题的关键是根据题意得出频数:组距=6. 16.如图在Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,若AC =8,BC =6,则CD = 4.8 .【分析】直接利用勾股定理得出AB 的值,再利用直角三角形面积求法得出答案.解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵CD⊥AB,∴DC×AB=AC×BC,∴DC===4.8.故答案为:4.8.【点评】此题主要考查了勾股定理,正确利用直角三角形面积求法是解题关键.17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=16.【分析】如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题;解:如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16,故答案为16.【点评】本题考查平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.若y与x2﹣1成正比例,且当x=2时,y=6,则y与x的函数关系式是y=2x2﹣2.【分析】利用正比例函数的定义,设y=k(x2﹣1),然后把x=2,y=6代入求出k即可得到y与x的函数关系式.解:设y=k(x2﹣1),把x=2,y=6代入得k×(22﹣1)=6,解得k=2,所以y=2(x2﹣1),即y=2x2﹣2.故答案为y=2x2﹣2.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.已知一次函数y=mx+n与x轴的交点为(﹣3,0),则方程mx+n=0的解是x=﹣3.【分析】直接根据函数图象与x轴的交点进行解答即可.解:∵一次函数y=mx+n与x轴的交点为(﹣3,0),∴当mx+n=0时,x=﹣3.故答案为:x=﹣3.【点评】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.20.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【分析】由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF是正方形推出.解:设AC=BC,即△ABC为等腰直角三角形,∵∠C=90°,DE垂直平分AC,DF⊥BC,∴∠C=∠CED=∠EDF=∠DFC=90°,DF=AC=CE,DE=BC=CF,∴DF=CE=DE=CF,∴四边形DECF是正方形,故答案为:AC=BC.【点评】此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、解答题(本题有6道题,共60分)21.(10分)如图所示,在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.【分析】直接利用直角三角形的性质结合勾股定理得出DC的长,进而得出BC的长.解:过E点作EF⊥AB,垂足为F,∵∠EAB=30°,AE=2,∴EF=BD=1,又∵∠CED=60°,∴∠ECD=30°,而AB=CB,∴∠EAC=∠ECA=15°,∴AE=CE=2,在Rt△CDE中,∠ECD=30°,∴ED=1,CD==,∴CB=CD+BD=1+.【点评】此题主要考查了勾股定理以及直角三角形的性质,正确作出辅助线是解题关键.22.(6分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长,由菱形面积公式即可求得面积.解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.23.(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.(1)直接写出点M的坐标为(﹣2,0);(2)求直线MN的函数解析式;(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.【分析】(1)由点N(0,6),得出ON=6,再由ON=3OM,求得OM=2,从而得出点M 的坐标;(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;(3)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.解:(1)∵N(0,6),ON=3OM,∴OM=2,∴M(﹣2,0);故答案为(﹣2,0);(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,6)分别代入上式解得k =3 b=6∴直线MN的函数解析式为:y=3x+6(1)把x=﹣1代入y=3x+6,得y=3×(﹣1)+6=3即点A(﹣1,3),所以点C(0,3)∴由平移后两直线的K相同可得,平移后的直线为y=3x+3【点评】此题考查待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.24.(10分)邵阳县某校为了了解学生对语文(A)、数学(B)、英语(C)、物理(D)四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:(1)求出这次调查的总人数;(2)求出表中a、b、c、d的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.【分析】(1)用C科目人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)总人数乘以样本中C科目人数所占比例,根据图表得出正确的信息即可.解:(1)这次调查的总人数为6÷(36÷360)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中人数最多的科目.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.25.(12分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【分析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积=4,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BC D的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).【点评】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积是解题的关键.26.(12分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;(2)求y1、y2与x的函数表达式;(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.【分析】(1)根据单价=,即可解决问题.(2)y1函数表达式=60+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.解:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克=30元.故答案为:30.(2)由题意y1=30×0.6x+60=18x+60,由图可得,当0≤x≤10时,y2=30x;当x>10时,设y2=kx+b,将(10,300)和(20,450)代入y2=kx+b,解得y2=15x+150,所以y2=,(3)函数y1的图象如图所示,由解得,所以点F坐标(5,150),由解得,所以点E坐标(30,600).由图象可知甲采摘园所需总费用较少时5<x<30.【点评】本题考查分段函数、一次函数,单价、数量、总价之间的关系,解题的关键是熟练掌握待定系数法,学会利用图象确定自变量取值范围,属于中考常考题型.。
昭通市八年级下学期期末考数学试题
昭通市八年级下学期期末考数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是()A . 1B . 2C . 3D . 42. (2分) (2019八下·静安期末) 从、、、这四个代数式中任意抽取一个,下列事件中为确定事件的是()A . 抽到的是单项式B . 抽到的是整式C . 抽到的是分式D . 抽到的是二次根式3. (2分)桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A . 能够事先确定抽取的扑克牌的花色B . 抽到黑桃的可能性更大C . 抽到黑桃和抽到红桃的可能性一样大D . 抽到红桃的可能性更大4. (2分) (2017八下·灌云期末) 为了了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A . 0.1B . 0.15C . 0.2D . 0.35. (2分) (2017八下·灌云期末) 反比例函数y= 的图象经过点M(﹣1,2),则反比例函数的解析式为()A . y=﹣B . y=C . y=﹣D . y=6. (2分) (2017八下·灌云期末) 根据分式的基本性质,分式可以变形为()A .B .C . ﹣D . ﹣7. (2分) (2017八下·灌云期末) 若关于x的方程 + =0有增根,则m的值是()A . ﹣2B . ﹣3C . 5D . 38. (2分) (2017八下·灌云期末) 如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD 于点P,则∠FPC的度数为()A . 50°B . 55°C . 60°D . 45°二、填空题 (共10题;共10分)9. (1分) (2018九上·吴兴期末) 布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________ .10. (1分)(2018·北部湾模拟) 一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7,8.则这名学生射击环数的众数是________.11. (1分)(2019·梅列模拟) 在0,- ,2,,中任取一个数,取到无理数的概率是________.12. (1分)从-1,0,,,中随机任取一数,取到无理数的概率是________.13. (1分) (2017八下·灌云期末) 已知反比例函数y= ,当1<x≤3时,则y的取值范围是________.14. (1分) (2017八下·灌云期末) 反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x 轴,垂足为Q,△OPQ的面积为2,则k=________.15. (1分) (2017八下·灌云期末) 如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC 的面积为12,则a与b的函数关系式是:________.16. (1分) (2017八下·灌云期末) 已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为________.17. (1分) (2017八下·灌云期末) 如图,平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E,若BF=6,AB=5,则AE的长为________.18. (1分) (2017八下·灌云期末) 如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是________.三、解答题 (共9题;共93分)19. (10分) (2019八上·吉林期末) 解方程:(1)(2).20. (10分) (2017八下·灌云期末) 化简:(1);(2).21. (10分) (2017八下·灌云期末) 解方程:(1);(2).22. (5分) (2017八下·灌云期末) 请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.23. (13分) (2017八下·灌云期末) 某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有________人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是________,等级C对应的圆心角的度数为________;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人.24. (15分) (2017八下·灌云期末) 如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表:(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?25. (5分) (2017八下·灌云期末) 果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26. (10分) (2017八下·灌云期末) 如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.27. (15分) (2017八下·灌云期末) 如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y= 经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y= 的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y= 上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共93分)19-1、19-2、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、23-4、24-1、24-2、24-3、25-1、26-1、26-2、27-1、27-2、。
云南省昭通市2018-2019学年八年级第二学期期末数学试卷(解析版)
云南省昭通市2018-2019学年八年级第二学期期末数学试卷一.选择题(每小题3分,共30分)1.如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x<2的实数C.x>2的实数D.x>0且x≠2的实数2.一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是()A.6和6B.8和6C.6和8D.8和163.在、、中、、中,最简二次根式的个数有()A.4B.3C.2D.14.一次函数y=﹣x+6的图象上有两点A(﹣1,y1)、B(2,y2),则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.y1≥y25.如果点P(2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.56.矩形各内角的平分线能围成一个()A.矩形B.菱形C.等腰梯形D.正方形7.的算术平方根是()A.B.﹣C.D.±8.直角梯形的一个内角为120°,较长的腰为6cm,有一底边长为5cm,则这个梯形的面积为()A.cm2B.cm2C.25cm2D.cm2或cm29.不能判定四边形ABCD为平行四边形的题设是()A.AB=CD,AB∥CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC10.某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是()A.B.C.D.二.填空题(每小题4分,共32分)11.菱形的两条对角线分别为18cm与24cm,则此菱形的周长为.12.比较大小:.13.计算:(2)2002(2+5)2002=.14.在实数范围内分解因式:3x2﹣6=.15.如图,已知一次函数y=ax+b和y=kx的图象相交于点P,则根据图中信息可得二元一次方程组的解是.16.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.17.甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S甲2=2,S乙2=4,则射击成绩较稳定的是(选填“甲”或“乙”).三、解答题一(共38分)18.(8分)计算:(1);(2).19.(8分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.20.(6分)若,.求的值.21.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,,;(2)使平行四边形有一锐角为45°,且面积为4.22.(8分)如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.(1)求BC的长;(2)求BD的长.四、解答题二(共50分)23.(8分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.(10分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y 轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.25.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.26.(10分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是,每人所创年利润的中位数是,平均数是;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?27.(12分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?参考答案与试题解析一.选择题(每小题3分,共30分)1.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意得:,∴2﹣x<0,∴x>2.故选:C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.2.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;故选:A.【点评】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3.【分析】最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件即可判断.【解答】解:、、不是最贱二次根式.、是最简二次根式.综上可得最简二次根式的个数有2个.故选:C.【点评】本题考查最简二次根式的定义,一定要掌握最简二次根式必须满足两个条件,被开方数不含分母且被开方数不含能开得尽方的因数或因式.4.【分析】k=﹣1<0,y将随x的增大而减小,根据﹣1<2即可得出答案.【解答】解:∵k=﹣1<0,y将随x的增大而减小,又∵﹣1<2,∴y1>y2.故选:A.【点评】本题考查一次函数的图象性质的应用,注意:一次函数y=kx+b(k、b为常数,k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.5.【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点P(2,b)和点Q(a,﹣3)关于x轴对称,∴a=2,b=3,则a+b的值是:5.故选:D.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.【分析】根据矩形的性质及角平分线的性质进行分析即可.【解答】解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选:D.【点评】此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角7.【分析】直接利用算术平方根的定义得出答案.【解答】解:=的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.8.【分析】根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高为6×sin60°=3,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.【解答】解:根据题意可作出下图,BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=×(5+8)×3=cm2;当CD=5cm时,AB=5﹣3=2cm,梯形的面积=×(2+5)×3=cm2;故梯形的面积为cm2或cm2,选D.【点评】本题考查了直角梯形的性质及面积公式,涉及到特殊角的三角函数计算,注意当题意所给数据不明确时,要注意分类讨论思想.9.【分析】根据平行四边形的判定定理(一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形)求解即可求得答案.【解答】解:A、∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形(一组对边平行且相等的四边形是平行四边形);故本选项能判定四边形ABCD为平行四边形;B、∵∠A=∠C,∠B=∠D,∴四边形ABCD为平行四边形(两组对角分别相等的四边形是平行四边形);故本选项能判定四边形ABCD为平行四边形;C、由AB=AD,BC=CD,不能判定四边形ABCD为平行四边形;D、∵AB=CD,AD=BC,∴四边形ABCD为平行四边形(两组对边分别相等的四边形是平行四边形);故本选项能判定四边形ABCD为平行四边形.故选:C.【点评】此题考查了平行四边形的判定.此题难度不大,注意熟记定理是解此题的关键.10.【分析】由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.【解答】解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m,且去时的速度小于返回的速度,故选:D.【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.二.填空题(每小题4分,共32分)11.【分析】根据菱形的性质对角线互相垂直平分,利用勾股定理求出菱形的边长即可解决问题.【解答】解:如图,四边形ABCD是菱形,AC=24,BD=18,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12,OD=OB=9,AB=BC=CD=AD,∴AD===15.∴菱形的周长为60cm.故答案为60cm【点评】本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.12.【分析】先算、﹣的倒数值,再比较、﹣的值,判断即可.【解答】解:∵==+2,==2+,∵+2>+2,∴﹣<﹣,故答案为<.【点评】本题考查了实数大小比较法则,任意两个实数都可以比较大小.根据两正数比较倒数大的反而小得出是解题关键.13.【分析】直接利用积的乘方运算法则将原式变形进而得出答案.【解答】解:原式=[(2)(2+5)]2002=1. 故答案为:1.【点评】此题主要考查了二次根式的混合运算,正确运用乘法公式是解题关键.14.【分析】先提取公因式3,然后把2写成2,再利用平方差公式继续分解因式即可.【解答】解:3x 2﹣6, =3(x 2﹣2),=3(x 2﹣2),=3(x +)(x ﹣).故答案为:3(x +)(x ﹣).【点评】本题考查了实数范围内分解因式,注意把2写成2的形式继续进行因式分解.15.【分析】直接利用已知图形结合一次函数与二元一次方程组的关系得出答案.【解答】解:如图所示:根据图中信息可得二元一次方程组的解是:.故答案为:.【点评】此题主要考查了一次函数与二元一次方程组的关系,正确利用图形获取正确信息是解题关键.16.【分析】根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积.【解答】解:S 1=π()2=πAC 2,S 2=πBC 2,所以S 1+S 2=π(AC 2+BC 2)=πAB 2=2π. 故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.17.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为甲的方差最小,所以射击成绩较稳定的是甲;故答案为:甲【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题一(共38分)18.【分析】(1)直接利用二次根式的混合运算法则化简得出答案;(2)直接利用二次根式的性质化简,进而计算得出答案.【解答】解:(1)原式=+﹣5=﹣4;(2)原式=﹣+﹣1﹣=﹣+﹣1﹣(﹣1)=﹣+﹣1﹣+1=0.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.19.【分析】首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【解答】证明:∵BE∥DF,∴∠BEC=∠DFA,在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴BE=DF,又∵BE∥DF,∴四边形DEBF是平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.20.【分析】先运用平方差及完全平方公式进行因式分解,再约分,将分式化到最简即可.【解答】解:=﹣=﹣﹣+=0.故当,时,原式=0.【点评】本题考查了二次根式的化简求值.运用公式将分子因式分解可使运算简便.由于所求代数式化简之后是一个常数0,与字母取值无关.因而无论x、y取何值,原式都等于0.21.【分析】(1)本题中实际上是长为2宽为2的正方形的对角线长,实际上是长为2宽为1的矩形的对角线的长,据此可找出所求的三角形;(2)可先找出一个直角边为2的等腰直角三角形,然后据此画出平行四边形.【解答】解:(1)三角ABC为所求;(2)四边形DE FG为所求.【点评】关键是确定三角形的边长,然后根据边长画出所求的三角形.22.【分析】(1)在Rt△ABC中利用勾股定理即可求出BC的长;(2)过点B作BE⊥DC交DC的延长线于点E.根据等边对等角的性质以及平行线的性质得出∠2=∠3,利用角平分线的性质得出AB=BE=3,在Rt△BCE中,根据勾股定理可得EC=2,则ED=4,在Rt△BDE中,利用勾股定理可得BD=5.【解答】解:(1)在Rt△ABC中,∵AC⊥AB,AB=3,AC=2,∴BC==;(2)过点B作BE⊥DC交DC的延长线于点E.∵AC=CD,∴∠1=∠ADC,又∵AD∥BC,∴∠3=∠ADC,∠1=∠2,∴∠2=∠3,又∵AC⊥AB,BE⊥DC,∴AB=BE=3,又由(1)BC=,在Rt△BCE中,由勾股定理可得EC=2;∴ED=2+2=4,在Rt△BDE中,由勾股定理可得BD=5.【点评】本题考查了勾股定理,等腰三角形、平行线、角平分线的性质,掌握各定理是解题的关键.四、解答题二(共50分)23.【分析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(证法2:可根据AF平行且相等于DC,得出四边形ADCF是平行四边形,从而证得DE是△BCF的中位线,由此得出D是BC中点)(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF 与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.【解答】(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.【点评】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.24.【分析】(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.【解答】解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)∵A(3,4),∴A点到y轴的距离为3,且OB=5,∴S=×5×3=.【点评】本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.25.【分析】(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA;(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.【点评】本题考查了矩形的性质、全等三角形的判定与性质及平行四边形的判定,解答本题的关键是熟练掌握矩形的对边相等,四角都为90°,及平行四边形的判定定理.26.【分析】(1)根据扇形中各部分所占的百分比的和是1,即可求得3万元的员工所占的百分比,然后根据百分比的意义求得直方图中缺少部分的人数;(2)根据众数、中位数以及平均数的定义求解;(3)利用总数1200乘以对应的比例即可求解.【解答】解:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,抽取员工总数为:4÷8%=50(人)5万元的员工人数为:50×24%=12(人)8万元的员工人数为:50×36%=18(人);(2)每人所创年利润的众数是8万元,每人所创年利润的中位数是8万元,平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元.故答案为:8万元,8万元,8.12万元.(3)1200×=384(人).答:在公司1200员工中有384人可以评为优秀员工.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.【分析】(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.【解答】解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.【点评】此题考查了一次函数的应用,一元一次不等式的运用;根据自变量不同的取值分情况进行探讨是解决本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
3. 甲、乙两人各进行 10 次射击比赛,平均成绩均为 9 环,方差分别是:S 甲 2=2,S 乙 2=4,则射击成绩
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
云南省昭通市 2018-2019 学年八年级下学期数学期末考试卷
较稳定的是
(选填“甲”或“乙”).
4. 如图,已知在 Rt△ABC 中,∠ACB=90°,AB=4,分别以 AC、BC 为直径作半圆,面积分别记为 S1、S2 ,
则 S1+S2 等于
.
5. 菱形的两条对角线分别为 18cm 与 24cm,则此菱形的周长为
.
6. 比较大小: 7. 在实数范围内分解因式:3x2﹣6=
. .
评卷人 得分 8. 计算:
二、计算题(共 2 题)
(1) (2)
;
.
第 3页,总 23页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
A.
cm2 B .
cm2
C . 25 cm2 D .
cm2 或
cm2
2. 如果点 P(2,b)和点 Q(a,﹣3)关于 x 轴对称,则 a+b 的值是( ) A . ﹣1 B . 1 C . ﹣5 D . 5
3. 某人出去散步,从家里出发,走了 20min,到达一个离家 900m 的阅报亭,看了 10min 报纸后,用了 15min 返回家里,下面图象中正确表示此人离家的距离 y(m)与时间 x(min)之家关系的是( )
考试时间:**分钟 满分:**分
姓名:____________班级:____________学号:___________
题号 得分
一
二
注
意
1、填写答
2、提前 15 分钟收取答题卡
三
题卡
四
五
六
事 的内容用
总分
项
2B
铅
核分人
: 笔填写
第Ⅰ卷的注释
第Ⅰ卷 客观题
评卷人 得分
一、单选题(共 10 题)
1. 直角梯形的一个内角为 120°,较长的腰为 6cm,有一底边长为 5cm,则这个梯形的面积为( )
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
评卷人 得分
五、综合题(共 6 题)
12. 如图,一个正比例函数与一个一次函数的图象交于点 A(3,4),其中一次函数与 y 轴交于 B 点,且 OA=OB.
(1)求这两个函数的表达式; (2)求△AOB 的面积 S. 13. 如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.
5. 一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是( ) A . 6 和 6 B . 8 和 6 C . 6 和 8 D . 8 和 16 6. 矩形各内角的平分线能围成一个( ) A . 矩形 B . 菱形 C . 等腰梯形 D . 正方形
7. 如果
是二次根式,那么 x 应满足的条件是( )
A . x≠2 的实数 BБайду номын сангаас. x<2 的实数
C . x>2 的实数 D . x>0 且 x≠2 的实数
8. 在 、
、
中、
A.4 B.3 C.2 D.1
、
中,最简二次根式的个数有( )
9.
的算术平方根是( )
A.
B.﹣
C.
D.±
10. 不能判定四边形 ABCD 为平行四边形的题设是( )
A . AB=CD,AB∥CD B . ∠A=∠C,∠B=∠D
C . AB=AD,BC=CD
D . AB=CD,AD=BC
第Ⅱ卷的注释
第Ⅱ卷 主观题
评卷人 得分
一、填空题(共 7 题)
1. 计算:(2
)2002(2 +5)2002=
.
2. 如图,已知一次函数 y=ax+b 和 y=kx 的图象相交于点 P,则根据图中信息可得二元一次方程组
的解是
.
答案第 2页,总 23页
(1)求 BC 的长; (2)求 BD 的长. 14. 在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为 x, 购票总价为 y): 方案一:提供 8000 元赞助后,每张票的票价为 50 元; 方案二:票价按图中的折线 OAB 所表示的函数关系确定.
A.
B.
C.
D.
第 1页,总 23页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
………○…………外…………○…………装…………○…………订…………○…………线…………○…………
4. 一次函数 y=﹣x+6 的图象上有两点 A(﹣1,y1)、B(2,y2),则 y1 与 y2 的大小关系是( ) A . y1>y2 B . y1=y2 C . y1<y2 D . y1≥y2
9. 若
,
.求
的值.
评卷人 得分
三、解答题(共 1 题)
10. 如图,已知 BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形 DEBF 是平行四边形.
评卷人 得分
四、作图题(共 1 题)
11. 如图,正方形网格中的每个小正方形边长都为 1,每个小正方形的顶点叫格点,以格点为顶点分别按 下列要求画三角形和平行四边形.
(1)使三角形三边长为 3, , ; (2)使平行四边形有一锐角为 45°,且面积为 4.
答案第 4页,总 23页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________