单链表完整C语言纯代码

合集下载

C语言用循环单链表实现约瑟夫环

C语言用循环单链表实现约瑟夫环

C语⾔⽤循环单链表实现约瑟夫环⽤循环单链表实现约瑟夫环(c语⾔),供⼤家参考,具体内容如下源代码如下,采⽤Dev编译通过,成功运⾏,默认数到三出局。

主函数:main.c⽂件#include <stdio.h>#include "head.h"#include "1.h"int main(){Linklist L;int n;printf("请输⼊约瑟夫环中的⼈数:");scanf("%d",&n);Createlist(L,n);printf("创建的约瑟夫环为:\n");Listtrave(L,n);printf("依次出局的结果为:\n");Solution(L,n);return 0;}head.h⽂件:#include "1.h"#include <stdio.h>#include <stdlib.h>typedef int Elemtype;typedef struct LNode{Elemtype data;struct LNode *next;}LNode,*Linklist;void Createlist(Linklist &L,int n){Linklist p,tail;L = (Linklist)malloc(sizeof(LNode));L->next = L;//先使其循环p = L;p->data = 1;//创建⾸节点之后就先给⾸节点赋值,使得后⾯节点赋值的操作能够循环tail = L;for(int i = 2;i <= n;i++){p = (Linklist)malloc(sizeof(LNode));p->data = i;p->next = L;tail->next = p;tail = p;}printf("已⽣成⼀个长度为%d的约瑟夫环!\n",n);}void Listtrave(Linklist L,int n)//遍历函数{Linklist p;p = L;for(int i = 1;i <= n;i++){printf("%3d",p->data);p = p->next;}printf("\n");}int Solution(Linklist L,int n){Linklist p,s;p = L,s = L;int count = 1;while(L){if(count != 3){count++;p = p->next;//进⾏不等于3时的移位}else{Linklist q;q = p;//⽤q保存p所指的位置,⽅便进⾏节点的删除if(s->next->data == s->data)//当只有⼀个元素的时候{printf("%3d\n",s->data);free(s);return OK;}else//当有两个及两个以上的元素的时候{count = 1;//先将count重置为1printf("%3d",p->data);//再打印出出局的值while(s->next != p){s = s->next;//将s移位到p的前驱节点处}p = p->next;//使p指向⾃⼰的下⼀个节点s->next = p;//进⾏删除free(q);}}}}1.h⽂件:#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2运⾏结果:以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。

数据结构经典题目及c语言代码

数据结构经典题目及c语言代码

数据结构经典题目及c语言代码一、线性表1. 顺序表顺序表是一种利用连续存储空间存储元素的线性表。

以下是一个顺序表的经典题目及C语言代码实现:```c#define MaxSize 50typedef struct {int data[MaxSize]; // 存储元素的数组int length; // 顺序表的当前长度} SeqList;// 初始化顺序表void initList(SeqList *L) {L->length = 0;}// 插入元素到指定位置void insert(SeqList *L, int pos, int elem) {if (pos < 1 || pos > L->length + 1) {printf("插入位置无效\n");return;}if (L->length == MaxSize) {printf("顺序表已满,无法插入\n"); return;}for (int i = L->length; i >= pos; i--) { L->data[i] = L->data[i - 1];}L->data[pos - 1] = elem;L->length++;}// 删除指定位置的元素void delete(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("删除位置无效\n");return;}for (int i = pos - 1; i < L->length - 1; i++) {L->data[i] = L->data[i + 1];}L->length--;}// 获取指定位置的元素值int getElement(SeqList *L, int pos) {if (pos < 1 || pos > L->length) {printf("位置无效\n");return -1;}return L->data[pos - 1];}```2. 链表链表是一种利用非连续存储空间存储元素的线性表。

《数据结构(C语言版)》严蔚敏代码实现———链表

《数据结构(C语言版)》严蔚敏代码实现———链表

《数据结构(C语⾔版)》严蔚敏代码实现———链表⼀、前⾔哈喽,⼤家好~我是熊⼦q,我⼜来了!他来了他来了,他带着代码过来了!今天要分享的代码是链表!快快搬着⼩板凳!⼆、代码严奶奶的书中预定义了⼀些预定义常量和类型,⼤家可以 新建⼀个y.h⽂件粘贴以下内容, 然后再去复制代码哦。

y.h⽂件内容:/*** 严奶奶书中的预定义常量和类型**///函数结果状态代码#define TRUE 1 //成功#define FALSE 0 //失败#define OK 1 //成功#define ERROR 0 //错误#define INFEASIBLE -1 //不可实⾏#define OVERFLOW -2 //溢出//Status 是函数的类型,其值是函数结果状态代码typedef int Status;链表LinkList.cpp:#include "y.h"#include <iostream>#include <cstdlib>#include <cstdio>using namespace std;typedef int ElemType;/*** 严奶奶单链表的实现* by 熊⼦q 2021.2.1**/typedef struct LNode{ElemType data;struct LNode *next;}LNode,*LinkList;//获取元素Status GetElem(LinkList L, int i, ElemType &e){//L为带头结点的单链表的头指针//当第i个元素存在时,其值赋给e并返回OK,否则返回ERRORLNode *p = L->next; //p指向第⼀个结点int j = 1; //j为计数器while(p && j<i){ //寻找第i个位置p = p->next;++j;}if(!p || j>i) return ERROR; //第i个元素不存在e = p->data; //否则获取第i个元素return OK;}//插⼊元素,时间复杂度O(n)Status Insert(LinkList &L, int i, ElemType e){//在带头结点的单链表L中第i个位置之前插⼊元素eLNode *p = L;int j = 0;while(p && j<i-1){p = p->next;++j;}if(!p || j>i-1) return ERROR; //i⼩于1或者⼤于表长加1LNode *q = (LNode*)malloc(sizeof(LNode));q->data = e; //插⼊数据q->next = p->next;p->next = q;return OK;}//删除元素,时间复杂度O(n)Status ListDelete(LinkList &L, int i, ElemType e){//在带头结点的单链表L中,删除第i个元素,并由e返回其值LNode *p = L->next;int j = 1;while(p && j<i-1){p = p->next;++j;} //寻找i的前驱元素if(!(p->next) || j>i-1) return ERROR; //删除位置不合理,i元素不存在或 LNode *q = p->next; //删除第i个位置元素,并释放该结点 p->next = q->next;e = q->data;free(q);return OK;}//创建链表void CreateList(LinkList &L, int n){//逆序输⼊n个元素的值,建⽴带头结点的单链表LL = (LinkList)malloc(sizeof(LNode));L->next = NULL; //建⽴⼀个头结点printf("请输⼊数据:\n");for(int i=n;i>0;--i){LNode *p = (LNode*)malloc(sizeof(LNode));scanf("%d",&(p->data));p->next = L->next; L->next = p;}}//合并两个有序链表void MergeList(LinkList &La, LinkList &Lb, LinkList &Lc){//已知单链表La和Lb的元素按值⾮递减排列//归并La和Lb得到新的单链表Lc,Lc的元素也按值⾮递减排列LNode *pa = La->next;LNode *pb = Lb->next;LNode *pc = La; //⽤La的头结点作为Lc的头结点Lc = pc;while(pa && pb){//取⼆者中较⼤值添加到Lc中if(pa->data > pb->data){//先添加该节点为pc的后继元素,然后pc和pa指针都后移pc->next = pa; pc = pc->next; pa = pa->next;}else{pc->next = pb; pc = pc->next; pb = pb->next;}}pc->next = pa? pa: pb; //插⼊剩余段free(Lb); //释放Lb的头结点}//输出单链表void Display(LinkList &L){LNode *p = L->next;printf("单链表的内容为:");while(p){printf("%d",p->data);if(p->next) printf("->");else printf("\n");p = p->next;}}int main(){LinkList l;CreateList(l, 5);Display(l);// printf("在第%d位插⼊%d",1,123);// Insert(l, 1, 123);// Display(l);int tmp;GetElem(l, 2, tmp);printf("%d",tmp);return 0;}三、运⾏截图四、附录如果你想看其他的代码,下⾯有链接哦:。

单链表结构体定义

单链表结构体定义

单链表结构体定义单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

在C语言中,可以使用结构体来定义单链表的节点。

我们需要定义一个表示单链表节点的结构体。

该结构体包含两个成员变量:一个用于存储数据的数据域,和一个指向下一个节点的指针域。

```struct ListNode {int data; // 数据域struct ListNode* next; // 指针域};```接下来,我们可以使用该结构体来创建单链表。

首先,我们需要定义一个指向链表头节点的指针。

```struct ListNode* head = NULL;```在链表为空时,头指针指向NULL。

当我们向链表中插入新的节点时,需要进行一些操作。

我们需要创建一个新的节点,并为其分配内存空间。

```struct ListNode* newNode = (struct ListNode*)malloc(sizeof(struct ListNode));```然后,我们可以给新节点的数据域赋值。

```newNode->data = value;```接下来,我们需要将新节点插入到链表中。

如果链表为空,那么新节点将成为链表的头节点。

```if (head == NULL) {head = newNode;newNode->next = NULL;}```如果链表不为空,我们需要将新节点插入到链表的末尾。

```struct ListNode* current = head;while (current->next != NULL) {current = current->next;}current->next = newNode;newNode->next = NULL;```通过以上操作,我们可以将新节点成功插入到链表中。

如果我们想要插入节点的位置不是链表末尾,而是中间的某个位置,我们同样可以根据需要进行相应的操作。

数据结构-单链表基本操作实现(含全部代码)

数据结构-单链表基本操作实现(含全部代码)

数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。

最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码

数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。

创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。

接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。

第一步,定义单链表结构体并定义节点类型。

在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。

对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。

接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。

第二步,初始化单链表。

在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。

具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。

第三步,向单链表中添加元素。

在单链表中添加元素需要借助于指针的指向关系。

具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。

具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。

数据结构C语言版 线性表的单链表存储结构表示和实现

数据结构C语言版 线性表的单链表存储结构表示和实现

#include 〈stdio.h>#include <malloc。

h>#include 〈stdlib.h>/*数据结构C语言版线性表的单链表存储结构表示和实现P28—31编译环境:Dev-C++ 4。

9。

9。

2日期:2011年2月10日*/typedef int ElemType;// 线性表的单链表存储结构typedef struct LNode{ElemType data; //数据域struct LNode *next;//指针域}LNode, *LinkList;// typedef struct LNode *LinkList;// 另一种定义LinkList的方法// 构造一个空的线性表Lint InitList(LinkList *L){/*产生头结点L,并使L指向此头结点,头节点的数据域为空,不放数据的。

void *malloc(size_t)这里对返回值进行强制类型转换了,返回值是指向空类型的指针类型.*/(*L)= (LinkList)malloc(sizeof(struct LNode) );if( !(*L))exit(0);// 存储分配失败(*L)-〉next = NULL;// 指针域为空return 1;}// 销毁线性表L,将包括头结点在内的所有元素释放其存储空间。

int DestroyList(LinkList *L){LinkList q;// 由于单链表的每一个元素是单独分配的,所以要一个一个的进行释放while(*L ){q = (*L)—〉next;free(*L );//释放*L = q;}return 1;}/*将L重置为空表,即将链表中除头结点外的所有元素释放其存储空间,但是将头结点指针域置空,这和销毁有区别哦。

不改变L,所以不需要用指针。

*/int ClearList( LinkList L ){LinkList p,q;p = L—〉next;// p指向第一个结点while( p ) // 没到表尾则继续循环{q = p—>next;free( p );//释放空间p = q;}L—>next = NULL; // 头结点指针域为空,链表成了一个空表return 1;}// 若L为空表(根据头结点L—〉next来判断,为空则是空表),则返回1,// 否则返回0.int ListEmpty(LinkList L){if(L—>next ) // 非空return 0;elsereturn 1;}// 返回L中数据元素个数。

数据结构单链表实验代码

数据结构单链表实验代码

数据结构单链表实验代码1.有一个单链表的第一个节点指针为head,编写一个函数将该单链表逆置,即最后一个节点变成第一个节点,原来倒数第二个节点变成第二个节点,如此等等,在逆置中不能建立新的单链表。

#include#include#define bs -1typedef int db;typedef struct xiangjia{db data;struct xiangjia *next;}lb;lb *tou(){lb *L;L=(lb *)malloc(sizeof(lb));L->next=NULL;return L;}void get(lb *l){lb *L,*h;db x;L=l;printf("请输入你的数据,并在末尾输入-1以示结束\n\n");scanf("%d",&x);while(x!=bs){h=(lb *)malloc(sizeof(lb)); h->data=x;h->next=L->next;L->next=h;scanf("%d",&x);}}void put(lb *l){lb *L;L=l;printf("链表中的数据有:\n"); while(L->next!=NULL) {printf("%d",L->next->data); L=L->next;if(L->next!=NULL){printf("->");}}printf("\n");}main(){lb *a;a=tou();get(a);printf("逆序后的整数表:"); put(a);}2.编写程序,将若干整数从键盘输入,以单链表形式存储起来,然后计算单链表中结点的个数(其中指针P指向该链表的第一个结点)。

单链表应用示例

单链表应用示例

学生成绩管理以单链表作为存储结构,设计和实现某班某门课程成绩管理的完整程序。

程序要求完成如下功能:(1)创建成绩链表,学生数据包含学生的学号、姓名和成绩。

(2)可以在指定学号学生前插入学生成绩数据。

(3)可以删除指定学号的学生数据。

(4)可以计算学生的总数。

(5)可以按学号和姓名查找学生。

(6)可以显示所有学生的成绩。

(7)可以把学生成绩按从高到低的顺序排列。

此处的设计思想基本与顺序表相同,只是对保存学生成绩的线性表采用不同的存储结构实现。

本例中用到的学生数据也是程序运行时由用户从键盘输入,保存到一个单链表中。

学生结构体类型的定义与顺序表应用举例处的定义相同,用C语言描述如下:typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;当学生的学号为“#”时,也是表示数据输入的结束。

单链表中保存的数据元素均为学生Student类型,则单链表定义如下:typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;对学生的成绩按从高到低排序时,使用的也是直接插入排序思想。

此外,为了排序后还能在原单链表上继续进行操作,这里是把单链表中的内容复制到一个新单链表中,对新单链表排序,原单链表不变。

下面是以单链表作为存储结构实现的学生某门课程成绩管理的完整C语言程序。

#include<string.h>#include<malloc.h>#include <stdlib.h>#include <stdio.h>typedef struct Student /*学生类型定义*/{ int score; /*成绩*/char sno[5],sname[8]; /*学号,姓名*/}Student;typedef struct Node /*结点类型定义*/{ Student studentInfo; /*学生信息*/struct Node *next; /*指向后继元素的指针域*/}LinkList;void display(LinkList *p) /*在屏幕上显示一个学生的成绩信息*/{ printf("\n\n\nno\t\tname\t\tscore: ");printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score); /*打印成绩*/}void displayAll(LinkList *L) /*在屏幕上显示所有学生的成绩信息*/ { LinkList *p;p=L->next;printf("\n\n\nno\t\tname\t\tscore: ");while(p){ printf("\n%s",p->studentInfo.sno); /*打印学号*/printf("\t\t ");printf("%s",p->studentInfo.sname); /*打印姓名*/printf("\t\t ");printf("%-4d\n",p->studentInfo.score);/*打印成绩*/p=p->next;}}LinkList *inputdata( ) /*输入学生信息*/{ LinkList *s=NULL ; /*s是指向新建结点的指针*/ char sno[5]; /*存储学号的数组*/printf("\n ");printf(" no: ");scanf("%s",sno); /*输入学号*/if(sno[0]=='#') /*#结束输入*/return s;s=( LinkList *)malloc(sizeof(LinkList));strcpy(s->studentInfo.sno,sno);if(strlen(sno)>4) /*如果sno字符个数大于等于5,因为字符串没有'\0'结束标志,在读数据时将把姓名字符一起读到sno数组,因此做了如下处理*/ s->studentInfo.sno[4]='\0';printf(" name: ");scanf("%s",s->studentInfo.sname); /*输入姓名*/printf("score: ");scanf("%d",&s->studentInfo.score);/*输入成绩*/return s;}LinkList *createTailList( ) /*以尾插法建立带头结点的学生信息单链表*/{ LinkList *L,*s, *r; /*L头指针,r尾指针,s是指向新建结点的指针*/ L=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/r=L; /*尾指针指向头结点*/printf("\请输入学生成绩,当学号no为\"#\"时结束:\n\n ");while (1) /*逐个输入学生的成绩*/{ s=inputdata( );if(!s) break; /*s为空时结束输入*/r->next=s; /*把新结点插入到尾指针后*/r=s; /*r 指向新的尾结点*/ }r->next=NULL; /*尾指针的指针域为空*/displayAll(L); /*显示所有学生信息*/return L;}Void locateElemByno(LinkList *L, char ch[5]) /*按学号查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p && (strcmp(p->studentInfo.sno,ch)!=0))/*p不空且输入学号与链表中学号不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" );}else{ display(p); /*显示查找到的学生信息*/}}void locateElemByname(LinkList *L, char sname[8])/*按姓名查找学生的算法*/{ LinkList *p=L->next; /*从第一个结点开始查找*/ while ( p&& (strcmp(p->studentInfo.sname,sname)!=0)) /*p不空且输入姓名与链表中姓名不等*/ p = p ->next;if (!p){ printf("\n\n\tDon't find the student!\n" ); }else{display(p); /*显示查找到的学生信息*/}}int lengthList (LinkList *L) /*求学生总人数的算法*/{ LinkList * p=L->next; /* p指向第一个结点*/int j=0;while (p){ p=p->next; j++ ;} /* p所指的是第j 个结点*/return j;}void insertElem ( LinkList *L, char ch[5]) /*在带头结点的单链表L中指定学号前插入学生*/ { LinkList *p,*s;p=L; /*从头结点开始查找学号为ch的结点的前趋结点p */while ((p->next) && (strcmp(p->next->studentInfo.sno,ch)!=0))p = p ->next;s=inputdata(); /*输入欲插入学生信息*/s->next=p->next;p->next=s;}void deleteElem (LinkList *L, char ch[5]) /*删除给定学号的学生信息的算法*/{ LinkList *p,*q;p=L;while ( (p->next)&&(strcmp(p->next->studentInfo.sno,ch)!=0 )){ p=p->next; /*从头结点开始查找学号为ch的结点的前趋结点p*/}if (!p->next) /* 已经扫描到表尾也没找到*/{ printf("\n\n\tDon't find the student!\n" );}else{ q=p->next; /*q指向学号为ch的结点*/printf("\n\ndeleted student's information:");display(q);p->next=q->next; /*改变指针*/free(q); /*释放q占用空间*/printf("\n\nall student's information :");displayAll(L);}}void insertSort(LinkList *L) /*用直接插入排序思想把学生的成绩按从高到低排序,结果保存在新有序链表中,原链表不变*/{ L inkList *L1,*p; /*L1有序链表的表头,p插入位置前结点*/ LinkList *q,*s; /*q欲插入L1中的结点*/int len;len=lengthList (L) ;L1=( LinkList *)malloc(sizeof (LinkList)); /*建立头结点,申请结点存储空间*/if (L->next) /*链表L非空*/{ /*生成有序链表的第一个结点*/s=( LinkList *)malloc(sizeof (LinkList)); /*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,L->next->studentInfo.sno);strcpy(s->studentInfo .sname,L->next->studentInfo.sname);s->studentInfo .score =L->next->studentInfo.score;s->next =NULL;L1->next=s; /*只有原单链表的第一个结点的有序链表L1*/q=L->next->next; /*原单链表的第二个结点,q即要插入有序链表L1中的结点*/ }else{ printf("\nthe student link list is empty\n");return;}while(q) /*链表L中有结点*/{ p=L1 ; /*从链表L1的第一个结点开始比较*/while((p->next) && (p->next->studentInfo.score>=q->studentInfo.score))p=p->next ; /*查找插入位置前结点*//*生成欲插入有序链表中的结点*/s=( LinkList *)malloc(sizeof (LinkList));/*建立结点,申请结点存储空间*/strcpy(s->studentInfo .sno ,q->studentInfo.sno);strcpy(s->studentInfo .sname ,q->studentInfo.sname);s->studentInfo .score =q->studentInfo.score;if(!p->next) /*p是有序链表的最后一个结点*/{ s->next =NULL ;p->next =s;}else{ s->next =p->next ;p->next =s;}q=q->next; /*下一个欲插入有序链表的结点*/ }/*while(!q)*/displayAll(L1); /*显示生成的有序链表*/}void main(){ printf("=============================================\n\n");printf(" 带头结点的学生成绩管理程序\n\n");printf("=============================================\n\n");LinkList *L;char ch[5],sname[8];int b=1;while(b){ int a;printf("\n\n");printf(" <1>创建(带头尾插)<2>指定学号前插入<3>按学号删除\n ");printf("<4>计算学生总数<5> 按学号查找<6> 按姓名查找\n");printf(" <7>显示所有学生<8>成绩排序<9> 退出\n");printf("\n请输入功能选项:");scanf("%d",&a);switch(a){case 1:L=CreateTailList();break;case 2:printf("\n输入欲在哪个学号前插入数据:");scanf("%s",ch);insertElem(L, ch) ;break;case 3:printf("\n输入欲删除学生的学号:");scanf("%s",ch);deleteElem(L, ch) ;break;case 4:printf(" \n学生总数为:%d \n",lengthList (L) );break;case 5:printf("\n输入欲查找学生的学号:");scanf("%s",ch);locateElemByno(L, ch) ;break;case 6:printf("\n输入欲查找学生的姓名:");scanf("%s",sname);locateElemByname(L, sname );break;case 7:displayAll(L);break;case 8:insertSort(L);break;case 9:printf("\n已退出\n");b=0;break;};}}上机运行程序后,程序执行结果如图2.31(a)~(i)所示。

C语言实现单链表逆置

C语言实现单链表逆置

什么单链表的逆置问题描述设计一个程序,实现单链表的逆置。

一、需求分析⑴按程序提示输入并创建一个单链表,带有头结点⑵可自定义链表的长度,可自定义链表储存的数据类型,注意更改相应的输入输出方式⑶实现单链表的逆置,直观地输出结果二、概要设计为实现上述程序功能,需创建以下抽象数据类型:ADT LinkList {数据对象:D={ai|ai∈(0,1,…,9),i=0,1,2,…,n,n≥0}数据关系:R={<ai-1,ai>|ai-1,ai∈D,i=1,2,…,n}基本操作:InitList(&L)操作结果:初始化一个链表L。

CreatList(L,L_Length)初始条件:链表L已存在。

操作结果:创建一个长度为L_Length的单链表。

InverseList(L)初始条件:链表L已存在。

操作结果:将单链表逆置。

DisplayList(L)初始条件:链表L已存在。

操作结果:销毁链表L。

} ADT LinkList本程序包含四个模块,即1)主程序模块,接受命令2)初始化及链表创建模块,按要求创建链表3)单链表逆置模块,实现单链表的逆置4)显示模块,输出结果三、详细设计(C语句,而非伪码)1.元素类型、节点类型和指针类型的定义typedef int Status;//函数状态类型typedef int ElemType;//元素类型typedef struct node{ElemType data;struct node *next;}Node,*LinkList;//节点类型、2.基本操作和所需调用的函数//初始化一个链表Status InitList(LinkList *L){*L=(LinkList)malloc(sizeof(node));if(!(*L)) exit(-2);//内存分配失败(*L)->next=NULL;return 1;}//在初始化的基础上按顺序创建一个链表Status CreatList(LinkList L,int n){LinkList p=L;int i;for(i=0;i<n;i++){(p->next)=(LinkList)malloc(sizeof(node));if (!(p->next)) exit(-2);//内存分配失败scanf("%d",&p->next->data);p=p->next;}p->next=NULL;return 1;}//依次输出单链表中的各个元素Status DisplayList(LinkList L){LinkList p;p=L->next;while(p){printf("%5d",p->data);p=p->next;}printf("\n");return 1;}//逆置1(递归方法)LinkList Ieverse(LinkList pre, LinkList cur) {LinkList head;if(!cur)return pre;head =Ieverse(cur, cur->next);cur->next = pre;return head;}//逆置2(就地逆置)Status Ieverse(LinkList L) {LinkList last = L->next;LinkList first ;while(last->next){first = L->next;L->next=last->next;last->next=L->next->next;L->next->next=first;}return 1;}3.主函数及功能的实现void main(){LinkList L;int L_Length;InitList(&L);//初始化链表printf("请输入单链表的长度:\n");scanf("%d",&L_Length);if(L_Length < 1) exit(-1);//长度不符合要求printf("请依次输入各个元素的值:\n");CreatList(L,L_Length);//按输入数据创建链表DisplayList(L);//显示原单链表//L->next=Ieverse(NULL,L->next);此语句可调用递归方法实现链表的逆置//Ieverse(L);//实现单链表的就地逆置printf("After reversing!\n");DisplayList(L);//显示逆置后的链表}四、调试分析本程序的基本框架比较简单,整个运行过程主要分为五个部分:主程序模块(接受链表的信息)->创建链表模块(初始化链表,即创建一个仅含头结点的空链表;按主程序模块接受的元素信息创建链表)->输出单链表模块(按一定格式输出原始链表) ->单链表逆置模块(可通过两种方式实现)->输出链表模块(按一定格式输出逆置后的链表)。

数据结构c语言版上机报告单链表

数据结构c语言版上机报告单链表

数据结构C语言版上机报告:单链表序在数据结构课程中,单链表是一个重要的概念,也是C语言中常用的数据结构之一。

本次报告将深入探讨单链表的基本概念、操作方法以及应用场景,帮助读者更深入地理解和掌握这一数据结构。

一、概述1.1 单链表的定义单链表是一种线性表,它由一系列节点组成,每个节点包含两部分:数据域和指针域。

数据域用于存储数据元素,指针域用于指向下一个节点,通过指针将这些节点串联在一起,形成一个链表结构。

1.2 单链表的特点单链表具有以下特点:(1)动态性:单链表的长度可以动态地增加或减少,不需要预先分配固定大小的空间。

(2)插入和删除操作高效:在单链表中进行插入和删除操作时,只需要修改指针的指向,时间复杂度为O(1)。

(3)随机访问效率低:由于单链表采用链式存储结构,无法通过下标直接访问元素,需要从头节点开始依次遍历,时间复杂度为O(n)。

1.3 单链表的基本操作单链表的基本操作包括:创建、插入、删除、查找等。

这些操作是使用单链表时常常会涉及到的,下面将逐一介绍这些操作的具体实现方法和应用场景。

二、创建2.1 头插法和尾插法在C语言中,可以通过头插法和尾插法来创建单链表。

头插法是将新节点插入到链表的头部,尾插法是将新节点插入到链表的尾部,这两种方法各有优缺点,可以根据具体应用场景来选择。

2.2 应用场景头插法适合于链表的逆序建立,尾插法适合于链表的顺序建立。

三、插入3.1 在指定位置插入节点在单链表中,插入节点需要考虑两种情况:在链表头部插入和在链表中间插入。

通过对指针的操作,可以实现在指定位置插入节点的功能。

3.2 应用场景在实际应用中,经常会有需要在指定位置插入节点的情况,比如排序操作、合并两个有序链表等。

四、删除4.1 删除指定节点在单链表中,删除节点同样需要考虑两种情况:删除头节点和删除中间节点。

通过对指针的操作,可以实现删除指定节点的功能。

4.2 应用场景在实际应用中,经常会有需要删除指定节点的情况,比如删除链表中特定数值的节点等。

c语言单链表程序代码

c语言单链表程序代码

c语言单链表程序代码单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

单链表的优点在于插入和删除操作的效率高,但是访问任意节点的效率较低。

下面是一个简单的单链表程序代码:```c#include <stdio.h>#include <stdlib.h>struct Node {int data;struct Node* next;};void insert(struct Node** head, int data) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = *head;*head = newNode;}void printList(struct Node* head) {while (head != NULL) {printf("%d ", head->data);head = head->next;}printf("\n");}int main() {struct Node* head = NULL;insert(&head, 1);insert(&head, 2);insert(&head, 3);printList(head);return 0;}```这个程序定义了一个结构体`Node`,包含一个整型数据`data`和一个指向下一个节点的指针`next`。

`insert`函数用于在链表头部插入一个新节点,`printList`函数用于打印整个链表。

在`main`函数中,我们创建了一个空链表`head`,然后插入了三个节点,最后打印整个链表。

这个程序虽然简单,但是涉及到了单链表的基本操作。

C语言链表详解PPT课件

C语言链表详解PPT课件
撤消原来的链接关系。 两种情况: 1、要删的结点是头指针所指的结点则直接操作; 2、不是头结点,要依次往下找。 另外要考虑:空表和找不到要删除的结点
26
链表中结点删除
需要由两个临时指针: P1: 判断指向的结点是不是要删除的结点 (用于寻找); P2: 始终指向P1的前面一个结点;
27
图 11.19
4
结点里的指针是存放下一个结点的地址
Head
1249
1249
A 1356
1356
B 1475
1475
C 1021
1021
D Null
1、链表中的元素称为“结点”,每个结点包括两 个域:数据域和指针域;
2、单向链表通常由一个头指针(head),用于指 向链表头;
3、单向链表有一个尾结点,该结点的指针部分指
7
(4)删除操作是指,删除结点ki,使线性表的长度 减1,且ki-1、ki和ki+1之间的逻辑关系发生如下变 化:
删除前,ki是ki+1的前驱、ki-1的后继;删除后,ki-1 成为ki+1的前驱,ki+1成为ki-1的后继.
(5)打印输出
8
一个指针类型的成员既可指向其它类型的结构体数 据,也可以指向自己所在的结构体类型的数据
(x7,y7)
为了表示这种既有数据又有指针的情况, 引入结构这种数据类型。
3
11.7 用指针处理链表
链表是程序设计中一种重要的动态数据结构, 它是动态地进行存储分配的一种结构。
动态性体现为: 链表中的元素个数可以根据需要增加和减少,不 像数组,在声明之后就固定不变;
元素的位置可以变化,即可以从某个位置删除, 然后再插入到一个新的地方;

数据结构(C语言)用单链表存储一元多项式,并实现两个多项式的相加运算

数据结构(C语言)用单链表存储一元多项式,并实现两个多项式的相加运算

#include<stdio.h>#include<stdlib.h>#include<malloc.h>typedef int ElemType;/*单项链表的声明*/typedef struct PolynNode{int coef; // 系数int expn; // 指数struct PolynNode *next;}PolynNode,*PolynList;/*正位序(插在表尾)输入n个元素的值,建立带表头结构的单链线性表*/ /*指数系数一对一对输入*/void CreatePolyn(PolynList &L,int n){int i;PolynList p,q;L=(PolynList)malloc(sizeof(PolynNode)); // 生成头结点L->next=NULL;q=L;printf("成对输入%d个数据\n",n);for(i=1;i<=n;i++){p=(PolynList)malloc(sizeof(PolynNode));scanf("%d%d",&p->coef,&p->expn); //指数和系数成对输入q->next=p;q=q->next;}p->next=NULL;}// 初始条件:单链表L已存在// 操作结果: 依次对L的每个数据元素调用函数vi()。

一旦vi()失败,则操作失败void PolynTraverse(PolynList L,void(*vi)(ElemType, ElemType)){PolynList p=L->next;while(p){vi(p->coef, p->expn);if(p->next){printf(" + "); //“+”号的输出,最后一项后面没有“+”}p=p->next;}printf("\n");}/*ListTraverse()调用的函数(类型要一致)*/void visit(ElemType c, ElemType e){if(c != 0){printf("%dX^%d",c,e); //格式化输出多项式每一项 }}/* 多项式相加,原理:归并 *//* 参数:两个已经存在的多项式 *//* 返回值:归并后新的多项式的头结点 */PolynList MergeList(PolynList La, PolynList Lb){PolynList pa, pb, pc, Lc;pa = La->next;pb = Lb->next;Lc = pc = La; // 用La的头结点作为Lc的头结点while(pa&&pb){if(pa->expn < pb->expn){pc->next = pa; //如果指数不相等,pc指针连上指数小的结点,pc = pa;pa = pa->next; //指向该结点的指针后移}else if(pa ->expn > pb->expn ){pc->next = pb; //pc指针连上指数小的结点,pc = pb;pb = pb->next; //指向该结点的指针后移}else//(pa ->expn = pb->expn ){pa->coef = pa->coef + pb->coef; //指数相等时,系数相加pc->next = pa;pc = pa;pa = pa->next; //两指针都往后移pb = pb->next;}}pc->next = pa ? pa:pb; // 插入剩余段return Lc;}void main(){PolynList ha,hb,hc;printf("非递减输入多项式ha, ");CreatePolyn(ha,5); // 正位序输入n个元素的值 printf("非递减输入多项式hb, ");CreatePolyn(hb,5); // 正位序输入n个元素的值 printf("多项式ha :");PolynTraverse(ha, visit);printf("\n");printf("多项式hb :");PolynTraverse(hb, visit);printf("\n");hc = MergeList(ha,hb);PolynTraverse(hc, visit);}。

c语言多线程操作单链表

c语言多线程操作单链表

在C语言中,多线程操作单链表需要特别小心,因为这涉及到并发访问和修改共享数据的问题。

如果不正确地处理,可能会导致数据损坏或程序崩溃。

为了实现多线程操作单链表,可以使用以下方法:1. 锁机制:在访问链表之前,使用互斥锁(mutex)来保护链表,确保同一时间只有一个线程可以访问链表。

当线程需要修改链表时,需要先获取锁,然后进行修改,最后释放锁。

这样可以确保链表操作的原子性和一致性。

2. 读写锁:对于读多写少的场景,可以使用读写锁(read-write lock)。

读写锁允许多个线程同时读取链表,但只允许一个线程写入链表。

这样可以提高并发性能。

3. 条件变量:使用条件变量可以让线程等待链表发生变化。

当链表发生变化时,可以唤醒等待的线程。

这样可以避免线程频繁地检查链表是否发生变化,提高效率。

下面是一个简单的示例代码,演示了如何使用互斥锁实现多线程操作单链表:#include <stdio.h>#include <stdlib.h>#include <pthread.h>struct node {int data;struct node *next;};pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;struct node *head = NULL;void *add_node(void *arg) {pthread_mutex_lock(&mutex);struct node *new_node = (struct node *)malloc(sizeof(struct node));new_node->data = *((int *)arg);new_node->next = head;head = new_node;pthread_mutex_unlock(&mutex);return NULL;}void print_list() {pthread_mutex_lock(&mutex);struct node *p = head;while (p != NULL) {printf("%d ", p->data);p = p->next;}printf("\n");pthread_mutex_unlock(&mutex);}int main() {pthread_t tid1, tid2;int data1 = 1, data2 = 2;pthread_create(&tid1, NULL, add_node, &data1);pthread_create(&tid2, NULL, add_node, &data2);pthread_join(tid1, NULL);pthread_join(tid2, NULL);print_list(); // 输出:1 2return 0;}。

C语言算法大全

C语言算法大全

C语言经典算法目录一、单元加.................................... 错误!未定义书签。

1.erre ...................................... 错误!未定义书签。

2. erre2 ................................... 错误!未定义书签。

3. 数组完全单元........................ 错误!未定义书签。

4. 栈单元加.............................. 错误!未定义书签。

二、底层编程 ................................ 错误!未定义书签。

1. asm ..................................... 错误!未定义书签。

2. C标志符命名源程序............... 错误!未定义书签。

3. ping .................................... 错误!未定义书签。

4. winsock2 ............................. 错误!未定义书签。

5. 检测鼠标.............................. 错误!未定义书签。

6. 检出错误.............................. 错误!未定义书签。

7. 时间陷阱.............................. 错误!未定义书签。

三、汉诺塔.................................... 错误!未定义书签。

1. 非递归................................. 错误!未定义书签。

2. 汉诺塔................................. 错误!未定义书签。

3. 汉诺塔2 .............................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单链表 带头结点
#include <stdio.h>
#include <stdlib.h>
/*
带头结点的单链表的操作
在该链表中,数据元素是int,
我们让头结点的数据域存储链表的实际长度
*/
/*链表节点的类型定义*/
struct node
{
int data;
struct node *next;
};
/*
链表的初始化函数
在该函数中要分配头结点存储空间
让头指针指向头结点,
因此要修改头指针的值,
所以传递头指针的地址进来
*/
void init(struct node **h)
{
struct node *s;
s = (struct node *)malloc(sizeof(struct node));
if(s==NULL) return;
/*
头结点的数据域存储链表的长度
*/
s->data=0;
s->next=NULL;
/*让头指针指向头结点*/
*h = s;
}
/*
创建链表,仍然按照逆序创建,
从后往前输入元素的值,
然后把新结点插入到表头
*/
void createLink(struct node *h)
{
struct node *s;
int n;
while(1)
{
scanf("%d",&n);
/*根据实际情况判断链表的元素
输入结束
还有一种情况就是找不到合适的
作为结束标记的值
先让用户输入元素个数,
然后固定字数循环*/
if(n==-1) break;
/*
创建新结点
*/
s = (struct node *)malloc(sizeof(struct node));
s->data = n;
s->next = h->next;
/*
新结点放入链表的表头
让头结点的NEXT指向新结点
*/
h->next = s;
(h->data)++;
}
}
/*
遍历整个链表
*/
void bianliLink(struct node *h)
{
int k;
struct node *p;
/*
P指向第一个结点
*/
p=h->next;
/*
如果定义了链表长度变量,
可以使用变量计数,
表示处理到链表的最后一个元素
如果不定义链表长度变量,
就用指针是否指向NULL,
判断是否处理到最后一个元素了。

相关文档
最新文档