基于单片机设计的脉搏测量仪原理

合集下载

基于51单片机脉搏测量仪答辩课件

基于51单片机脉搏测量仪答辩课件

基于51单片机脉搏测量仪答辩课件一、引言随着现代生活节奏的加快,人们的身体健康问题日益凸显,特别是心血管疾病的发病率逐年上升。

因此,快速、准确地测量脉搏成为保持健康的重要手段。

本课题基于51单片机设计了一款脉搏测量仪,使脉搏的测量变得更加简便、快捷。

本次答辩主要介绍脉搏测量仪的设计原理、硬件实现、软件设计以及实验验证等内容。

二、设计原理脉搏测量仪主要通过红外线反射原理来测量脉搏。

当心脏跳动时,人体的血液流动会导致手指末梢的颜色发生变化。

脉搏测量仪通过红外线发射二极管和接收二极管实现红外光的发射和接收。

当手指按压在传感器上时,发射二极管的红外光被皮肤吸收,通过接收二极管接收到的红外光信号变化来测量脉搏。

三、硬件实现本设计的硬件主要包括传感器模块、信号处理模块和显示模块。

传感器模块包括红外线发射二极管、接收二极管和运算放大器。

红外线发射二极管和接收二极管通过导线连接到51单片机的I/O口。

信号处理模块包括运算放大器以及带通滤波器,用来放大和滤波信号。

显示模块通过数码管显示测量得到的脉搏数值。

四、软件设计本设计的软件主要由嵌入式C程序编写。

通过定时中断采集传感器模块输出的模拟信号,再经过A/D转换得到数字信号。

通过带通滤波器对数字信号进行滤波处理,消除噪声干扰。

然后利用数字信号的变化来计算心率,并通过串口通信将数据传输到上位机进行显示和存储。

五、实验验证在实验室环境下,通过将脉搏测量仪与医用脉搏测量设备进行对比实验,验证了脉搏测量仪的准确性和实用性。

实验结果表明,基于51单片机的脉搏测量仪能够准确测量人体脉搏,并且与医用设备测量结果具有较高的一致性。

六、创新点及应用前景与传统的脉搏测量仪相比,基于51单片机脉搏测量仪具有体积小、使用方便等优点。

它可以广泛应用于医院、家庭等场景,为人们提供及时、准确的脉搏测量服务。

同时,该设计提供了一个切实可行的思路,可以借鉴和推广到其他医疗设备的设计中。

七、总结本次课题基于51单片机设计了一款脉搏测量仪,通过红外线反射原理实现了脉搏的快速、准确测量。

基于单片机技术的脉搏测量仪设计

基于单片机技术的脉搏测量仪设计

基于单片机技术的脉搏测量仪设计脉搏测试仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电1.3 信号采集及处理系统由于光电脉搏波属于缓慢变化的微弱生理信号,信噪比低,极易受到环境噪声和肢体运动的干扰。

传统的光电脉搏波信号检测电路都采用高增益放大器,以获得较高的检测灵敏度,这种设计思路导致了检测信号动态范围缩小,在受到运动干扰时,将导致由于干扰信号而带来的光电脉搏波信号检测的饱和失真。

本系统采用过采样技术,通过对信号的高速采样来提高采样精度,相当于用高分辨率的ADC 对信号进行模数转换,达到了提高信噪比并改善动态范围的效果。

因此本系统对经过光电转换后的信号进行模数转换而不需要任何信号调理(放大和滤波)电路。

1.4 过采样技术的应用所谓过采样技术是指以远远高于奈奎斯特(Nyquist)采样频率的频率对模拟信号进行采样的方法。

由信号采样量化理论可知,若输入信号的最小幅度大于量化器的量化电平,并且输入信号的幅度随机分布,则量化噪声的总功率是一个常数,在0~fs 的频带范围内均匀分布。

因此量化噪声电平与采样频率成反比,如果提高采样频率,则可以降低量化噪声电平,而由于基带是固定不变的,因而减少了基带范围内的噪声功率,提高了信噪比,从而提高分辨率,并且采样频率每提高4 倍,则信噪比提高4 倍,相当于A/D 的分辨率提高1 位。

2 软件设计2.1 程序设计本文选用ADI 公司的单片机ADC841,其内部集成了速度可达400k 的12 位逐次逼近型ADC,分辨率为0.6mv/LSB。

从软件需求和单片机速度出发,将ADC 采样率fs 定为102.4kHz,为便于计算,将过采样倍数k 定为64,则下抽取后采样率为伪:fs/k=1600Hz,是频率为400Hz 载波的四倍,满足奈奎斯特采样定理。

由于过采样倍数k 为64,按每提高4 倍采样率就能提高一位分辨率来计算,获得的ADC 有效分辨率能提高3。

基于单片机设计的脉搏测量仪)

基于单片机设计的脉搏测量仪)

毕业设计任务书扬州工业职业技术学院电子信息工程系09 届毕业设计(论文)开题报告书第三部分毕业设计报告目录第一章引言 (7)第二章硬件电路设计 (8)2.1 AT89C2051主要性能 (8)2.2AT89C2051的结构框图 (10)2.3AT89C2051的引脚说明 (11)2.4 复位电路 (12)2.5 振荡电路 (13)第三章基本结构模块 (13)3.1 脉搏波检测电路 (14)3.2 脉搏信号拾取电路 (14)3.3 信号放大 (16)3.4 波形整形部分 (18)第四章整体电路分析 (19)4.1 光发射电路 (19)4.2 光电转换电路 (19)4.3 信号采集及处理系统 (20)4.4 过采样技术的应用 (20)4.5 整体硬件电路设计 (21)第五章软件设计 (23)5.1 程序设计 (23)5.2 程序源代码 (24)结束语 (29)致谢 (29)参考文献 (30)基于单片机设计的脉搏测量仪周静0601电气技术[摘要] 医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。

本文介绍一种用单片机制作的脉搏测量仪,只要人把手指放在传感器内2秒钟就可以精确测量出每分钟脉搏数,测量结果用三位数字显示。

[关键词]:AT89C2051 单片机脉搏测量仪Single-chip design based on the pulse measuring instrumentZhou Jing0601 Electrical TechnologyAbstract: Nurse hospital wants to give in hospital every day the patient takes the pulse to record the patient each minute pulse number, the method is with the hand according to on the patient wrist's department artery, carries on the counting according to pulse's beat. For the saving of time, will not make 1 minute survey generally, usually will be surveys in 10 seconds time palpitation's number, will be multiplied by again the result 6 namely obtains each minute palpitation number, even if will do this is quite time-consuming, moreover the precision will not be high. This article introduced that one kind the pulse measuring instrument which manufactures with the monolithic integrated circuit, so long as the human places the finger in the sensor 2 seconds to be possible the precision measuring each minute pulse number, the measurement result showed with three digit. Key words: AT89C2051 monolithic integrated circuit pulse measuring instrument第一章引言脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。

基于51单片机脉搏测量仪

基于51单片机脉搏测量仪

基于51单片机脉搏测量仪
本文介绍一种用单片机制作的脉搏测量仪,只要把手指放在传感器内,很快就可以精确测出每分钟脉搏数,测量的结果用三位数字显示出来。

一、电路工作原理
电路原理见附图。

电路由传感器电路、信号放大和整形电路、单片机电路、数码显示电路等四部分组成。

传感器由红外线发射二极管和接收二极管组成,测量原理如下:将手指
放在红外线发射二极管和接收二极管之间,血管中血液的流量随着心脏的跳动
变化,由于手指放在光的传递路径中,血管中血液饱和度的变化将引起光的传
递强度变化,此变化和心跳的节拍相对应,因此红外接收二极管的电流也跟着
心跳的节拍改变,使得红外接收二极管输出与心跳节拍相对应的脉冲信号。


脉冲信号经F1~F3、R3~R5。

C1、C2等组成的低通放大器放大,
F4、R6、R7、C3组成的放大器进一步放大后,送给由F5、F6、RP1、R8等组成的施密特触发器整形后输出,作为单片机的外部中断信号。

电路中的可变电
阻RP1用来调整施密特触发器的阈值压。

IC2、X1、R10、C5等组成单片机电路。

单片机对由P3.2输入的脉冲信号进行计算处理后,送到数码管显示。

发光二极管VD3作脉搏测量状态显示,脉搏每跳动一次,VD3点亮一次。

三只数码管VT1~VT3、R12-R21等组成数码显示电路。

本机采用动态扫描显示方式,使用共阳数码管,P3.3~P3.5口作三只数码管的动态扫描位驱动码输出,通过三极管VT1-VT3驱动数码管。

P1.0-P1.6口作数码管段码输出。

二、软件设计。

基于单片机人体脉搏测量仪的设计与实现

基于单片机人体脉搏测量仪的设计与实现

基于单片机人体脉搏测量仪的设计与实现随着健康意识的普及和人们对身体健康的关注度的提高,人体脉搏测量仪成为了一款非常受欢迎的健康监测设备。

本文将基于单片机设计与实现一款人体脉搏测量仪。

首先,我们需要了解什么是脉搏。

脉搏是人体心脏搏动时,由于动脉中的血液被心脏排出而引起的动脉的周期性扩张和收缩的现象。

测量脉搏可以了解人体的心脏系统是否正常工作,并作为一种辅助诊断工具。

我们的设计将使用单片机作为测量仪的主要控制器。

单片机的选择可以根据实际需求来确定,一般使用中小型的单片机即可满足要求。

其次,我们需要选择合适的传感器来测量脉搏。

脉搏传感器一般通过与人体的皮肤接触来测量脉搏。

一种常用的传感器是光电传感器,可以通过测量人体皮肤上血液流动时的光变化来获得脉搏数据。

此外,还可以使用压力传感器或者加速度传感器等其他传感器来测量脉搏。

接下来,我们需要设计电路来连接传感器和单片机。

首先,将传感器与适当的电路连接,以便能够将传感器的输出信号转换为电压或者数字信号。

然后,将电路与单片机连接,以便能够将传感器输出的数据输入到单片机中进行处理。

在单片机端的软件设计中,我们首先需要初始化单片机的相关设置,例如时钟频率、IO口模式等。

然后,在主循环中,我们可以获取传感器输出的数据,并将其转换为合适的脉搏数值。

最后,可以通过显示设备(如LCD)显示脉搏数值,并可以将数据存储到存储器中,以便日后分析和查看。

此外,为了增加可操作性和用户体验,我们还可以在设计中添加一些功能和特性。

例如,可以添加一个按钮来启动脉搏测量,或者使用无线通信模块将脉搏数据发送到手机或电脑上进行分析。

总结起来,基于单片机人体脉搏测量仪的设计与实现具有以下步骤:选择合适的单片机;选择合适的传感器;设计连接传感器和单片机的电路;进行单片机端的软件设计;添加额外的功能和特性。

需要强调的是,这只是一个基本的设计框架,实际的设计与实现过程中还需要根据具体要求进行调整和完善。

基于单片机的脉搏测量仪设计毕业

基于单片机的脉搏测量仪设计毕业

基于单片机的脉搏测量仪设计毕业脉搏测量仪是一种用于测量人体脉搏的仪器,可以根据脉搏信号来分析人体的心率和心律。

基于单片机的脉搏测量仪具有体积小、功耗低、成本低等优点,适用于个人使用和医疗机构。

设计一个基于单片机的脉搏测量仪的系统主要分为硬件设计和软件设计两个部分。

硬件设计部分包括传感器、滤波电路、放大电路和显示电路等。

首先,选取合适的传感器感知人体脉搏信号。

一种常用的传感器是心率传感器,它能够非侵入式地探测人体脉搏信号。

心率传感器一般采用光电技术,通过血液中的脉搏信号的变化来测量心率。

将心率传感器与单片机进行接口连接。

其次,对传感器输出的脉搏信号进行滤波处理。

脉搏信号包含许多杂散噪声,需要通过滤波电路进行滤波处理,以减小噪声对信号的干扰。

常用的滤波器有低通滤波器,可以滤除高频噪声信号。

再次,通过放大电路对滤波后的脉搏信号进行放大,以增加信号的幅度,方便后续的分析处理。

放大电路采用运放电路,通过调整放大倍数和增益可以使信号更好地显示。

最后,通过显示电路将放大后的脉搏信号进行显示。

显示电路可以选择液晶显示屏、LED指示灯或者数码管等。

设计时要考虑显示界面的清晰度和易读性。

软件设计部分包括数据采集、信号处理和心率计算等。

数据采集模块负责从传感器获取脉搏信号,以一定的采样频率采集信号,并存储到单片机的存储器中。

信号处理模块对从传感器得到的脉搏信号进行处理,如滤波、放大等。

滤波可以采用数字滤波算法,如均值滤波、中值滤波等。

放大可以通过调整放大倍数和增益来实现。

处理后的信号可以传递给心率计算模块。

心率计算模块负责根据处理后的脉搏信号计算心率。

心率计算可以采用峰值检测算法,通过寻找脉搏信号的峰值来计算心率。

可以设置一个合适的阈值,当脉搏信号超过阈值时,认为达到峰值。

设计完成后,通过实验验证系统的准确性和可靠性。

可以与专业医学仪器进行对比,比较测量结果的一致性。

可以使用心电图或其他血压计进行参考。

综上所述,基于单片机的脉搏测量仪设计可以实现对人体心率的测量和分析,具有体积小、功耗低、成本低等优点。

基于单片机的脉搏检测仪设计

基于单片机的脉搏检测仪设计

第33卷第4期2017年7月齐齐哈尔大学学报(自然科学版)Journal of Qiqihar University(Natural Science Edition)Vol.33,No.4July,2017基于单片机的脉搏检测仪设计贾炀,陆仲达,王凯(齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006)摘要:基于脉搏检测原理,以STC89C52单片机为硬件处理核心,采用红外对管传感器,利用单片机内部的定时 器来计算时间,经过单片机定时累加得到脉搏数据,检测数据由液晶显示同时进行语音播报。

系统的软件程序由 C语言编写。

关键词:单片机;脉搏检测;红外对管传感器中图分类号:TP212.9 文献标志码:A 文章编号:1007-984X(2017)04-0011-03脉搏在医疗体系中是一项重要的生理健康参数。

在中医有诊脉一说,医生通过对患者脉搏的诊测来了 解患者的基本身体状况,而且在西方医疗体系中脉搏参数仍是一项重要指标。

随着时代和科技的发展,大 家印象深刻的传统汞柱式脉搏血压仪的一些弊端越来越明显,繁琐的操作步骤,橡皮材料的部件易老化,冬季衣着繁多操作更加不便,并且对于急性病患来讲,时间就是生命。

随着现代生活节奏的加快和社会压 力的加重,人们的身体状态大不如前,一些常规的身体指标对自身身体状态的监测对重大疾病的预防有不 可估量的作用。

所以迫切地需要一种全新的脉搏检测仪,价格适宜、功能可靠、易操作且维护方便,适用 于各类人群完成人体脉搏的测量。

本文以STC89C52单片机为硬件处理核心,结合光电传感器利用手指处 组织较少、毛细血管集中的特点,通过对手指末端透光度的检测,间接检测出脉搏信息。

1总体方案设计传统的汞柱式脉搏血压仪在使用过程中操作繁琐,橡胶材质易老化且汞柱部分易碎,使用时需配合听 诊器等都决定了它在现在高速发展的医疗领域已经不能够满足人们的需要。

本文设计的脉搏检测仪,选用 51系列单片机作为主控芯片,该系列单片机是一款公认的价格低廉功能强大的单片机,便于实现程序的下 载和调试。

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题一、什么是脉搏测量仪?脉搏测量仪是一种用于监测人体脉搏的仪器,通过传感器感知人体的脉搏信号,并将其转化成数字信号通过处理器进行分析和显示。

基于51单片机的脉搏测量仪是利用51单片机作为核心控制器,搭配适当的传感器和显示器组件,可以实现对脉搏的实时监测和数据处理。

二、该脉搏测量仪的工作原理是怎样的?1. 传感器采集脉搏信号:脉搏测量仪通常会采用光电传感器或压力传感器来感知人体的脉搏信号,光电传感器通过发射一束红外光束照射到皮肤上,当血液脉动时,血液会吸收不同程度的红外光,通过检测光电传感器接收到的反射光强度变化来获取脉搏信号;压力传感器则是通过感知皮肤上的微小压力变化来获取脉搏信号。

2. 信号处理与数字化:传感器采集到的模拟信号需要经过信号调理电路进行滤波和放大,然后通过模数转换器(ADC)将模拟信号转化成数字信号,以便于单片机的处理。

3. 数据处理与显示:单片机接收到数字化的脉搏信号后,会根据预设的算法进行脉搏波形的提取和心率的计算,并将结果显示在液晶显示器上,同时可以通过串口或蓝牙模块将数据传输到外部设备进行进一步分析和存储。

三、基于51单片机的脉搏测量仪有哪些特点?1. 灵活性强:基于51单片机的脉搏测量仪可以根据实际需求进行灵活的定制和扩展,比如可以根据具体情况选择合适的传感器,采用不同的数据处理算法,实现不同的功能。

2. 成本低廉:51单片机作为一种经典的微控制器,价格低廉且性能稳定可靠,适合用于中小型医疗设备的开发和生产。

3. 易于开发:基于51单片机的脉搏测量仪的软硬件开发相对简单,开发人员可以利用丰富的开发资源和成熟的开发工具进行快速开发和调试。

四、该脉搏测量仪在医疗保健领域有哪些应用前景?1. 个人健康监测:随着人们健康意识的提高,个人健康监测设备越来越受到关注,基于51单片机的脉搏测量仪可以作为便携式的个人健康监测设备,可用于定期监测心率、血压等生理指标,提醒个人关注身体健康。

基于对单片机的脉搏测量仪的设计

基于对单片机的脉搏测量仪的设计

摘要脉搏波所呈现出来的形态、强度、速率和节律等方面的综合信息,能反映出人体心血系统中许多生理疾病的血流特征。

根据人体脉搏信号特征,本论文设计了一种基于单片机的脉搏测量系统。

系统采用红外发射与接收二极管充当脉搏传感器来采集脉搏信号。

首先将采集到的信号通过低通滤波与放大电路对脉搏信号进行处理,然后,将放大的脉搏信号通过整形电路进行电压基准变化,在经过一次放大电路对整形后的脉搏信号进行放大,将信号转换为AT89S52单片机易于处理的脉冲信号。

通过单片机编程对脉冲信号进行处理,测量出一分钟内的脉搏次数,最终在数码管中直观的显示出来。

为了节省时间,一般不会作一分钟的测量,通常是测量10秒钟时间内的脉搏数,再把结果乘以6即得到每分钟的脉搏数。

发光二极管可以通过发光的形式显示脉搏的跳动。

关键词:脉搏测量仪;AT89S52;LED;信号处理The Design of Pulse Measurement Instrument Based onSingle Chip MicrocomputerABSTRACTComprehensive information form, strength, speed and rhythm of the pulse wave show, can reflect the human cardiovascular system flow characteristic in many physiological diseases. According to the characteristics of the human pulse signals, this paper designed a pulse measurement system based on mcu.System uses infrared emitting and receiving diode acts as a pulse sensor to collect the pulse signal. Firstly, the collected signal through low-pass filtering and amplifying circuit for pulse signal processing, then, the pulse signal amplification of the voltage reference change through the shaping circuit, after an amplifying circuit amplifies the pulse signal after shaping, the signal is converted into AT89S52 microcontroller manageable pulse signal. Processing through the MCU programming on the pulse signal, measured the pulse of one minute, times, finally in the digital tube display.In order to save time, generally not as a measure of a minute, often is the number of pulse measurement 10 seconds, then the result is multiplied by 6 to obtain the pulse number per minute. Light emitting diode can be displayed by light pulse.Key words: Pulse measuring instrument; AT89S52; LED; Signal processing目录摘要 (I)ABSTRACT ............................................................ I I 第一章绪论 (1)1.1 脉搏测量仪介绍 (1)1.2 脉搏测量仪的应用 (1)1.3 本设计所要实现的目标 (2)1.4 本文的设计方案:采用以单片机为核心的控制方案 (2)第二章主要器件介绍 (3)2.1 单片机的选择 (3)2.1.1 AT89S52简介 (3)2.1.2 AT89S52的特点 (3)2.1.3 AT89S52引脚功能说明 (4)2.2 传感器的选择 (6)2.2.1 红外发光二极管简介 (7)2.2.2 光敏三极管简介 (7)2.3 驱动芯片的选择 (8)2.3.1 74LS245简介 (8)2.3.2 74LS04简介 (8)2.4 显示器的选择 (9)2.4.1 三位共阳八段数码管简介 (9)2.4.2 八段数码管字形表 (10)第三章系统硬件设计 (11)3.1 设计原理 (11)3.2 外围电路 (11)3.2.1 电源电路 (11)3.2.2 复位电路 (12)3.2.3 晶振电路 (13)3.2.4 脉搏信号采集放大电路 (13)3.2.5 LED显示电路 (14)第四章系统软件设计 (16)第五章软件调试及仿真 (17)5.1 软件编译 (17)5.1.1 工程的创建 (17)5.1.2 单片机的选择 (17)5.1.3 程序的编译 (18)5.2 系统仿真测试 (19)第六章结论 (21)参考文献 (22)致谢 (23)附录A (24)附录B (25)第一章绪论1.1 脉搏测量仪介绍脉搏测量仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电图的主要组成部分,因此,在现代医学上具有非常重要的作用。

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题1. 介绍与背景在现代医疗领域中,脉搏测量仪是一种非常重要的设备。

它能够通过检测人体的脉搏波形来帮助医生判断患者的健康状况。

而基于51单片机的脉搏测量仪作为一种便携式的设备,在实际应用中越来越受到广大医疗工作者的关注。

2. 脉搏测量原理脉搏测量的原理是利用光电传感器将人体的脉搏波形转化为电信号。

通过对这些信号进行采样、滤波和处理,可以得到一条准确的脉搏波形曲线。

基于51单片机的脉搏测量仪需要通过程序控制,实现对传感器的数据采集以及波形分析。

3. 硬件设计与实现由于基于51单片机的脉搏测量仪需要具备便携性,因此硬件设计需要考虑到尺寸小、功耗低以及易于携带等因素。

一般情况下,硬件系统包括51单片机、光电传感器、滤波电路、数据转换电路和显示屏等组件。

通过合理的布局和连接,确保信号的稳定性和质量。

4. 软件设计与实现在软件层面上,基于51单片机的脉搏测量仪需要编写相应的程序代码。

这些代码主要包括传感器数据采集、滤波处理、特征提取和波形显示等功能。

控制程序的设计需要考虑到采样频率、滤波算法的选择以及数据存储与传输等方面。

5.实验与结果分析通过实验验证,基于51单片机的脉搏测量仪能够准确地测量出人体脉搏波形,并能够显示出波形曲线。

通过对采集到的数据进行分析,可以判断出患者的心血管健康状况。

根据采样频率的不同,还能够获取到更多的生理信息。

6. 应用与前景展望基于51单片机的脉搏测量仪在临床医疗中具有广泛的应用前景。

它不仅可以用于日常健康监测,还可以用于特殊疾病的筛查和诊断。

随着技术的不断发展和创新,基于51单片机的脉搏测量仪将会变得更加智能化和便捷化。

7. 个人观点与总结作为一位专业的医疗设备写手,我对基于51单片机的脉搏测量仪充满了信心和期待。

这种小巧而功能强大的设备在改善医疗领域的工作效率和病患体验方面具有重要的作用。

通过综合应用硬件和软件设计,基于51单片机的脉搏测量仪能够准确地获取人体脉搏波形和生理信息,为医生的临床判断提供重要的依据。

基于单片机的脉搏测量仪的设计与实现

基于单片机的脉搏测量仪的设计与实现
性和可靠性高等优点
设计原理
PART 2
设计原理
脉搏测量主要依赖于光电容积法(PPG)进行测量。这种方法是通过将一束 光束照射到人体组织上,当心脏泵血时,由于血液的透光性不同,光束的 反射或传输会发生变化。通过检测这种变化,我们可以测量出脉搏
在具体的设计中,我们使用51单片机作为主控制器,配合LED光源和光电 传感器来执行PPG测量。当血液流经手指时,LED光源会照射到手指,并 由光电传感器接收反射回来的光线。这个反射光信号经过51单片机的处理 后,就可以转换为脉搏信号
20XX
基于51单片机的脉搏 测量仪的设计与实现
-
目录
1 引言 2 设计原理 3 硬件设计 4 软件设计 5 实验结果与讨论
引言
PART 1
引言
在日常生活和医疗领域,脉搏 测量仪是一种非常常见且有用
的设备
它能有效地监测人体的健康状 况,特别是在心脏和血液循环
方面
基于51单片机的脉搏测量仪设 计,不仅实现了基本的脉搏测 量功能,还具有低成本、便携
硬件设计
PART 3
硬件设计
51单片机
51单片机是最常用的微控制器之一,具有高 可靠性和低功耗的优点。它内置了丰富的外 设和存储器,非常适合用于脉搏测量仪的设 计
硬件设计
LED光源和光电传感器
LED光源和光电传感 器是实现PPG测量的 关键部件。我们选择 具有稳定光输出和抗 干扰能力的LED,同 时配套的光电传感器 也需要具备高灵敏度 和低噪声的特点
信号
最后:程序将脉搏值通过 串口发送到连接的电脑上,
或者直接在51单片机的液 晶显示屏上显示
软件设计
需要注意的是,由于环境的 干扰可能会对PPG测量产生 影响,因此在软件设计中, 我们需要加入滤波算法来处 理这些干扰,以提高测量的

基于单片机的远程监控脉搏测量仪设计共3篇

基于单片机的远程监控脉搏测量仪设计共3篇

基于单片机的远程监控脉搏测量仪设计共3篇基于单片机的远程监控脉搏测量仪设计1基于单片机的远程监控脉搏测量仪设计近年来,随着科技的发展,智能医疗设备成为了研究的热点之一。

远程监控脉搏测量仪作为智能医疗设备的一种,它的出现为医疗行业带来了很大的便利和改善。

本文将介绍基于单片机的远程监控脉搏测量仪的设计思路。

一、前期准备在实际设计前,需要进行前期准备工作,包括了解脉搏测量原理、单片机的基本原理和网络通信原理。

在此基础上,我们还需要对脉搏测量仪进行分析和测试,以确定脉搏信号的特征参数和采样周期等重要参数。

二、硬件设计1.传感器模块脉搏测量仪的核心部分是传感器模块。

传感器模块的设计需要兼顾数据精度和实现难度。

在本设计中,我们采用了压力传感器模块,它是一种成本较低、测量精度较高的传感器。

在使用时,压力传感器模块根据脉搏的频率产生相应的压力波形,传感器模块通过变换电路将压力信号转换为电信号,然后输入到单片机系统中进行处理。

2.单片机系统本设计采用的是AT89S51单片机,它是一种高性价比的通用单片机。

单片机系统由单片机、AD转换器、RAM、ROM、EEPROM 等部分组成。

单片机通过AD转换器将模拟信号转换为数字信号,存储在RAM中,并通过通讯模块与用户终端进行交互和传输。

3.通讯模块在远程监控中,通讯模块是非常重要的组成部分。

通讯模块用于将单片机系统采集到的脉搏信号通过网络传输到用户终端。

在本设计中,我们采用的是ESP8266 Wi-Fi模块,它是一种高集成度的Wi-Fi芯片,具有低功耗、可靠性高等优点。

三、软件设计1.程序框图在单片机程序设计过程中,程序框图十分重要。

本设计中采用的是基于C语言的程序框图。

程序框图包括了采集、处理、存储、通讯等部分,并设置了失效检测和暴力破解功能。

2.程序设计本设计的程序设计采用了汇编语言和C语言相结合的方式进行开发。

通过汇编语言实现底层驱动,用C语言进行上层应用程序开发,并通过电脑端串口调试工具进行调试。

STM32单片机应用于脉搏心率检测仪的设计与实现

STM32单片机应用于脉搏心率检测仪的设计与实现

STM32单片机应用于脉搏心率检测仪的设计与实现脉搏心率检测仪是一种常用的医疗仪器,可以用于测量人体的脉搏和心率指标,帮助医生和患者了解身体的健康状况。

本文将介绍如何使用STM32单片机来设计和实现脉搏心率检测仪。

首先,我们需要了解脉搏心率的基本原理。

脉搏是心脏收缩时引起的动脉血液流动所形成的周期性脉动,心率是指每分钟心脏跳动的次数。

脉搏心率检测仪通过检测人体动脉脉搏的变化来计算心率。

在设计脉搏心率检测仪的硬件方面,我们选择使用STM32单片机作为主控芯片。

STM32系列是一种高性能、低功耗的嵌入式微控制器,适用于各种应用领域。

其次,我们需要连接传感器来检测人体的脉搏信号。

常用的传感器包括心率传感器和脉搏检测传感器。

心率传感器通常采用光电等方法,可以通过照射皮肤并测量反射光的方式检测脉搏。

而脉搏检测传感器可以通过接触皮肤并测量压力变化来检测脉搏。

接下来是软件的编程部分。

我们需要借助STM32单片机的嵌入式开发环境进行编程。

首先,我们需要配置GPIO引脚来接收传感器的信号,其中心率传感器可以连接到一个ADC引脚读取光的反射量,脉搏检测传感器可以连接到一个外部中断引脚。

然后,我们可以使用定时器来测量脉搏信号的频率。

通过计算心脏跳动的次数,我们可以得到心率的数值。

除了心率的计算,我们还可以考虑添加一些额外的功能。

例如,可以使用LCD显示模块来显示心率数值。

还可以通过串口或蓝牙模块将数据传输到电脑或移动设备上进行进一步分析和存储。

另外,为了提高测量的准确性,还可以添加滤波器来滤除噪声信号。

在实际的应用中,我们还需要注意一些问题。

首先,传感器的位置和放置方式会对测量结果产生影响,应该尽可能确保传感器与皮肤接触良好。

其次,由于人体的生理特点和运动等因素会对心率产生影响,我们需要在测量过程中进行校准和调节。

总结而言,使用STM32单片机应用于脉搏心率检测仪的设计与实现是一项基于嵌入式系统的技术挑战。

通过合理的硬件设计和软件编程,我们可以实现一个功能强大、准确可靠的脉搏心率检测仪。

基于STM32的脉搏测量仪设计

基于STM32的脉搏测量仪设计

基于STM32的脉搏测量仪设计脉搏测量仪是一种用来测量人体脉搏的医疗设备,可以用于监测心率和脉搏波形等信息,帮助医生了解人体的心血管健康状况。

本文将介绍基于STM32的脉搏测量仪的设计。

首先,我们选择了STM32系列的单片机作为主控芯片。

STM32系列具有低功耗、高性能和丰富的外设资源等特点,非常适合作为嵌入式系统的主控芯片。

接下来,我们需要设计传感器部分。

传感器可以采集脉搏信号,并将信号转换为数字信号供STM32芯片处理。

常见的脉搏信号传感器有光电传感器和压电传感器。

我们选择了光电传感器,因为它具有适应性强、响应速度快等优点。

光电传感器可以通过光电效应将脉搏信号转换为电信号,并使用模数转换器将模拟信号转换为数字信号。

然后,我们需要对脉搏信号进行预处理。

由于脉搏信号存在噪声等干扰,我们需要进行滤波和放大等处理,以提取出我们所需的脉搏信息。

滤波可以使用数字滤波器来实现,它可以有效地去除噪声。

放大可以使用放大电路来实现,以增加信号的幅度。

接着,我们需要编写软件算法来对脉搏信号进行分析和处理。

首先,我们需要使用数字信号处理算法来对信号进行分析,提取出脉搏的周期和幅度等信息。

然后,我们可以根据这些信息计算出心率等指标,并将结果显示在LCD屏幕上。

最后,我们需要设计用户界面和外设控制部分。

用户界面可以使用LCD屏幕和按键等元件来实现,用户可以通过按键来控制脉搏测量仪的功能。

外设控制部分可以使用串口、蓝牙等通信模块来实现,以便将脉搏数据传输到手机或计算机上进行进一步的分析和存储。

总结起来,基于STM32的脉搏测量仪设计主要包括:选择STM32作为主控芯片、设计传感器部分、进行脉搏信号预处理、编写软件算法、设计用户界面和外设控制部分等。

通过这些设计,我们可以实现一个功能齐全的脉搏测量仪,方便医生进行心血管健康监测和诊断。

(完整版)基于单片机的脉搏测量仪的设计

(完整版)基于单片机的脉搏测量仪的设计

意义:医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。

而该系统以AT89C51单片机为核心,以红外发光二极管和光敏三极管为传感器,并利用单片机系统内部定时器来计算时间,由光敏三极管感应产生脉冲,单片机通过对脉冲累加得到脉搏跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏次数和时间,系统停止运行时,能够显示总的脉搏次数和时间。

目的:实现脉搏波的实时存储并可实现与上位机( PC 机) 的实时通讯,作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。

2.1 光电脉搏测量仪的结构光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。

1.光电传感器即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。

2.信号处理即处理光电传感器采集到的低频信号的模拟电路(包括放大、滤波、整形等)。

3. 单片机电路即利用单片机自身的定时中断计数功能对输入的脉冲电平进行运算得出心率(包括AT89C51、外部晶振、外部中断等)。

4.数码显示即把单片机计算得出的结果用8位LED数码管静态扫描来显示,便于直接准确无误的读出数据。

5. 电源即向光电传感器、信号处理、单片机提供的电源,可以是5V-9V的交流或直流的稳压电源。

2.2 工作原理本设计采用单片机AT89C51为控制核心,实现脉搏测量仪的基本测量功能。

脉搏测量仪硬件框图如下图1.1所示:图 1.1 脉搏测量仪的工作原理当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。

单片机脉搏测量仪

单片机脉搏测量仪

目录目录 (I)Abstract (II)第一章绪论 (1)1.1 选题的背景和意义 (1)1.2 脉搏测量仪的发展与应用 (2)第二章脉搏测量仪的硬件结构 (3)2.1 工作原理 (3)2.2 基本元器件的介绍 (3)2.2.1 STC89C52简介 (3)2.2.2光电传感器简介 (4)2.2.3 LM324简介 (5)2.2.4 AD0832简介 (5)2.3 信号采集电路 (6)2.4 信号放大电路 (6)2.5低通滤波电路 (7)第三章脉搏测量仪的软件系统 (8)3.1主程序流程 (8)第四章实验与结果分析 (9)4.1 单片机计时测量方法 (9)4.2 波形处理计数法 (10)4.3 两种方法的比较 (13)附录 (14)摘要脉搏携带丰富的人体信息,能够反映出人们身体的健康状况。

随着当今生活水平的提高,人们对健康的要求越来越高,脉搏测量仪的应用越也越来越广泛。

脉搏测量仪的组成包括光电传感器、信号处理电路、单片机最小系统、电源等。

本文借助脉搏测量仪提出了两种测量脉搏的方法。

方法一就是单片机定时30s,信号下降沿触发外部中断,通过对外部中断的计数从而实现了脉搏个数的测量。

方法二是通过下载器将信号数据传送到电脑串口,借助“串口猎人”将串口的数据读出来,再通过matlab设计一个带通滤波器,对该信号进行滤波,对滤波后的信号的波峰个数进行计数,结果即为脉搏个数。

关键词:脉搏测量、单片机、matlab、数字带通滤波器AbstractPulse carries rich of human information that can reflect a person’s health condition.With the improvement of living level,people’s health requirements are increasing and the applications of pulse measuring instruments are more and more widespread.The pulse measuring instruments consist of Photoelectric sensor,signal processing circuit,SCM minimum system and power source.There are two methods to measure pulse by applying the measuring instruments. The first one is that SCM definite time for 30 seconds and the falling edge triggered external interrupt.Then,we can count the pulse rate by the sum of external interrupt.The second method is that SCM transmit data to PC by the means of asynchronous communication.And we could use a software called Serial Hunter to read out data from the serial port of PC.Then,we design a digital bandpass filter through matlab to filering the input signal.Finally,we count the number of peaks of the filtered signal.The result is the pulse rate which we would measured.Keywords: the measuring of pulse, SCM, matlab,digital bandpass filter第一章绪论1.1 选题的背景和意义中医,是中华文化中一个璀璨的所在,直至科技发达的今天,中医在医学中仍占据着一席之地。

基于单片机的人体脉搏测量系统设计

基于单片机的人体脉搏测量系统设计

基于单片机的人体脉搏测量系统设计随着科技的不断进步,越来越多的人开始关注自己的健康状况,其中对于心脏健康的关注尤为重要。

传统的心率测量需要使用手触碰心跳位置计算心率,而随着技术的发展,基于单片机的人体脉搏测量系统逐渐走进人们的视野,能够更加精确地测量心率,具有更高的准确性。

本文将介绍一种基于单片机的人体脉搏测量系统的设计原理和实现方式。

一、设计原理本文所述的基于单片机的人体脉搏测量系统采用Pulse Sensor传感器,该传感器具有LO(三极管发光二极管加敏感电阻触发)和DO(数字输出)两个引脚。

当心跳发生时,脉搏信号会引起手指皮肤上的毛细血管变形,从而引起皮肤亮度的变化,Pulse Sensor通过检测这种亮度变化来识别脉搏信号。

二、实现方式1.硬件设计系统的硬件主要包括Pulse Sensor传感器、按键、LCD 显示屏、电源电路和单片机。

其中,Pulse Sensor的引脚需要分别连接到Vcc、GND、以及单片机上的AD0口。

并通过加一个削峰平均电路(RC滤波电路)来检测脉搏的特征在信号中的存在,同时提高抗干扰能力和减小毛刺干扰。

2.软件设计a.初始化系统开机后,初始化中断、ADC模块和LCD模块,并开始一次ADC转换和推力器中断的使能。

b.中断处理当传感器检测到信号时,会产生一个中断,同时启动ADC转换,并在数据转换完成后通过DMA传输数据。

c.数据处理通过对脉搏信号进行滤波、均值化和去噪,得到脉搏波形图,并将其实时显示在LCD屏幕上。

同时,通过对脉搏信号进行FFT(快速傅里叶变换)处理,得到脉搏信号的频域波形,从而得到人体的心率数据。

d.功能实现利用相关算法计算出实时的心率数据,并将其实时显示在LCD屏幕上,同时将心率数据保存在系统内存中,并可以通过按键遥控查看历史心率数据和图形。

三、总结基于单片机的人体脉搏测量系统的设计可以实现更加准确的心率测量,使人们更加了解自己的健康状况。

其设计原理和实现方式比较简单,可以方便地应用于普通家用电器和医疗设备中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机设计的脉搏测量仪原理
0 引言脉搏测试仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电图的主要组成部分,因此,在现代医学上具有重要的作用。目前检测脉搏的仪器虽然很多,但是能实现精确测量、精确显示且计时功能准确等多种功能的便携式全数字脉搏测量装置很少。随着人们生活环境和经济条件的改善,以及文化素质的提高,其生活方式,保健需求以及疾病种类、治疗措施等发生了明显的变化。但在目前,我国的心脑血管疾病仍呈逐年上升趋势。其发病率和死亡率均居各种疾病之首,是人类死亡的主要原因之一。因此,认识、预防及早期发现这些疾病是十分必要的。从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。几乎世界上所有的民族都用过“摸脉”作为诊断疾病的手段。脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。但人体的生物信号多属于强噪声背景下的低频弱信号,脉搏波信号更是低频微弱的非电生理信号,必需经过放大和后级滤波以满足采集的要求。1 基本结构模块1.1 脉搏波检测电路目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。近年来光电检测技术在临床医学应用中发展很快,这主要是由于光能避开强烈的电磁干扰,具有很高的绝缘性,且可非侵入地检测病人各种症状信息。用光电法提取指尖脉搏光信息受到了从事生物医学仪器工作的专家和学者的重视。本系统设计了指套式的透射型光电传感器,实现了光电隔离,减少了对后级模拟电路的干扰。传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。所用光电式传感器由发光二级管和光敏二极管组成,其工作原理是:发光二极管发出的光透射过手指,经过手指组织的血液吸收和衰减,由光敏二极管接收。由于手指动脉血在血液循环过程中呈周期性的脉动变化,所以它对光的吸收和衰减也是周期性脉动的,于是光敏二极管输出信号的变化也就反映了动脉血的脉动变化。1.2 脉搏信号拾取电路红外接收二极管在红外光的照射下能产生电能,单个二极管能产生0.4_V电压,0.5mA电流。BPW83型红外接收二极管和IR333型红外发射二极管工作波长都是940nm,在指夹中,红外接收二极管和红外发射二极管相对摆放以获得最佳的指向特性。红外发射二极管中的电流越大,发射角度越小,产生的发射强度就越大。在图1中,R0选100 Ω是基于红外接收二极管感应红外光灵敏度考虑的。R0过大,通过红外发射二极管的电流偏小,PBW83型红外接收二极管无法区别有脉搏和无脉搏时的信号。反之,R0过小,通过的电流偏大,红外接收二极管也不能准确地辨别有脉搏和无脉搏时的信号。当红外发射二极管发射的红外光直接照射到红外接收二极管上时,IC1B的反相输入端电位大于同相输入端电位,Vi为“0”。当手指处于测量位置时,会出现二种情况:一是无脉期,虽然手指遮挡了红外发射二极管发射的红外光,但是,由于红外接收二极管中存在暗电流,仍有1 μA的暗电流会造成Vi电位略低于2.5V。二是有脉期,当有跳动的脉搏时,血脉使手指透光性变差,红外接收二极管中的暗电流减小,Vi电位上升。1.3 信号采集及处理系统由于光电脉搏波属于缓慢变化的微弱生理信号,信噪比低,极易受到环境噪声和肢体运动的干扰。传统的光电脉搏波信号检测电路都采用高增益放大器,以获得较高的检测灵敏度,这种设计思路导致了检测信号动态范围缩小,在受到运动干扰时,将导致由于干扰信号而带来的光电脉搏波信号检测的饱和失真。本系统采用过采样技术,通过对信号的高速采样来提高采样精度,相当于用高分辨率的ADC对信号进行模数转换,达到了提高信噪比并改善动态范围的效果。因此本系统对经过光电转换后的信号进行模数转换而不需要任何信号调理(放大和滤波)电路。1.4 过采样技术的应用所谓过采样技术是指以远远高于奈奎斯特(Nyquist)采样频率的频率对模拟信号进行采样的方法。由信号采样量化理论可知,若输入信号的最小幅度大于量化器的量化电平,并且输入信号的幅度随机分布,则量化噪声的总功率是一个常数,在0~fs的频带范围内均匀分布。因此量化噪声电平与采样频率成反比,如果提高采样频率,则可以降低量化噪声电平,而由于基带是固定不变的,因而减少了基带范围内的噪声功率,提高了信噪比,从而提高分辨率,并且采样频率每提高4 倍,则信噪比提高4倍,相当于A/D的分辨率提高1位。2 软件设计2.1 程序设计本文选用ADI公司的单片机ADC841,其内部集成了速度可达400k的12位逐次逼近型ADC,分辨率为0.6mv/LSB。从软件需求和单片机速度出发,将ADC采样率fs定为102.4kHz,为便于计算,将过采样倍数k定为64,则下抽取后采样率为伪:fs/k=1600Hz,是频率为 400Hz载波的四倍,满足奈奎斯特采样定理。由于过采样倍数k为64,按每提高4倍采样率就能提高一位分辨率来计算,获得的ADC有效分辨率能提高3 位,最后能达到约15位精度,其分辨率可达到0.0763mv/LSB。设置AD2是一个具有 16位自动重装载功能的定时器,作定时器用时,TH2和TL2计的是机器周期数,TH2和TL2内容的自动重装载通过寄存器RCAP2H和RCAP2L来实现。对这四个寄存器都进行初始化,自动装载值为#0FFCAH。2.2 程序源代码3 结束语本系统模拟电路简单,由ADC841芯片实现脉搏信号采集,信号处理和脉搏次数的计算等功能,因此体积小,功耗低,系统稳定性高。本系统可实现脉搏波的实时存储并可实现与上位机(PC机)的实时通讯, 因此可作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。
相关文档
最新文档