【解析版】济宁市曲阜市2020-2021学年新人教版七年级下期末数学试卷

合集下载

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .3a >3bC .2+a <2+bD .a3<b3解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

专题23 期末质量评估(B卷)-2020-2021学年度人教版七年级数学下册(解析版)

专题23  期末质量评估(B卷)-2020-2021学年度人教版七年级数学下册(解析版)

2020-2021学年度人教版七年级数学下册新考向多视角同步训练期末质量评估B 卷[时间:90分钟 满分:120分 范围:全册]一、选择题(本大题共8小题,每小题3分,24分在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020独家原创试题)下列实数中,是无理数的是( ) A.81100B.2020πC.117D.3-272.(2020上海中考,3,★☆☆)我们经常将调查收集得来的数据用各类统计图进行整理与表示下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( ) A.条形图B.扇形图C.折线图D.频数分布直方图3.(2020天津中考,8★☆☆)如图,四边形OBCD 是正方形,,D 两点的坐标分别是(0,0),(0,6),点C 在第一象限, 则点C 的坐标是( )A.(6,3)B.(3,6)C.(0,6)D.(6,6)4.(2019四川攀枝花月考,5,★☆☆)如图所示,直线AB 、CD 相交于点O,OE⊥AB 于点O,OF 平分∠AOE,∠BOD=15°,则下列结论中不正确的是( )A.∠AOF=45°B.∠AOD 与∠BOD 互为邻补角C.∠BOD=∠AOCD.∠BOD 的余角等于85°5.(2020广东深圳实验学校期末,4,★☆☆)已知方程组⎩⎨⎧4x+y =10x+4y =5,则x+y 的值为( )A.-1B.0C.3D.26.(2019广西柳州期末,5,★★☆)将一把直尺和一块含有30°角和60°角的三角板按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A.10°B.15°C.20°D.25°7.(2020福建厦门一中期末,8,★★☆)不等式组⎩⎨⎧5x -3<3x+5x<a的解集为x<4,则a 满足的条件是( )A.a<4B.a =4C.a≤4D.a≥48.(2019福建三明期末,7,★★☆)某市居民用电的电价实行阶梯收费,收费标准如下表所示:七月份是用电高峰期,李叔叔计划七月份电费支出不超过200元,则李叔叔家七月份最多可用电的度数是( ) A.100B.396C.397D.400二、填空题(本大题共8小题,每小题3分,共24分)9.(2019内蒙古包头期末,11,★☆☆)将命题“一个正数的两个平方根的和为0”改写成“如果那么”的形式: ________________________________________________________________________________。

2020-2021学年七年级数学下学期期末测试卷03(解析版)

2020-2021学年七年级数学下学期期末测试卷03(解析版)

2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。

2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习数据的收集、整理与描述考点一调查方式的选用【例1】下列调查方式中适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】统计的调查方式有全面调查与抽样调查两种方式.对于两种调查方式的选择主要取决于调查对象的数量和性质,因为调查具有时间限制,有的调查还具有破坏性.【解答】C【方法归纳】全面调查适合的条件:(1)总体的数目较少,(2)研究的问题要求情况真实、准确性较高,(3)调查工作方面,没有破坏性;抽样调查适合的条件:(1)受客观条件限制,无法对所有个体进行调查,(2)调查具有破坏性.1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱考点二收集数据的相关概念【例2】为了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是( )A.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体【分析】我们可以根据总体、个体、样本、样本容量的概念结合具体问题解决,本题的考察对象是6 000名学生的数学成绩,而不是6 000名学生,所以选项A是错误的,同理,选项B,C 也是错误的,每个学生的数学成绩是个体,所以选项D是正确的.【解答】D【方法归纳】解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.2. 2015年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生考点三统计图的选择与制作【例3】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<5 5≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<7 7≤x<7.5频数 4 8 12 13 10 3(1)在下图中画出频数分布直方图;(2)请你对这块试验田里的水稻穗长进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.【分析】题目已给出频数分布表,可根据表中所给数据画出频数分布直方图,再根据频数分布直方图回答(2)中的问题.【解答】(1)如图所示:(2)由(1)可知谷穗长度大部分落在5 cm至7 cm之间,其他范围较少.长度在6≤x<6.5范围内的谷穗个数最多,有13个.这块试验田里穗长在 5.5≤x<7范围内的谷穗所占百分比为(12+13+10)÷50=70%.【方法归纳】给出频数分布表求作频数分布直方图时,按照画频数分布直方图的步骤完成即可.3.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)从统计表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;(2)估计该校七年级体育测试成绩不及格的人数.考点四统计图表中信息的获取【例4】在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了__________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)结合条形统计图和扇形统计图可以看出最喜爱丙类图书的有40人,占被调查人数的20%,因此总人数=40÷20%=200(人);(2)根据总人数为200人,可以求最喜爱丁类图书的人数=200-80-65-40=15(人),最喜爱甲类图书的人数占本次被调查人数的百分比=80200×100%=40%;(3)先求出最喜爱丙类图书的总人数,然后用x表示男生人数,1.5x表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.【解答】(1)40÷20%=200(人).(2)200-80-65-40=15(人),80200×100%=40%.(3)设最喜爱丙类图书的男生人数为x人,则女生人数为1.5x人.根据题意,得x+1.5x=1 500×20%.解得x=120.当x=120时,1.5x=180.∴最喜爱丙类图书的女生人数为180人,男生人数为120人.【方法归纳】解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.4.某校为了解“阳光体育”活动的开展情况,从全校2 000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=__________,n=__________;(3)全校学生中喜欢篮球的人数大约有多少?复习测试一、选择题(每小题3分,共30分)1.下列调查中,适宜采用全面调查(普查)方式的是( )A.对全国中学生心理健康现状的调查B.对市场上的冰淇淋质量的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查2.下列调查方式合适的是( )A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应该制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图4.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么( )A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生人数一样多D.不能判断哪一个学校的女生人数多5.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生共有( )分数段60~70 70~80 80~90 90~100频率0.2 0.25 0.25A.250名B.200名C.150名D.100名6.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为( )A.9.5万件B.9万件C.9 500件D.5 000件7.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A.500名B.600名C.700名D.800名8.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)的人数是269.某市股票在七个月之内增长率的变化状况如图所示,从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,可得出样本容量是( )A.15B.40C.50D.60二、填空题(每小题4分,共20分)11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有__________人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是__________,最小的值是__________,如果组距为1.5,则应分成__________组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是__________.等级 A B C D频数150 4百分比x 0.1814.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的__________%.15.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:________________________________________.三、解答题(共50分)16.(7分)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)若该校九年级有800人,据此样本,请你估计该校九年级学生中捐款15元的有多少人?17.(8分)阅读对人成长的影响是很大的.希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:(1)这次随机调查了__________名学生;(2)种类频数频率科普0.15艺术78文学0.59其他8118.(10分)联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全下面的条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?19.(12分)今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:改造情况均不改造改造水龙头改造马桶1个2个3个4个1个2个户数20 31 28 21 12 69 2(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有__________户;(2)改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?20.(13分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?参考答案变式练习1.D2.A3.(1)选择扇形统计图表示各种情况的百分比,图略.(2)450×10%=45(人).答:估计该校七年级体育测试成绩不及格的有45人.4.(1)100 图略(2)30 10(3)2 000×10%=200(人).答:全校学生中喜欢篮球的人数大约有200人.复习测试1.D2.C3.C4.D5.C6.A7.B8.D9.D 10.B11.60 12.53 47 4 13.0.05 14.2015.答案不唯一,可以从总体来说:该班有50人参与了献爱心活动,也可以具体分情况来说,捐款10元的有20人等16.(1)15÷30%=50(人).(2)图略.(3)800×1050=160(人).17.(1)300(2)45 0.26 9618.(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人),D种情况的人数为300-(150+30+90)=30(人),补全图形如图.(2)因为该校共有师生2 400人,所以随手乱扔垃圾的人约为2 400×30300=240(人).19.(1)1 000(2)抽样的120户家庭一年共可节约用水:(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2 085(吨),所以,该社区一年共可节约用水的吨数为2 085×1000100=20 850(吨).(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92-x)户,只改造马桶不改造水龙头的家庭共有(71-x)户,根据题意列方程,得x+(92-x)+(71-x)=100,解得x=63.所以既要改造水龙头又要改造马桶的家庭共有63户.20.(1)13 正 5(2)答案不唯一:如①从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;②居民月均用水量在3.5<x≤5.0范围内最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(合理即可)(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米【解答】解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2【解答】解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4【解答】解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .【解答】解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6【解答】解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5B .3a >3bC .2+a <2+bD .a3<b3【解答】解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 【解答】解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)【解答】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3【解答】解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6【解答】解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .【解答】解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .【解答】解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .【解答】解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.【解答】解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.【解答】解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 【解答】解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .【解答】解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x【解答】解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 【解答】解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)【解答】解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.【解答】解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.【解答】解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.【解答】解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?【解答】解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.【解答】解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.【解答】解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

最新人教版数学七年级下册《期末测试卷》含答案解析

最新人教版数学七年级下册《期末测试卷》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是( )A . 5AB . A 5C . A 6D . A 82. 已知∠A =30°,则∠A 的余角的度数为( )A . 60°B . 90°C . 150°D . 180°3. 下列图形是四个银行的标志,其中是轴对称图形的共有( )A . 1个B . 2个C . 3个D . 4个4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数6. 如图一个三角形有三条对称轴,那么这个三角形一定是( )A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量0 34 67 101 135 202 259 336 404 471/kg土豆产量/t 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED =A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .1211. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”)13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm(1nm=10﹣9m).110nm用科学记数法表示为______m.14. 从某玉米种子中抽取6批,同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1000 2000 5000发芽种子粒数85 298 652 793 1604 4005 发芽频率0.850 0.745 0.815 0.793 0.802 0.801 根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)与已行驶路程x (千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x ≤150时,行驶1千米的平均耗电量是多少;当150≤x ≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF ,A B =A C ,D E =D F .[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E 和C F .他们发现B E 与C F 之间存在着一定的数量关系,这个关系是 . [探究二](2)创新小组同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F ,A ,D ,C 在同一直线上,连接B F 和C E ,他们发现了B F 和C E 之间的数量和位置关系,请写出这些关系并说明理由; [探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF ,不写作法,保留作图痕迹. A .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论. B .如图4,利用△A B C 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.参考答案一.选择题(本大题共10个小题,每小题2分,共20分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应位置.1. 计算A 2•A 3的结果是()A . 5AB . A 5C . A 6D . A 8【答案】B【解析】【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即A m•A n=A m+n.【详解】解:A 2•A 3=A 5.故选:B .【点睛】本题考察的是底数幂的乘法运算,掌握同底数幂乘法法则是解题的关键.2. 已知∠A =30°,则∠A 的余角的度数为()A . 60°B . 90°C . 150°D . 180°【答案】A【解析】【分析】根据余角定义直接解答.【详解】解:∠A 的度数是90°﹣∠A =90°﹣30°=60°.故选:A .【点睛】本题比较容易,考查互余角的数量关系.互余的两个角的和等于90°.3. 下列图形是四个银行的标志,其中是轴对称图形的共有()A . 1个B . 2个C . 3个D . 4个【答案】C【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,所以,轴对称图形有3个.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4. 下列每组数分别是三根小木棒的长度,用这三根小木棒能摆成三角形的是( )A . 3,3,5cm cm cmB . 1,2,3cm cm cmC . 2,3,5cm cm cmD . 3,5,9cm cm cm【答案】A【解析】【分析】根据三角形的三边关系”任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+3=6>5,能摆成三角形;B 、1+2=3,不能摆成三角形;C 、2+3=5,不能摆成三角形;D 、3+5<9,不能摆成三角形.故选:A .【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5. 下列事件中的必然事件是( )A . 车辆随机经过一个有交通信号灯的路口,遇到红灯B . 购买100张中奖率为1%的彩票一定中奖C . 400人中有两人的生日在同一天D . 掷一枚质地均匀的骰子,掷出的点数是质数【答案】C【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A 、是随机事件,故此选项不符合题意;B 、是随机事件,故此选项不符合题意;C 、是必然事件,故此选项符合题意;D 、是随机事件,故此选项不符合题意,故选:C .【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.6. 如图一个三角形有三条对称轴,那么这个三角形一定是()A . 直角三角形B . 等腰直角三角形C . 钝角三角形D . 等边三角形【答案】D【解析】【分析】直接利用直角三角形、等腰直角三角形、钝角三角形、等边三角形的特点分析得出答案.【详解】解:A 、一般直角三角形,没有对称轴,不合题意;B 、等腰直角三角形,有1条对称轴,不合题意;C 、一般钝角三角形,没有对称轴,不合题意;D 、等边三角形,有3条对称轴,符合题意.故选:D .【点睛】本题考查了轴对称的性质,解题的关键是了解各类三角形的特征.7. 肥料的施用量与产量之间有一定的关系.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:根据表格可知,下列说法正确的是()A . 氮肥施用量越大,土豆产量越高B . 氮肥施用量是110kg时,土豆产量为34tC . 当氮肥施用量低于336kg时,土豆产量随施肥量的增加而增加D . 土豆产量为39.45t时,氮肥的施用量一定是202kg【答案】C【解析】【分析】A 、表格反映的是土豆的产量与氮肥的施用量的关系;B 、直接从表格中找出施用氮肥时对应的土豆产量;C 、根据表格中土豆产量的增长和减少数量来说明氮肥的施用量对土豆产量的影响;D 、从表格中找出土豆的产量为39.45t时,氮肥对应的施用量.【详解】解:A 、氮肥施用量大于336时,土豆产量逐渐减少,故选项不符合题意;B 、当氮肥的施用量是110kg时,土豆产量为32.29t~34.03t,故选项不符合题意;C 、当氮肥的施用量低于336kg时,土豆产量随施肥量的增加而增加,故选项符合题意;D 、土豆产量为39.45t时,氮肥的施用量可能是202kg,故选项不符合题意.故选:C .【点睛】本题考查函数的定义和结合实际土豆产量和施用氮肥量确定函数关系,解题的关键是掌握函数的定义.8. 用三角板作ABC的边B C 上的高,下列三角板的摆放位置正确的是()A .B .C .D .【答案】A【解析】【分析】根据高线的定义即可得出结论.的边BC上的高,【详解】B,C,D都不是ABC故选:A.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.9. 如图,测量河两岸相对的两点A ,B 的距离时,先在A B 的垂线B F上取两点C ,D ,使C D =B C ,再过点D 画出B F的垂线D E,当点A ,C ,E在同一直线上时,可证明△ED C ≌△A B C ,从而得到ED=A B ,则测得ED 的长就是两点A ,B 的距离.判定△ED C ≌△A B C 的依据是()A . “边边边”B . “角边角”C . “全等三角形定义”D . “边角边”【答案】B【解析】【分析】由”A SA ”可证△ED C ≌△A B C .【详解】解:由题意可得∠A B C =∠C D E=90°,在△ED C 和△A B C 中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ED C ≌△A B C (A SA ),故选:B .【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.10. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是直角三角形顶点的概率为()A . 16B .17C .37D .12【答案】C【解析】【分析】直接利用直角三角形的定义结合概率求法得出答案.【详解】解:如图所示:第三枚棋子所在格点恰好是直角三角形顶点有6个,故这三枚棋子所在格点恰好是直角三角形顶点的概率为:614=37.故选:C .【点睛】此题主要考查了概率公式以及直角三角形的定义,正确得出符合题意的点是解题关键.11. 如图,在3×3的正方形网格的格点上摆放了两枚棋子,第三枚棋子随机摆放在其他格点上(每个格点处最多摆放一枚),这三枚棋子所在格点恰好是等腰三角形顶点的概率为()A . 27B .13C .47D .23【答案】C【解析】【分析】利用概率公式求解可得.【详解】解:由图知第三枚棋子可摆放的位置共有14种,其中这三枚棋子所在格点恰好是等腰三角形顶点的有8种,∴这三枚棋子所在格点恰好是等腰三角形顶点的概率为814=47,故选:C .【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A )=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.12. 两个锐角分别相等的直角三角形_____全等.(填”一定”或”不一定”或”一定不”) 【答案】不一定 【解析】【分析】根据直角三角形全等的判定定理判断即可. 【详解】解:当还有一条边对应相等时,两直角三角形全等, 当三角形的边不相等时,两直角三角形不全等, 即两个锐角分别相等的直角三角形不一定全等, 故答案为:不一定.【点睛】本题考查全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.13. 今年在全世界爆发了新型冠状病毒肺炎,该病毒有包膜,颗粒呈圆形或椭圆形,常为多形性,该病毒的直径约为110nm (1nm =10﹣9m ).110nm 用科学记数法表示为______m .【答案】1.1×10﹣7 【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为A ×10-n ,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:110nm=110×10-9m=1.1×10-7m , 故答案为:1.1×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为A ×10-n ,其中1≤|A |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1). 【答案】0.8 【解析】【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.801,故可以估计种子发芽的概率为0.801,精确到0.1,即为0.8,故本题答案为:0.8.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.15. 如图,在△A B C 中,∠A C B =90°,A D 平分∠B A C 交B C 于点D ,C D =3,D B =5,点E 在边A B 上运动,连接D E,则线段D E长度的最小值为_____.【答案】3【解析】【分析】当D E⊥A B 时,线段D E的长度最小,根据角平分线的性质得出C D =D E,代入求出即可.【详解】解:当D E⊥A B 时,线段D E的长度最小(根据垂线段最短),∵A D 平分∠C A B ,∠C =90°,D E⊥A B ,∴D E=C D ,∵C D =3,∴D E=3,即线段D E的长度的最小值是3,故答案为:3.【点睛】本题考查了角平分线的性质和垂线段最短,能灵活运用性质进行推理是解此题的关键.16. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =40°时,则∠CA D 的度数为_____.【答案】30°【解析】【分析】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【详解】解:∵A B =A C ,∠B A C =40°,∴∠B =12(180°﹣40°)=70°,∵A B 的垂直平分线交直线B C 于点D ,∴D B =A D ,∴∠B A D =∠B =70°,∴∠C A D =∠B A D ﹣∠B A C =70°﹣40°=30°.故答案为:30°.【点睛】本题主要考查等腰三角形的性质和垂直平分线的性质,解答本题的关键是会综合运用等腰三角形的性质和和垂直平分线的性质进行答题,此题难度一般.17. 已知,在△A B C 中,A B =A C ,A B 的垂直平分线交直线B C 于点D .当∠B A C =α(90°<α<180°)时,则∠C A D 的度数为_____.(用含α的代数式表示)【答案】32α﹣90°【解析】【分析】【详解】根据已知可求得两底角的度数,再根据垂直平分线的性质求得∠B A D 的度数,再根据角的和差关系即可得到结论.【解答】解:∵A B =A C ,∠B A C =α,∴∠B =12(180°﹣α)=90°﹣12α,∵A B 的垂直平分线交直线B C 于点D ,∴∠B A D =90°﹣12α,∴∠C A D =∠B A C ﹣∠B A D =α﹣(90°﹣12α)=32α﹣90°.故答案为:32α﹣90°.【点睛】本题考查了线段垂直平分线的性质和等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题.三、简答题(本大题含8个小题,共65分)解答时应写出必要的文字说明、演算步骤或推理过程.18. 计算:(1)(x+2y)(x﹣2y)+y(x+y);(2)[(3A +B )2﹣B 2]÷3A ;(3)2÷(﹣2)﹣2+20.【答案】(1)x2﹣3y2+xy;(2)3A +2B ;(3)9【解析】【分析】(1)根据平方差公式和单项式乘以多项式的运算法则展开括号,再合并即可求出答案.(2)原式先去小括号合并后再根据多项式除以单项式的运算法则进行计算即可求出答案.(3)原式先计算负整数指数幂和零次幂,然后再计算除法,最后计算加法即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+y(x+y)=x2﹣4y2+xy+y2=x2﹣3y2+xy;(2)[(3A +B )2﹣B 2]÷3A=(9A 2+6A B +B 2﹣B 2)÷3A=(9A 2+6A B )÷3A=3A +2B .(3)2÷(﹣2)﹣2+20=2÷14+1=24+1=8+1=9.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19. 如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.【答案】105°【解析】【分析】由同位角相等,两直线平行判定A ∥B ,然后根据两直线平行,同位角相等,对顶角相等的性质求解【详解】∵∠1=70°,∠2=70°,∴∠1=∠2,∴A ∥B ,∴∠3=∠5.又∠3=105°,∴∠5=105°,∴∠4=∠5=105°.【点睛】本题考查平行线的判定和性质以及对顶角相等,理解相关性质正确推理是解题关键.20. 小明与小颖用一副去掉大王、小王的扑克牌作摸牌游戏:小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大,谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A ).然后两人把摸到的牌都放回,重新开始游戏.(1)若小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少? (2)若小明已经摸到的牌面为2,直接写出小颖获胜的概率;若小明已经摸到的牌面为A ,两人获胜的概率又如何呢?【答案】(1)小明获胜概率851,小颖获胜概率4051;(2)小颖获胜的概率是0,小明获胜的概率是1617【解析】【分析】(1)小明已经摸到的牌面为4,而小4的结果为4×2,大于4的结果数为4×10,然后根据概率公式求解;(2)小明已经摸到的牌面为2,而小于2的结果为0,大于2的结果数为4×12,然后根据概率公式求解;小明已经摸到的牌面为A ,而小于A 的结果为4×12,大于2的结果数为0,然后根据概率公式求解.【详解】解:(1)由题意知,去掉大王、小王的扑克牌共有52张,其中比4小的牌有2,3,所以,小明获胜的概率是2451=851;小明与小颖摸到的相同的牌面的概率为3 51,所以,小颖获胜的概率是1﹣851﹣351=4051;(2)若小明已经摸到的牌面为2,比2小的牌没有,所以小明获胜的概率是0,小颖获胜的概率是1﹣351=1617;若小明已经摸到的牌面为A ,没有比A 更大的牌,所以小颖获胜的概率是0,小明获胜的概率是1﹣351=1617.【点睛】本题考查了概率公式:某随机事件的概率=这个随机事件发生的情况数除以总情况数.21. 如图1,在边长为1的9×9正方形网格中,老师请同学们过点C 画线段A B 的垂线.如图2,小明在多媒体展台上展示了他画出的图形.请你利用所学知识判断并说明直线C D 是否为线段A B 的垂线.(点A ,B ,C ,D ,E,F都是小正方形的顶点)【答案】见解析【解析】【分析】根据全等三角形的判定和性质解答即可.【详解】证明:如图所示:通过图可知:D F=B E=2,C F=EA =5,∠D FC =∠B EA =90°,∴△D FC ≌△B EA (SA S),∴∠A =∠C ,∵∠A GH=∠C GP,∴∠A HG=∠A PC =90°,∴直线C D 为线段A B 的垂线.【点睛】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定与性质.22. (1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是B 元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是A 元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)【答案】(1)至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy+y×2x+2y×4x=xy+2xy+8xy=11xy(m2).11xy•B =11B xy(元).答:至少需要11xy平方米的地砖,购买地砖至少需要11B xy元;(2)由题意得:2y•h×2+4x•h×2+2x•h×2+2y•h×2=4hy+8hx+4hx+4hy=(12hx+8hy)m2.(12hx+8hy)×A +(12hx+8hy)×5=(12A hx+8A hy+60hx+40hy)元;答:至少需要(12hx+8hy)平方米的壁纸,贴完壁纸的总费用是(12A hx+8A hy+60hx+40hy)元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.23. 如图,在△A B C 中,∠B =30°,∠C =40°.(1)尺规作图:①作边A B 的垂直平分线交B C 于点D ;②连接A D ,作∠C A D 的平分线交B C 于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠D A E的度数.【答案】(1)①见解析;②见解析;(2)∠D A E12∠D A C =40°【解析】【分析】(1)根据垂直平分线与角平分线的尺规作图方法即可求解;(2)根据垂直平分线的性质得到D B =D A ,求出∠C A D =80°,再利用角平分线的性质即可求解.【详解】解:(1)如图,点D ,射线A E即为所求.(2)∵D F垂直平分线段A B ,∴D B =D A ,∴∠D A B =∠B =30°,∵∠C =40°,∴∠B A C =180°﹣30°﹣40°=110°,∴∠C A D =110°﹣30°=80°,∵A E平分∠D A C ,∴∠D A E12∠D A C =40°.【点睛】此题主要考查垂直平分线与角平分线,解题的关键是熟知尺规作图的方法.24. 新能源纯电动汽车的不断普及让很多人感受到了它的好处,其中最重要的一点就是对环境的保护.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)与已行驶路程x(千米)之间关系的图象.(1)图中点A 表示的实际意义是什么?当0≤x≤150时,行驶1千米的平均耗电量是多少;当150≤x≤200时,行驶1千米的平均耗电量是多少?(2)当行驶了120千米时,求蓄电池的剩余电量;行驶多少千米时,剩余电量降至20千瓦.【答案】(1)当0≤x≤150时,行驶1千米的平均耗电量是16千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是12千瓦时;(2)当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,进而解答即可;(2)把x=120代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,A 点表示充满电后行驶150千米时,剩余电量为35千瓦时;当0≤x≤150时,行驶1千米的平均耗电量是1 (6035)1506-÷=千瓦时;当150≤x≤200时,行驶1千米的平均耗电量是1 (3510)(200150)2-÷-=千瓦时;(2)6011206-⨯=40(千瓦时),35203012-=(千米),150+30=180(千米)答:当汽车已行驶120千米时,蓄电池的剩余电量为40千瓦时.汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.25. 综合与探究在数学综合实践课上,老师让同学用两张全等的等腰三角形纸片进行拼摆,并探究摆放后所构成的图形之间的关系.如图1,△A B C ≌△D EF,A B =A C ,D E=D F.[探究一](1)勤奋小组的同学把这两张纸片按如图2的方式摆放,点A 与点D 重合,连接B E和C F.他们发现B E与C F之间存在着一定的数量关系,这个关系是.[探究二](2)创新小组的同学在勤奋小组的启发下,把这两张纸片按如图3的方式摆放,点F,A ,D ,C 在同一直线上,连接B F和C E,他们发现了B F和C E之间的数量和位置关系,请写出这些关系并说明理由;[探究三](3)从A ,B 两题中任选一题作答.解答时用尺规作△D EF,不写作法,保留作图痕迹.A .如图4,利用△ABC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形写出一个数学结论.B .如图4,利用△A BC 纸片拼摆出一种与图2和图3都不相同的图形,并根据图形提出一个数学问题并解答.。

2020-2021学年七年级下期末数学试卷附答案解析

2020-2021学年七年级下期末数学试卷附答案解析

第 1 页 共 16 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)点P (a ,b )在第四象限,且|a |>|b |,那么点Q (a +b ,a ﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣33.(3分)下列说法中,错误的是( )A .9的算术平方根是3B .√16平方根是±2C .27的平方根是±3D .立方根等于﹣1的实数是﹣14.(3分)下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .{x =1y =−1B .{x =2y =1C .{x =−1y =−2D .{x =4y =−15.(3分)如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD +∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)6.(3分)若√3的整数部分为x ,小数部分为y ,则√3x ﹣y 的值是( )A .1B .√3C .3√3−3D .37.(3分)为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是( )A .560名学生是总体B .每名学生是总体的一个个体。

【解析版】济宁市曲阜市2020—2021学年七年级下期末数学试卷

【解析版】济宁市曲阜市2020—2021学年七年级下期末数学试卷

【解析版】济宁市曲阜市2020—2021学年七年级下期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采纳全面调查方式B.旅客上飞机前的安检,采纳抽样调查方式C.了解北京市居民日平均用水量,采纳全面调查方式D.了解北京市每天的流淌人口数,采纳抽样调查方式4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置能够表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n 7.在方程组中,假如是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,依照题意,列方程组正确的是( )A.B.C.D.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范畴是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1二、填空题(每小题3分,共15分)11.﹣64的立方根是__________.12.若关于x的不等式的整数解共有4个,则m的取值范畴是__________.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=__________°.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,那个数★=__________,●=__________.15.下面是一个按某种规律排列的数阵:依照数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是__________(用含n的代数式表示)三、解答题(共55分)16.(1)运算:|﹣|+﹣.(2)解方程组:.17.解不等式组,并把解集在数轴上表示出来.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.依照以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估量这种电动汽车一次充电后行驶的平均里程数为多少千米?19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直截了当写出点P的坐标;若不存在,说明理由.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费许多于130万元,且不超过140万元.则有哪几种购车方案?22.阅读探究(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即因此此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直截了当写出关于m、n的方程组的解为__________.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范畴;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范畴内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.山东省济宁市曲阜市2020-2020学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.考点:平方根.专题:运算题.分析:依照平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是把握一个正数的平方根有两个,且互为相反数.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:依照各象限内点的坐标特点解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采纳全面调查方式B.旅客上飞机前的安检,采纳抽样调查方式C.了解北京市居民日平均用水量,采纳全面调查方式D.了解北京市每天的流淌人口数,采纳抽样调查方式考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时刻较多,而抽样调查得到的调查结果比较近似.解答:解:A、日光灯管厂要检测一批灯管的使用寿命,采纳全面调查方式所有灯管都报废,如此就失去了实际意义,故本选项错误;B、旅客上飞机前的安检,是精确度要求高的调查,适于全面调查,故本选项错误.C、了解北京市居民日平均用水量,采纳全面调查方式,所费人力、物力和时刻较多,适合抽样调查,故本选项错误;D、了解北京市每天的流淌人口数采纳全面调查方式,所费人力、物力和时刻较多,适合抽样调查,故本选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查依旧抽样调查要依照所要考查的对象的特点灵活选用,一样来说,关于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,关于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角第一要判定它们是否是同位角或内错角,被判定平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判定出EB∥AC,故A选项不符合题意;B、∠A=∠ABE,依照内错角相等,两直线平行,能够得出EB∥AC,故D选项符合题意.C、∠C=∠ABC只能判定出AB=AC,不能判定出EB∥AC,故C选项不符合题意;D、∠A=∠EBD不能判定出EB∥AC,故B选项不符合题意;故选:B.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置能够表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)考点:坐标确定位置.分析:依照已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.解答:解:假如小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示确实是以小华为原点的平面直角坐标系的第一象限,因此小刚的位置为(4,3).故选D.点评:本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.在方程组中,假如是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定考点:二元一次方程组的解.分析:将x,y的值代入原方程组,得到关于a,b的方程组,然后求解此方程组得到a,b 的值.解答:解:将x,y的值代入原方程组,得关于a,b的方程组,解此方程组得a=4,b=0.故选A.点评:解此类方程组第一将已知的x,y值代入原方程组得到关于a,b的方程组,求解关于a,b的方程组即可得到a,b的值.8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,因此﹣≈﹣1.732,依照点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,依照题意,列方程组正确的是( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:应用题.分析:设男生有x人,女生有y人,依照男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,依照题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目包蕴的数量关系是解决问题的关键.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范畴是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1考点:解二元一次方程组;解一元一次不等式.分析:解此题时能够解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a 的取值范畴.解答:解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.点评:本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.二、填空题(每小题3分,共15分)11.﹣64的立方根是﹣4.考点:立方根.分析:依照立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.点评:此题要紧考查了立方根的定义,求一个数的立方根,应先找出所要求的那个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求那个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若关于x的不等式的整数解共有4个,则m的取值范畴是6<m≤7.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.专题:运算题.分析:关键不等式的性质求出不等式的解集,依照找不等式组解集的规律找出不等式组的解集,依照已知得到6≤m<7即可.解答:解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.点评:本题要紧考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的明白得和把握,能依照不等式组的解集得到6<m≤7是解此题的关键.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=40°.考点:平行线的性质.分析:依照邻补角的知识,求出∠CEA的度数,然后依照平行线的性质,得出∠A=∠CEA,即可求解.解答:解:∵∠CEF=140°,∴∠CEA=180°﹣∠CEF=40°,∵AB∥CD,∴∠A=∠CEA=40°(两直线平行,内错角相等).故答案为:40.点评:本题考查了平行线的性质以及邻补角的知识,解答本题的关键是把握平行线的性质:两直线平行,内错角相等.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,那个数★=﹣2,●=8.考点:二元一次方程组的解.专题:运算题.分析:把x=5代入方程组第二个方程求出y的值,将x与y的值代入第一个方程左边即可得到结果.解答:解:把x=5代入2x﹣y=12中,得:y=﹣2,当x=5,y=﹣2时,2x+y=10﹣2=8,故答案为:﹣2;8.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.下面是一个按某种规律排列的数阵:依照数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.专题:规律型.分析:观看不难发觉,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),因此,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,因此,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观看数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三、解答题(共55分)16.(1)运算:|﹣|+﹣.(2)解方程组:.考点:实数的运算;解二元一次方程组.分析:(1)本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行运算,然后依照实数的运算法则求得运算结果;(2)先将方程组整理为一样形式,再依照加减消元法解二元一次方程组即可求解.解答:解:(1)|﹣|+﹣=3﹣2﹣=.(2),方程组整理得,①×3﹣②得:4x=12,解得x=3,将x=3代入①得:y=3.故原方程组的解为.点评:本题考查实数的综合运算能力,是各地2020届中考题中常见的运算题型.解决此类题目的关键是熟练把握二次根式、三次根式、绝对值等考点的运算.同时考查了加减消元法解二元一次方程组.17.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.解答:解:解不等式①得x<3,解不等式②得x≥,∴不等式组的解集为≤x<3.其解集在数轴上表示为:.点评:解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.依照以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估量这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)依照条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别运算出C、D所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估量这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直截了当写出点P的坐标;若不存在,说明理由.考点:作图-平移变换.分析:(1)依照图形平移的性质画出△A′B′C′即可;(2)依照各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再依照三角形的面积公式求出y的值即可.解答:解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.考点:平行线的性质.分析:由AC丄AB,∠1=60°,易求得∠B的度数,又由直线a∥b,依照两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.点评:此题考查了平行线的性质与垂直的定义.此题难度不大,注意把握数形结合思想的应用.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费许多于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依照“购买A,B两种型号的新能源汽车共6辆,购车费许多于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读明白题意,找到关键描述语,进而找到所求的量的等量关系.22.阅读探究(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即因此此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直截了当写出关于m、n的方程组的解为.考点:解二元一次方程组.专题:阅读型.分析:(1)知识累计观看阅读材料的解题方法,明白得换元法;(2)拓展提高设﹣1=x,+2=y,依照(1)中的结论确定出关于x与y方程组,求出解得到x与y的值,即可求出a与b的值;(3)能力运用设,依照已知方程组的解确定出m与n的值即可.解答:解:(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即因此此种解方程组的方法叫换元法;(2)拓展提高设﹣1=x,+2=y,方程组变形得:,解得:,即,解得:;(3)能力运用设,可得,解得:,故答案为:点评:此题考查了解二元一次方程组,熟练把握运算法则是解本题的关键.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范畴;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范畴内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.考点:不等式的解集;解二元一次方程组.分析:第一对方程组进行化简,依照方程的解满足x为非正数,y为负数,就能够得出m的范畴,然后再化简(2),最后求得m的值.解答:解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.点评:要紧考查了一元一次不等式组解集的求法,其简便求法确实是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。

2020-2021学年第二学期七年级期末数学试卷及答案

2020-2021学年第二学期七年级期末数学试卷及答案

20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为

这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;

2020-2021学年人教版七年级下期末考试数学试卷及答案

2020-2021学年人教版七年级下期末考试数学试卷及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)√64的立方根是( ) A .±2B .±4C .4D .2【解答】解:√64=8,8的立方根是2, 故选:D .2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A .﹣2<x <2B .x <2C .x ≥﹣2D .x >2【解答】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x >2, 故选:D .3.(3分)如图,在阴影区域的点是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(1,﹣2)【解答】解:由图可知,阴影区域在第二象限,所以,各选项点的坐标中,在阴影区域的点是(﹣1,2). 故选:B .4.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0【解答】解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .5.(3分)如图,一个倾斜的天平两边分别放有小立方体和砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围为()A.m<15B.m>15C.m<152D.m>152【解答】解:由题意得:2m>3×5,解得:m>15 2.故选:D.6.(3分)下列四个图形中,BE不是△ABC的高线的图是()A.B.C.D.【解答】解:BE不是△ABC的高线的图是C,故选:C.7.(3分)如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个【解答】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.(3分)下列语句是命题的是()A.你喜欢数学吗?B.小明是男生C.大庙香水梨D.出门戴口罩【解答】解:A、你喜欢数学吗?是疑问句,没有对事情做出判断,不是命题,不符合题意;B、小明是男生是命题,符合题意;C、大庙香水梨是陈述性的句子,没有做出判断,不是命题,不符合题意;D、出门戴口罩是陈述性的句子,没有做出判断,不是命题,不符合题意;故选:B.9.(3分)某公司的生产量在1~7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.2~6月生产量逐月减少B.1月份生产量最大C.这七个月中,每月的生产量不断增加D.这七个月中,生产量有增加有减少【解答】解:观察折线图可知,这七个月中,每月的生产量不断增加,故选:C.10.(3分)若关于x的不等式3x+1<m的正整数解是1,2,3,则整数m的最大值是()A.10B.11C.12D.13【解答】解:解不等式3x+1<m,得x<13(m﹣1).∵关于x的不等式3x+1<m的正整数解是1,2,3,∴3<13(m﹣1)≤4,∴10<m≤13,∴整数m的最大值是13.故选:D.二.填空题(共8小题,满分18分)11.(2分)√2−1的相反数是1−√2.【解答】解:√2−1的相反数是1−√2,故答案为:1−√2.12.(2分)为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序③④②①.(只填序号)【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.13.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是23°.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.14.(2分)已知平面内有一点A的横坐标为﹣6,且到原点的距离等于10,则A点的坐标为(﹣6,8)或(﹣6,﹣8).【解答】解:∵点A的横坐标为﹣6,到原点的距离是10,∴点A到x轴的距离为√102−62=8,∴点A的纵坐标为8或﹣8,∴点A的坐标为(﹣6,8)或(﹣6,﹣8).故答案为:(﹣6,8)或(﹣6,﹣8).15.(2分)若一个多边形的内角和与外角和之和是1800°,则此多边形是十边形.【解答】解:∵多边形的一个内角与它相邻外角的和为180°,∴1800°÷180°=10.故答案为:十.16.(2分)“如果1a >1b,那么a<b.”是假命题,举一个反例,其中a=1,b=﹣2.【解答】解:当a=1,b=﹣2可说明“如果1a >1b,那么a<b.”是假命题.故答案为1,﹣2.17.(2分)如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于24.【解答】解:∵由于E、F分别为AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为24.18.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2019的坐标为(0,4).【解答】解:如图,观察图形可知P6与P重合,6次一个循环,2019÷6=336余数为3,∴P2019与P3重合,∴P2019的坐标为(0,4).故答案为(0,4).三.解答题(共8小题,满分52分)19.(6分)解一元一次不等式组:{2x+4<4 1−2x>0.【解答】解:由①得:x<0,由②得:x<1 2,∴不等式组的解集为:x<0.20.(6分)已知关于x的一元二次方程x2﹣mx﹣3=0.(1)求证:无论m取何值,该方程总有两个不相等的实数根;(2)当m=2时,求方程的根.【解答】解:(1)∵x2﹣mx﹣3=0,∵△=(﹣m)2﹣4×1×(﹣3)=m2+12>0,∴无论m取何值,方程总有两个不相等的实数根;(2)把m=2代入方程得到x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.21.(6分)已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.理由如下: ∵AB ∥CD ,∴∠AEF +∠CFE =180°, ∵FN 平分∠CFE , ∴∠CFE =2∠CFN , ∵∠AEF =2∠CFN , ∴∠AEF =∠CFE =90°, ∴∠CFN =∠EFN =45°,∴∠DFN =∠HFN =180°﹣45°=135°, 同理:∠AEM =∠GEM =135°.∴∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.22.(6分)如图,在正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为(﹣4,5)、(﹣1,3). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)点D (m ,n )是△ABC 边BC 上任意一点,三角形经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(m +6,n ﹣2).①直接写出点B 1的坐标 (4,﹣1) ; ②画出△ABC 平移后的△A 1B 1C 1.(3)在y 轴上是否存在点P ,使△AOP 的面积等于△ABC 面积的23,若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)如图,平面直角坐标系如图所示:(2)①B 1(4,﹣1). 故答案为(4,﹣1). ②如图,△A 1B 1C 1即为所求.(3)设P (0,m ).由题意,12×|m |×4=23×(3×4−12×2×4−12×2×3−12×1×2),解得m =±43,∴P (0,43)或(0,−43).23.(7分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有 ②③ ;(只要填写序号即可) ①随机抽取一个班级的48名学生; ②在全年级学生中随机抽取48名学生; ③在全年级12个班中分别各抽取4名学生; ④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°.②估计全年级A、B类学生大约一共有432名;成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)8D类(0~39)4(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.【解答】解:(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有:②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;①④都比较片面,故答案为:②③;(2)①C类和D类部分的圆心角度数分别为:8×360°=60°,48448×360°=30°.②估计全年级A、B类学生大约一共有:12×48×(0.5+0.25)=432(名);故答案为:60°,30°,432;(3)第一中学的教学效果较好,因为第一中学的极差小,两极分化不严重,方差小,学生总体成绩波动不大.24.(7分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?【解答】解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.25.(7分)【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB 重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为(﹣6,﹣2).(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为2.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)【解答】解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);【模型应用】:(2)如图1,过点C作CE⊥y轴于E,∵直线l:y=kx﹣4k经过点(2,﹣3),∴2k﹣4k=﹣3,∴k=3 2,∴直线l的解析式为y=32x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=32x﹣6,∴x=4,∴A(4,0),∴OA=4,同(1)的方法得,△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=4,∴OE=OB﹣BE=6﹣4=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,针对于直线l:y=kx﹣4k,令x=0,则y=﹣4k,∴B(0,﹣4k),∴OB=4k,令y=0,则kx﹣4k=0,∴x=4,∴A(4,0),∴OA=4,过点C作CF⊥y轴于F,同【基础模型】的方法得,△OAB≌△FBC(AAS),∴BF=OA=4,CF=OB=4k,∴OF=OB+BF=4k+4,∵点C在第四象限,∴C(4k,﹣4k﹣4),∵B(0,﹣4k),∵BD∥x轴,且点D在直线y=x上,∴D(﹣4k,﹣4k),∴BD=4k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=12BF=2,故答案为:2;(4)当点C在第四象限时,由(3)知,C(4k,﹣4k﹣4),∵C(a,b),∴a=4k,b=﹣4k﹣4,∴b=﹣a﹣4,当点C在第三象限时,由(2)知,B(0,﹣4k),A(4,0),∴OB=4k,OA=4,如图1,由(2)知,△OAB≌△FBC(AAS),∴CE=OB=4k,BE=OA=4,∴OE=OB﹣BE=4k﹣4,∴C(﹣4k,4﹣4k),∵C(a,b),∴a=﹣4k,b=4﹣4k,∴b=a+4,即:b=a+4或b=﹣a﹣4.26.(7分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+12∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.四.解答题(共2小题)27.已知等腰三角形ABC.(1)若其两边长分别为2和3,求△ABC的周长;(2)若一腰上的中线将此三角形的周长分为9和18,求△ABC的周长.【解答】解:(1)当2为底时,三角形的三边为3,2,3,可以构成三角形,周长为:3+2+3=8;当3为底时,三角形的三边为3,2,2,可以构成三角形,周长为:3+2+2=7.△ABC的周长为8或7.(2)设三角形的腰为x,如图:△ABC是等腰三角形,AB=AC,BD是AC边上的中线,则有AB+AD=9或AB+AD=18,分下面两种情况解.a:x+12x=9,∴x=6,∵三角形的周长为9+18=27cm,∴三边长分别为6,6,15,∵6+6<15,不符合三角形的三边关系,∴舍去;b:x+12x=18,∴x=12,∵三角形的周长为27,∴三边长分别为12,12,3.综上可知:这个等腰三角形的周长为27.28.在小学四年级我们学过三角形的内角和等于180°;科学实验又证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等(例如:∠1=∠4).利用上述知识进行下面的探究活动:(一)探究:(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被平面镜b反射.若被平面镜b反射出的光线n平行于m,且1=50°,则∠2=100°,∠3=90°;(2)在(1)中,若∠1=40°,则∠3=90°,若∠1=55°,则∠3=90°;(二)猜想:由(1)(2)请你猜想:当∠3=90°时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的.(三)证明:请证明你的上述猜想.【解答】解:(一)探究:(1)如图,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∠1=50°,∴∠4=∠1=50°,∠5=∠7,∴∠6=180°﹣50°﹣50°=80°,∵m∥n,∴∠2+∠6=180°,∴∠2=100°,∴∠5=∠7=40°,∴∠3=180°﹣50°﹣40°=90°,故答案为:100°,90°;(2)∵∠1=40°,射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠4=∠1=40°,∠5=∠7,∴∠6=180°﹣40°﹣40°=100°,∵m∥n,∴∠2+∠6=180°,∴∠2=80°,∴∠5=∠7=50°,∴∠3=180°﹣50°﹣40°=90°;∵∠1=55°,∴∠4=∠1=55°,∴∠6=180°﹣55°﹣55°=70°,∵m∥n,∴∠2+∠6=180°,∴∠2=110°,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠5=∠7=35°,∴∠3=180°﹣55°﹣35°=90°;故答案为:90°,90°;(二)猜想:当∠3=90°时,m∥n,故答案为:90°;(三)证明:∵∠3=90°,∴∠4+∠5=180°﹣90°=90°,∵∠1=∠4,∠7=∠5,∴∠1+∠4+∠5+∠7=2×90°=180°,∴∠6+∠2=180°﹣(∠1+∠4)+180°﹣(∠5+∠7)=180°,∴m∥n.五.解答题(共1小题)29.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?【解答】解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.。

山东省济宁市曲阜市七年级数学上学期期中试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

山东省济宁市曲阜市七年级数学上学期期中试卷(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市曲阜市2015-2016学年七年级(上)期中数学试卷一、选择题1.的倒数是()A.2 B.﹣2 C.D.2.计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.63.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.34.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.﹣a一定是负数D.正整数和正分数统称正有理数5.如果a的绝对值是1,那么a2015等于()A.1 B.2015 C.2015或﹣2015 D.﹣1或16.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105×106D.30×1047.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D8.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=09.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是()A.十四次多项式 B.七次多项式C.不高于七次多项式或单项式 D.六次多项式10.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22 11.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定12.数轴上表示整数的点称为整点.某数轴上的单位长度是1cm,若在这个数轴上随意画出一条长2014cm的线段AB,则线段AB盖住的整点个数是()A.2015个或2016个B.2014个或2015个C.2013个或2014个D.2012个或2013个二、填空题13.|﹣2|的值等于.14.用四舍五入法取近似值:12.006=(精确到百分位)15.单项式的系数是,次数是.16.若单项式2a m﹣1b3与3a2b n+2同类项,则m=,n=.17.多项式﹣x2+4x﹣的次数是,常数项是.18.用“>”,“<”,“=”填空:﹣﹣;﹣(﹣)﹣|﹣|.19.若|x+3|+(5﹣y)2=0,则x+y=.20.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是元(用含a,b的代数式表示).三、解答题21.(12分)(2015秋•曲阜市期中)计算:(1)﹣22×7﹣(﹣3)×6+5;(2)(﹣﹣)×24÷(﹣2);(3)56×1+56×(﹣)﹣56×;(4)(﹣1)4﹣×[2﹣(﹣3)2].22.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?23.计算:(1)(2x﹣3y)﹣(﹣5x﹣4y);(2)5x2y﹣2xy﹣4(x2y﹣xy)24.先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.25.某某出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出发点江北机场多远?在江北机场的什么方向?(2)若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?26.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是=.已知,(1)a2是a1的差倒数,则a2=;(2)a3是a2的差倒数,则a3=;(3)a4是a3的差倒数,则a4=,…,依此类推,则a2009=.27.已知代数式ax5+bx3+3x+c,当x=0时,该代数式的值为﹣1.(1)求c的值;(2)已知当x=1时,该代数式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值;(4)在第(3)小题的已知条件下,若有3a=5b成立,试比较a+b与c的大小?2015-2016学年某某省某某市曲阜市七年级(上)期中数学试卷参考答案与试题解析一、选择题1.的倒数是()A.2 B.﹣2 C.D.【考点】倒数.【分析】利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选;B.【点评】此题主要考查了倒数的定义,正确把握定义是解题关键.2.计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【考点】有理数的混合运算.【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.【点评】此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.3.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.4.下面说法中正确的有()A.非负数一定是正数B.有最小的正整数,有最小的正有理数C.﹣a一定是负数D.正整数和正分数统称正有理数【考点】有理数.【分析】根据有理数,即可解答.【解答】解:A、非负数是正数和0,故本选项错误;B、有最小的正整数,没有最小的正有理数,故本选项错误;C、﹣a不一定是负数还有可能是0,故本选项错误;D、正整数和正分数统称正有理数,正确;故选:D.【点评】本题考查了有理数,解决本题的关键是熟记有理数.5.如果a的绝对值是1,那么a2015等于()A.1 B.2015 C.2015或﹣2015 D.﹣1或1【考点】绝对值.【分析】根据绝对值性质求得a的值,再代入a2015计算可得.【解答】解:∵|a|=1,∴a=±1,∴(±1)2015=±1,故选:D.【点评】本题主要考查绝对值性质,熟练掌握绝对值性质和乘方运算法则是关键.6.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105×106D.30×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D【考点】相反数;数轴.【分析】分别表示出数轴上A、B、C、D所表示的数,再根据相反数的定义确定表示互为相反数的两数的点.【解答】解:A、B、C、D所表示的数分别是2,1,﹣2,﹣3,因为2和﹣2互为相反数,故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.2a2+3a2=6a2C.4xy﹣3xy=1 D.2m2n﹣2mn2=0【考点】合并同类项.【分析】原式各项合并得到结果,即可做出判断.【解答】解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy﹣3xy=xy,错误;D、原式不能合并,错误,故选A【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.9.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是()A.十四次多项式 B.七次多项式C.不高于七次多项式或单项式 D.六次多项式【考点】整式的加减.【分析】两个多项式相加后所得到的多项式的次数等于相加前次数大的那个多项式的次数.【解答】解:根据多项式相加的特点多项式次数不增加,项数增加或减少可得:A+B一定是不高于七次的多项式或单项式.故选C.【点评】本题考查多项式相加的特点,难度不大,关键是理解多项式相加的法则及特点.10.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22【考点】有理数的乘方.【分析】根据有理数的乘方运算法则分别计算,进行比较,得出数值相等的选项.【解答】解:A、﹣23=﹣8,(﹣2)3=﹣8,故A选项符合题意;B、32=9,23=8,故B选项不符合题意;C、﹣32=﹣9,(﹣3)2=9,故C选项不符合题意;D、﹣(3×2)2=﹣36,﹣3×22=﹣12,故D选项不符合题意.故选:A.【点评】本题考查有理数的运算能力,解决此类题目的关键是熟记有理数的运算法则.11.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定【考点】代数式求值.【分析】把x+2y看作一个整体并把所求代数式整理成已知条件的形式,然后计算即可得解.【解答】解:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.故选C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.数轴上表示整数的点称为整点.某数轴上的单位长度是1cm,若在这个数轴上随意画出一条长2014cm的线段AB,则线段AB盖住的整点个数是()A.2015个或2016个B.2014个或2015个C.2013个或2014个D.2012个或2013个【考点】数轴.【分析】此题应考虑线段AB的端点正好在两个整数点上和两个端点都不在整数点上两种情况.【解答】解:依题意得:①当线段AB起点在整点时覆盖2015个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2014个数.故选:B.【点评】此题考查了数轴,弄清题意是解本题的关键.二、填空题13.|﹣2|的值等于 2 .【考点】绝对值.【分析】根据绝对值的性质即可得出结果.【解答】解:|﹣2|=2,故答案为2.【点评】本题主要考查了绝对值的性质,负数的绝对值是它的相反数,比较简单.14.用四舍五入法取近似值:12.006= 12.01 (精确到百分位)【考点】近似数和有效数字.【分析】精确到百分位,就是小数点后保留两位,第三位是6,要进一.【解答】≈12.01,故答案为:12.01.【点评】本题考查了用四舍五入法取近似值,根据精确度,按四舍五入的原则进行取舍,要根据后一位数四舍五入.15.单项式的系数是﹣,次数是 3 .【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.若单项式2a m﹣1b3与3a2b n+2同类项,则m= 3 ,n= 1 .【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,即可列出关于m和ny的方程,可得答案.【解答】解:由单项式2a m﹣1b3与3a2b n+2同类项,得m﹣1=2,n+2=3,解得m=3,n=1,故答案为:3,1.【点评】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.17.多项式﹣x2+4x﹣的次数是 2 ,常数项是﹣.【考点】多项式.【分析】根据多项式的项的次数定义和常数项解答即可.【解答】解:多项式﹣x2+4x﹣的次数是2,常数项是﹣,故答案为:2;﹣【点评】本题考查了多项式的项的系数和次数定义的掌握情况.解题的关键是弄清多项式次数是多项式中次数最高的项的次数.18.用“>”,“<”,“=”填空:﹣>﹣;﹣(﹣)>﹣|﹣|.【考点】有理数大小比较.【分析】根据两个负数,绝对值大的其值反而小比较大小.【解答】解:﹣>﹣;﹣(﹣)>﹣|﹣|,故答案为:>;>.【点评】此题主要考查了有理数大小比较,本题用到的知识点为:两个负数,绝对值大的反而小.19.若|x+3|+(5﹣y)2=0,则x+y= 2 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,x+3=0,5﹣y=0,解得,x=﹣3,y=5,则x+y=2,故答案为:2.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.20.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是(100a+60b)元(用含a,b的代数式表示).【考点】列代数式.【分析】因为160>100,所以其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.【解答】解:100a+(160﹣100)b=100a+60b.故答案为:(100a+60b).【点评】该题要分析清题意,要知道其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.三、解答题21.(12分)(2015秋•曲阜市期中)计算:(1)﹣22×7﹣(﹣3)×6+5;(2)(﹣﹣)×24÷(﹣2);(3)56×1+56×(﹣)﹣56×;(4)(﹣1)4﹣×[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式逆用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣28+18+5=﹣28+23=﹣5;(2)原式=(16﹣18﹣2)÷(﹣2)=(﹣4)÷(﹣2)=2;(3)原式=56×(1﹣﹣)=56×=48;(4)原式=1﹣×(﹣7)=1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?【考点】有理数的混合运算.【分析】先设出这个山峰的高度是x米,再根据题意列出关系式4﹣×0.8=2,解出x 的值即可.【解答】解:设这个山峰的高度是x米,根据题意得:4﹣×0.8=2,解得:x=250.答:这个山峰有250米.【点评】此题考查了有理数的混合运算,解题的关键读懂题意,找出等量关系,列出方程,是一道基础题.23.计算:(1)(2x﹣3y)﹣(﹣5x﹣4y);(2)5x2y﹣2xy﹣4(x2y﹣xy)【考点】整式的加减.【分析】(1)先去括号,然后合并同类项;(2)先去括号,然后合并同类项.【解答】解:(1)原式=2x﹣3y+5x+4y=7x+y;(2)原式=5x2y﹣2xy﹣4x2y+2xy=x2y.【点评】本题考查了整式的加减,熟悉去括号、合并同类项是解题的关键.24.先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.【考点】整式的加减—化简求值.【分析】原式利用去括号法则去括号后,合并得到最简结果,将x的值代入计算,即可求出值.【解答】解:原式=﹣6x+(9x2﹣3)﹣(9x2﹣x+3)=﹣6x+9x2﹣3﹣9x2+x﹣3=﹣5x﹣6,当x=﹣时,原式=﹣5×(﹣)﹣6=﹣.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.25.某某出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出发点江北机场多远?在江北机场的什么方向?(2)若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?【考点】正数和负数.【分析】(1)把所有行车记录相加,然后根据和的正负情况确定最后的位置;(2)求出所有行车记录的绝对值的和,再乘以3.5即可.【解答】解:(1)+15﹣2+5﹣13+10﹣7﹣8+12+4﹣5+6=17(千米).答:小李距下午出车时的出发点16千米,在汽车南站的北面;(2)15+2+5+13+10+7+8+12+4+5+6=87(千米),87×3.5=304.5(元).答:这天下午小李的营业额是304.5元.【点评】此题考查了正数和负数,以及有理数加减法的应用,弄清题意是解本题的关键.26.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是=.已知,(1)a2是a1的差倒数,则a2=;(2)a3是a2的差倒数,则a3= 4 ;(3)a4是a3的差倒数,则a4= ﹣,…,依此类推,则a2009=.【考点】规律型:数字的变化类;倒数.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,首先根据定义计算前几个数,直到计算到循环时,根据几个一循环,即可得到结果.【解答】解:根据差倒数定义:(1)由已知得:a2==,故答案为:;((2)所以a3==4,故答案为:4,(3)所以a4==;由以上可知每三个循环一次,又2009÷3=669余2,故a2009和a2的值相等.所以a2009=a2=,故答案为:﹣,.【点评】本题考查了差倒数的规律,此类题型要严格根据定义做,这也是近几年出现的新类型题之一,同时注意分析循环的规律.27.已知代数式ax5+bx3+3x+c,当x=0时,该代数式的值为﹣1.(1)求c的值;(2)已知当x=1时,该代数式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值;(4)在第(3)小题的已知条件下,若有3a=5b成立,试比较a+b与c的大小?【考点】代数式求值.【分析】(1)把x=0代入代数式即可求出c的值;(2)把x=1代入代数式可求a+b=c的值;(3)把x=3代入代数式,再把得到的式子整体代入代数式,即可求值;(4)利用35a+33b=﹣9,再结合3a=5b,可求出a、b的值,从而可比较a+b与c的大小.【解答】解:(1)把x=0代入代数式,得到ax5+bx3+3x+c=c=﹣1;∴c=﹣1;(2)把x=1代入代数式,得到ax5+bx3+3x+c=a+b+3+c=﹣1,∴a+b+c=﹣4;(3)把x=3代入代数式,得到ax5+bx3+3x+c=35a+33b+3×3+c=9,∴35a+33b+c=0;35a+33b=﹣c=1,当x=﹣3时,原式=(﹣3)5a+(﹣3)3b+3×(﹣3)+c=﹣(35a+33b)﹣9+c=c﹣9+c=2c﹣9=﹣2﹣9=﹣11;(4)由(3)题得35a+33b=1,即9a+b=,又∵3a=5b,所以15b+b=∴b=>0;(10分)则a=b>0;(11分)∴a+b>0;∵c=﹣1<0,∴a+b>c.【点评】代数式求值问题.注意理解题意与整体思想的应用.。

2020-2021七年级数学下期末模拟试卷(含答案)(1)

2020-2021七年级数学下期末模拟试卷(含答案)(1)
∴当y=3时,x=13
当y=7时,x=6.
所以有两种方案.
故答案为2.
本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
17.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
解析:2
【解析】
设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.
解:设甲种运动服买了x套,乙种买了y套,
20x+35y=365
x= ,
∵x,y必须为正整数,
∴ >0,即0<y< ,
A.0B.-πC. D.-4
10.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
11.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
12.关于 , 的方程组 的解满足 ,则 的值为()
【点睛】

2020-2021学年山东省济宁市曲阜市七年级(下)期末数学试卷(附答案详解)

2020-2021学年山东省济宁市曲阜市七年级(下)期末数学试卷(附答案详解)

2020-2021学年山东省济宁市曲阜市七年级(下)期末数学试卷1. 下列各数中,属于无理数的是( )A. 1.414B. 12C. √3D. 02. 如图,在所标识的角中,下列说法不正确的是( )A. ∠1和∠2是邻补角B. ∠1和∠4是同位角C. ∠2和∠4是内错角D. ∠2和∠3是对顶角3. 以下调查中,适宜抽样调查的是( )A. 了解某班学生的身高情况B. 调查某批次汽车的抗撞击能力C. 掌握疫情期间某班学生体温情况D. 选出某校短跑最快的学生参加全市比赛4. 不等式x +1≥2的解集在数轴上表示正确的是( )A. B. C.D.5. 已知{x =2y =−1是关于x ,y 的方程2x +ay =6的解,则a 的值为( )A. −3B. −2C. 2D. 36. 在平面直角坐标系中,如果点P(−1,−2+m)在第三象限,那么m 的取值范围为( )A. m <2B. m ≤2C. m ≤0D. m <07. 如图,已知AF 是∠BAC 的平分线,点D 在AB 上,过点D 作DG//AC 交AF 于点E.如果∠DEA =28°,那么∠BDG 的度数为( )A. 28°B. 56°C. 58°D. 84°8.下列计算正确的是()A. √4=±2B. ±√16=4C. √(−4)2=−4D. √−273=−3 9.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(−2,1),则表示棋子“炮”的点的坐标为()A. (−3,3)B. (0,3)C. (3,2)D. (1,3)10.已知方程组{2x+y=〇x+y=3的解为{x=2y=▢,则〇、▢分别为()A. 1,2B. 1,5C. 5,1D. 2,411.命题“若ac<bc,则a<b”是______命题.(填“真”或“假”)12.如图,点C在射线BD上,请你添加一个条件______,使得AB//CE.13.如图,天平左盘中物体A的质量为a克,天平右盘中每个砝码的质量都是5克,那么a的取值范围为______.14.已知|2x+y|+√x−4=0,则√x+√y3的值为______.15.甲、乙二人分别从相距20km的A,B两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是xkm/ℎ,乙的速度是ykm/ℎ,根据题意所列的方程组是______.16. 计算:√0.25+√−273−√14.17. 解不等式组:{2x−12<15x +2≥3x.18. 解方程组:{x −y =42x +y =−1.19. 已知△A′B′C′是由△ABC 经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:△ABC A(a,0)B(3,0)C(5,5)△A′B′C′A′(4,2)B′(7,b)C′(c,7)(1)观察表中各对应点坐标的变化,并填空:a=______,b=______,c=______;(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;(3)直接写出△A′B′C′的面积是______.20.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同)若购买2个篮球和3个足球共340元,购买1个篮球和2个足球共需200元;(1)篮球、足球的单价各是多少元;(2)根据学校的实际需要,需一次性购买篮球和足球共100个要求购买篮球和足球的总费用不超过6450元,则该校最多可以购买多少个篮球?21.中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩进行了整理,得到不完整的统计图表.成绩x/分频数频率60≤x<7060.1570≤x<8080.280≤x<90a b90≤x≤100c d 请根据所给信息,解答下列问题:(1)a=______,b=______,c=______,d=______;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?22. 已知:如图,DB 平分∠ADC ,∠1+∠2=180°.(1)求证:AB//CD ;(2)若ED ⊥DB ,∠A =50°,求∠EDC 的大小.23. 若点P(x,y)的坐标满足{x +y =2a −b −4x −y =b −4.(1)当a =1,b =1时,求点P 的坐标;(2)若点P 在第二象限,且符合要求的整数a 只有三个,求b 的取值范围; (3)若点P(x,y)为不在x 轴上的点,且满足x +4=−23y ,求关于t 的不等式at >b 的解集.答案和解析1.【答案】C【解析】解:A、1.414是有限小数,属于有理数,故本选项不合题意;B、1是分数,属于有理数,故本选项不合题意;2C、√3是无理数,故本选项符合题意;D、0是整数,属于有理数,故本选项不合题意;故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】C【解析】解:A,∠1和∠2是邻补角,故此选项不符合题意;B,∠1和∠4是同位角,故此选项不符合题意;C,∠2和∠4不是内错角,故此选项符合题意;D,∠2和∠3是对顶角,故此选项不符合题意.故选:C.根据同位角、内错角、邻补角、对顶角的定义求解判断即可.此题考查了同位角、内错角、同旁内角,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.3.【答案】B【解析】解:A.了解某班学生的身高情况,适宜采用全面调查方式,故本选项不合题意;B.调查某批次汽车的抗撞击能力,适宜采用抽样调查方式,故本选项符合题意;C.掌握疫情期间某班学生体温情况,适宜采用全面调查方式,故本选项不合题意;D.选出某校短跑最快的学生参加全市比赛,适宜采用全面调查方式,故本选项不合题意.故选:B .由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【答案】A【解析】解:∵x +1≥2, ∴x ≥1. 故选:A .先求出原不等式的解集,再根据解集即可求出结论.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.【答案】B【解析】解:∵{x =2y =−1是关于x ,y 的方程2x +ay =6的解,∴2×2−a =6, 解得a =−2, 故选:B .将x ,y 值代入二元一次方程后解方程即可求解.本题主要考查二元一次方程的解,根据方程解的定义代入计算是解题的关键.6.【答案】A【解析】解:由题意知−2+m <0, 则m <2, 故选:A .根据解一元一次不等式基本步骤移项、合并同类项1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.【答案】B【解析】解:∵DG//AC,∴∠EAC=∠DEA=28°.∵AF是∠BAC的平分线,∴∠DAE=∠EAC=28°.∴∠BDG=∠DAE+∠DEA=28°+28°=56°.故选:B.先由平行线、角平分线的性质,得到∠DAE的度数,再由三角形的外角与内角的关系,求出∠BDG的度数.本题考查了角平分线的性质、平行线的性质及三角形外角与内角的关系.掌握三角形的外角等于不相邻的两个内角和是解决本题的关键.8.【答案】D【解析】解:A.√4=2,故本选项不合题意;B.±√16=±4,故本选项不合题意;C.√(−4)2=4,故本选项不合题意;3=−3,正确.D.√−27故选:D.分别根据算术平方根的定义,平方根的定义以及立方根的定义逐一判断即可.本题主要考查了立方根、平方根以及算术平方根,熟记定义是解答本题的关键.9.【答案】D【解析】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.10.【答案】C【解析】解:把x=2代入x+y=3得,2+y=3,y=1.把y=1代入2x+y=〇,〇=2×2+1=5.故选:C.把x=2代入x+y=3,得y的值,把y的值代入2x+y=〇,求〇的值.本题考查二元一次方程组的解,掌握代入求值法,正确代入有关的方程是解题关键.11.【答案】假【解析】解:当ac<bc,c<0时,a>b,∴命题“若ac<bc,则a<b”是假命题,故答案为:假.根据不等式的性质3、假命题的概念解答即可.本题考查的是命题的真假判断、不等式的性质,掌握假命题的概念、不等式的基本性质3是解题的关键.12.【答案】∠B=∠ECD或∠B+∠BCE=180°或∠A=∠ACE【解析】解:当∠B=∠ECD时,AB//CE;当∠B+∠BCE=180°时,AB//CE;当∠A=∠ACE时,AB//CE.故答案为∠B=∠ECD或∠B+∠BCE=180°或∠A=∠ACE.根据平行线的判定方法求解.本题考查了平行线的判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.13.【答案】5<a <10【解析】解:根据题意得{a >5a <10, 解得:5<a <10.故答案为:5<a <10.根据天平列出不等式组,确定出解集即可.此题考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解..14.【答案】0【解析】解:∵|2x +y|+√x −4=0,∴{2x +y =0x −4=0, 解得{x =4y =−8, ∴√x +√y 3=√4+√−83=2−2=0.故答案为:0.直接利用非负数的性质进而得出x ,y 的值,进而得出答案.此题主要考查了非负数的性质,正确得出x ,y 的值是解题关键.15.【答案】{2.5x +2y =20x +y +11=20【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.设甲的速度是xkm/ℎ,乙的速度是ykm/ℎ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】解:设甲的速度是xkm/ℎ,乙的速度是ykm/ℎ,依题意,得:{2.5x +2y =20x +y +11=20. 故答案为:{2.5x +2y =20x +y +11=20. 16.【答案】解:√0.25+√−273−√14=0.5+(−3)−12=−3.【解析】首先计算开方和开立方,然后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.【答案】解:解不等式2x−12<1,得:x <32, 解不等式5x +2≥3x ,得:x ≥−1,则不等式组的解集为−1≤x <32.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 18.【答案】解:{x −y =4 ①2x +y =−1 ②, ①+②得:3x =3,解得:x =1,把x =1代入①得:y =−3,则方程组的解为{x =1y =−3.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【答案】0 2 9 152【解析】解:(1)由表格得出:∵利用对应点坐标特点:A(a,0),A′(4,2);B(3,0),B′(7,b);C(5,5),C′(c,7)∴横坐标加4,纵坐标加2,∴a=0,b=2,c=9.故答案为:0,2,9;(2)平移后,如图所示.(3)△A′B′C′的面积为:12×3×5=152.故答案为:152.(1)利用已知图表,得出横坐标加4,纵坐标加2,直接得出各点坐标即可;(2)把△ABC的各顶点向上平移2个单位,再向右平移4个单位,顺次连接各顶点即为△A′B′C′;(3)求面积时,根据坐标可求出三角形的底边长和高,即可计算出面积.此题主要考查了图象平移变换以及坐标系中点的坐标确定,本题关键是确定各点坐标,求面积比较简单,同学们要熟练掌握.20.【答案】解:(1)设每个篮球x 元,每个足球y 元,由题意得,{2x +3y =340x +2y =200, 解得:{x =80y =60, 答:每个篮球80元,每个足球60元;(2)设买m 个篮球,则购买(100−m)个足球,由题意得:80m +60(100−m)≤6450,解得:m ≤22.5,∵m 为整数,∴m 最大取22,答:最多可以买22个篮球.【解析】(1)设每个篮球x 元,每个足球y 元,根据买2个篮球和3个足球共需340元,购买1个篮球和2个足球共需200元,列出方程组,求解即可;(2)设买m 个篮球,则购买(100−m)个足球,根据总价钱不超过6450元,列不等式求出x 的最大整数解即可.本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.21.【答案】14 0.35 12 0.3【解析】解:(1)由题意知a =14,b =14÷40=0.35,c =12,d =12÷40=0.3,故答案为:14、0.35、12、0.3;(2)补全频数分布直方图如下:(3)600×0.3=180,答:估计参加这次比赛的600名学生中成绩“优”等的约有180人.(1)由已知数据得出a、c的值,再根据频率=频数÷总数可得b、d的值;(2)由(1)中所求数据补全图形即可得;(3)总人数乘以样本中90≤x≤100的频率即可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【答案】(1)证明:∵∠1+∠2=180°,∠1+∠DCB=180°,∴∠2=∠DCB,∴AB//CD;(2)解:∵AB//CD,∴∠ABD=∠BDC,∵DB平分∠ADC,∴∠ADB=∠BDC,∴∠ABD=∠ADB,∵∠A=50°,∴∠ABD=∠ADB=(180°−50°)÷2=65°,∵ED⊥DB,∴∠EDB=90°,∴∠EDC=∠EDB−∠BDC=90°−65°=25°.【解析】(1)根据同角的补角相等可得∠2=∠DCB,进而可以证明结论;(2)根据平行线的性质和角平分线定义可得∠ABD=∠ADB,再根据三角形内角和定理可得∠ABD的度数,再根据垂直定义即可求出∠EDC的大小.本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.23.【答案】解:(1)把a =1,b =1代入方程组得:{x +y =−3x −y =−3, 解得{x =−3y =0, ∴点P 坐标为(−3,0).(2)由{x +y =2a −b −4x −y =b −4得{x =a −4y =a −b , ∵点P 在第二象限,∴{a −4<0a −b >0, 解得b <a <4,∴符合要求的整数a 为1,2,3,∴0≤b <1.(3)∵点P 坐标为(a −4,a −b),且点P 不在x 轴上,∴a −b ≠0,即a ≠b .将{x =a −4y =a −b代入x +4=−23y 得a =−23(a −b), 整理得53a =23b ,∴a =25b , 将a =25b 代入at >b 得25bt >b ,当b >0时,25t >1,解得t >52,当b <0时,25t <1,解得他t <52.综上所述,t ≠52.【解析】(1)将a =1,b =1代入方程组求解.(2)用含a ,b 的代数式表示x ,y ,通过点P 在第二象限求出a 的取值范围进而求解.(3)由x +4=−23y 求出a 与b 的等量关系,再分类讨论b 的符号进而求解.本题考查二元一次方程组的与坐标系的综合应用,解题关键是熟练掌握解二元一次方程组及不等式的方法,通过分类讨论求解.。

2020-2021学年七年级(下)期末数学试卷(解析版)

2020-2021学年七年级(下)期末数学试卷(解析版)

2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。

2020-2021学年山东省济宁市曲阜师大附属实验学校七年级(下)期末数学试卷

2020-2021学年山东省济宁市曲阜师大附属实验学校七年级(下)期末数学试卷

2020-2021学年山东省济宁市曲阜师大附属实验学校七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是( )A. 这批电视机B. 这批电视机的使用寿命C. 抽取的100台电视机的使用寿命D. 100台2. √81的算术平方根为( ) A. 9 B. ±9 C. 3 D. ±33. 已知x =2,y =−3是二元一次方程5x +my +2=0的解,则m 的值为( )A. 4B. −4C. 83D. −834. 下列各数中,3.14159,−√83,0.131131113…(相邻两个3之间1的个数逐次加1个),−π,√25,−17,无理数的个数有( )A. 1个B. 2个C. 3个D. 4个5. 如图,能判定EB//AC 的条件是( )A. ∠A =∠ABEB. ∠A =∠EBDC. ∠C =∠ABCD. ∠C =∠ABE6. 若m <n ,则下列不等式中,正确的是( )A. m −4>n −4B. m 5>n5 C. −3m <−3n D. 2m +1<2n +1 7. 如图,AB//CD ,∠BAE =120°,∠DCE =30°,则∠AEC =( )度.A. 70B. 150C. 90D. 1008. 如图,周长为34cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A. 49cm 2B. 68cm 2C. 70cm 2D. 74cm 29. 直角坐标系中点P(a +2,a −2)不可能所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 解方程组{ax +by =6cx −4y =−2时,小强正确解得{x =2y =2,而小刚只看错了c ,解得{x =−2y =4,则当x =−1时,ax 2+bx +c 的值是( )A. 6B. 2C. 0D. −8 11. 若关于x 的不等式mx −n >0的解集是x <15,则关于x 的不等式(m +n)x <n −m 的解集是( )A. x <−23B. x >23C. x >−23D. x <23 12. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据 这个规律探索可得,第100个点的坐标( )A. ( 14,0 )B. ( 14,−1)C. ( 14,1 )D. ( 14,2 )二、填空题(本大题共4小题,共16.0分)13. 一个正数x 的平方根是2a −3与5−a ,则a =______.14. 若方程组{2x +y =4−m x +2y =2+3m的解满足x +y >0,则m 的取值范围是______. 15. 已知关于x 的不等式组{2x −a ≥05−2x >1只有四个整数解,则实数a 的取值范围是______. 16. 某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对______道题,成绩才能在60分以上.三、解答题(本大题共7小题,共68.0分)17. 计算:(1)√81+√−273+√(−23)2;(2)|√2−√6|+√(√2−1)2−√(√6−3)2;(3)9(3−y)2=4.18. 根据要求解答下列各题.(1)解方程组:{x 2−y+13=13x +2y =10; (2)解不等式组:{x−42+3≥x 1−3(x −1)<6−x,并把解集在数轴上表示出来.19. 如图,直线AD 与AB 、CD 相交于A 、D 两点,EC 、BF 与AB 、CD 相交于E 、C 、B 、F ,如果∠1=∠2,∠B =∠C.说明∠A =∠D .20.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包2010%打篮球60p%跳大绳n40%踢毽球4020%根据图表中提供的信息,解答下列问题:(1)m=______,n=______,p=______;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.21.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.22.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.23.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b−a+1)2=0.(1)a=______,b=______,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,∠BEC的值是否变化?若不变,求出其值;若变化,请说明理由.∠BCO答案和解析1.【答案】C【解析】解:本题考查的对象是了解一批电视机的使用寿命,故样本是所抽取的100台电视机的使用寿命.故选:C.本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.【答案】C【解析】【分析】本题考查的是算术平方根的定义,即一般地,如果一个非负数x的平方等于a,即x2=a,那么这个非负数x叫做a的算术平方根.直接根据算术平方根的定义进行解答即可.注意不要理解成求81的算术平方根.【解答】解:∵√81=9,32=9,∴√81的算术平方根为3.故选C.3.【答案】A【解析】解:把x=2,y=−3代入二元一次方程5x+my+2=0,得10−3m+2=0,解得m=4.故选:A.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.4.【答案】B【解析】解:由定义可知无理数有:0.131131113…,−π,共两个.故选:B.无限不循环小数为无理数,由此可得出无理数的个数.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.【答案】A【解析】解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB//AC,故本选项正确.B、∠A=∠EBD不能判断出EB//AC,故本选项错误;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB//AC,故本选项错误;D、∠C=∠ABE不能判断出EB//AC,故本选项错误;故选:A.在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.【答案】D【解析】解:已知m<n,A、m−4<n−4,故A选项错误;B、m5<n5,故B选项错误;C、−3m>−3n,故C选项错误;D、2m+1<2n+1,故D选项正确.故选:D.运用不等式的基本性质求解即可.本题主要考查了不等式的性质,属于基础题.7.【答案】C【解析】解:如图,延长AE 交CD 于点F ,∵AB//CD ,∴∠BAE +∠EFC =180°,又∵∠BAE =120°,∴∠EFC =180°−∠BAE =180°−120°=60°,又∵∠DCE =30°,∴∠AEC =∠DCE +∠EFC =30°+60°=90°.故选:C .延长AE 交CD 于点F ,根据两直线平行同旁内角互补可得∠BAE +∠EFC =180°,已知∠BAE 的度数,不难求得∠EFC 的度数,再根据三角形的外角的性质即可求得∠AEC 的度数.此题主要考查学生对平行线的性质及三角形的外角性质的综合运用,注意辅助线的添加方法.8.【答案】C【解析】解:设小长方形的长为ycm ,宽为xcm ,则{7x +4y =345x =2y, 解得{x =2y =5, 所以长方形ABCD 的面积为7×10=70cm 2.故选:C .根据题意可知,本题中的相等关系是“周长为34cm ”和“小长方形的5个宽等于2个长”,列方程组求解即可.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.9.【答案】B【解析】解:∵(a +2)−(a −2)=a +2−a +2=4,∴点P 的横坐标比纵坐标大,∵第二象限内点的横坐标是负数,纵坐标是正数,∴点P 不可能在第二象限.故选:B .确定出点P 的横坐标比纵坐标大,再根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).10.【答案】B【解析】解:由题意得,{2a +2b =6−2a +4b =6, 解得,{a =1b =2, 把{x =2y =2代入cx −4y =−2,得c =3, 当x =−1时,x 2+2x +3=2,故选:B .根据题意把{x =2y =2和{x =−2y =4代入ax +by =6组成方程组,解方程组求出a 、b 的值,把{x =2y =2代入cx −4y =−2求出c ,计算得到答案.本题考察的是二元一次方程组的解的定义和解法,正确理解题意组成新的方程组是解题的关键.11.【答案】C【解析】解:∵关于x 的不等式mx −n >0的解集是x <15,∴m <0,n m =15,解得m =5n ,∴n <0,∴解关于x的不等式(m+n)x<n−m得,x>n−mm+n,∴x>n−5n5n+n =−23,故选:C.先解关于x的不等式mx−n>0,得出解集,再根据不等式的解集是x<15,从而得出m与n的关系,选出答案即可.本题考查了不等式的解集以及不等式的性质,要熟练掌握不等式的性质3.12.【答案】D【解析】【分析】本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.观察图形可知,横坐标相等的点的个数与横坐标相同,根据求和公式求出第100个点的横坐标以及在这一横坐标中的所有点中的序数,再根据横坐标是奇数时从上向下排列,横坐标是偶数时从下向上排列,然后解答即可.【解答】解:由图可知,横坐标是1的点共有1个,横坐标是2的点共有2个,横坐标是3的点共有3个,横坐标是4的点共有4个,…,横坐标是n的点共有n个,1+2+3+⋯+n=n(n+1)2,当n=13时,13×(13+1)2=91,当n=14时,14×(14+1)2=105,所以,第100个点的横坐标是14,∵100−91=9,∴第100个点是横坐标为14的点中的第9个点,∵第142=7个点的纵坐标是0,∴第9个点的纵坐标是2,∴第100个点的坐标是(14,2).故选:D . 13.【答案】−2【解析】【分析】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.根据正数的两个平方根互为相反数列式计算即可得解.【解答】解:∵正数x 的平方根是2a −3与5−a ,∴2a −3+5−a =0,解得a =−2.故答案为−2.14.【答案】m >−3【解析】解:{2x +y =4−m①x +2y =2+3m②①+②得:3x +3y =6+2m ,x +y =6+2m 3,∵方程组{2x +y =4−m x +2y =2+3m的解满足x +y >0, ∴6+2m 3>0,解得:m >−3,故答案为:m >−3.两方程相加即可求出x +y 的值,根据题意得出关于m 的不等式,求出不等式的解集即可.本题考查了解二元一次方程组,解一元一次不等式的应用,能得出关于m 的不等式是解此题的关键.15.【答案】−6<a ≤−4【解析】解:{2x −a ≥05−2x >1解①得2x ≥a ,即x ≥a 2,解②得2x <4,即x <2,由上可得a 2≤x <2,∵不等式组{2x −a ≥05−2x >1只有四个整数解,即−2,−1,0,1; ∴−3<a 2≤−2,即−6<a ≤−4.此题可先根据一元一次不等式组解出x 的取值,再根据不等式组{2x −a ≥05−2x >1只有四个整数解,求出实数a 的取值范围.此题考查的是一元一次不等式的解法和一元一次方程的解,根据x 的取值范围,得出x 的取值范围,然后根据不等式组{2x −a ≥05−2x >1只有四个整数解即可解出a 的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答案】12【解析】解:设答对x 道.故6x −2(15−x)>60,解得:x >908,所以至少要答对12道题,成绩才能在60分以上.找到关键描述语,进而找到所求的量的不等关系.得到不等式6x −2(15−x)>60,求解即可.本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.17.【答案】解:(1)√81+√−273+√(−23)2=9+(−3)+23=6+23=623.(2)|√2−√6|+√(√2−1)2−√(√6−3)2=(√6−√2)+(√2−1)−(3−√6)=√6−√2+√2−1−3+√6=2√6−4.(3)∵9(3−y)2=4,∴(3−y)2=49,∴3−y =±23,解得:y =73或113.【解析】(1)首先计算开方、开立方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算开方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(3)根据平方根的含义和求法,求出3−y 的值是多少,进而求出y 的值是多少即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:(1)方程组整理,得:{3x −2y =8①3x +2y =10②, ①+②,得:6x =18,解得x =3,将x =3代入①,得:9−2y =8,解得y =0.5,∴方程组的解为{x =3y =0.5; (2)解不等式x−42+3≥x ,得:x ≤2,解不等式1−3(x −1)<6−x ,得:x >−1,则不等式组的解集为−1<x ≤2,将不等式组的解集表示在数轴上如下:【解析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:∵∠2=∠AGB,∠1=∠2,∴∠1=∠AGB.∴CE//BF,∴∠B=∠AEC.∵∠B=∠C,∴∠C=∠AEC.∴AB//CD,∴∠A=∠D.【解析】要证明∠A=∠D,只需证明AB//CD.根据已知的∠1=∠2和对顶角相等,可以得到BF//CE.再根据平行线的性质和∠B=∠C,就可得到∠C=∠AEC,从而完成证明.本题考查了平行线的判定和平行线的性质及对顶角相等.20.【答案】解:(1)m=20÷10%=200;n=200×40%=80,60÷200=30%,p=30,故答案为:200,80,30;(2)如图,(3)2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.【解析】本题考查了条形统计图、扇形统计图、概率公式,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.【答案】解:(1)如图,△A′B′C′即为所求.A′(0,4),B′(−1,1),C′(3,1);(2)以BC 为底,△ABC 的面积为12×4×3=6,△BCP 与△ABC 面积相等,且共用底边BC ,则△BCP 中BC 边上的高为3,如图所示,可知P(0,1)或(0,−5).【解析】本题考查的是三角形面积,点的坐标,作图−平移变换,熟知图形平移不变性的性质是解答此题的关键.(1)根据图形平移的性质画出△A′B′C′,并写出点A′、B′、C′的坐标即可;(2)求出△ABC 中BC 边上的高,进而可得出结论,注意分情况讨论.22.【答案】(1)解:设甲种书柜单价为x 元,乙种书柜的单价为y 元,由题意得:{3x +2y =10204x +3y =1440, 解之得:{x =180y =240, 答:甲种书柜单价为180元,乙种书柜的单价为240元.(2)解:设甲种书柜购买m 个,则乙种书柜购买(20−m)个;由题意得:{20−m ≥m 180m +240(20−m)≤4320, 解之得:8≤m ≤10,因为m 取整数,所以m 可以取的值为:8,9,10,即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【解析】本题主要考查二元一次方程组、一元一次不等式组的综合应用能力,根据题意准确抓住相等关系或不等关系是解题的根本和关键.(1)设甲种书柜单价为x 元,乙种书柜的单价为y 元,根据:若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元列出方程组求解即可;(2)设甲种书柜购买m 个,则乙种书柜购买(20−m)个.根据:购买的乙种书柜的数量≥甲种书柜数量且所需资金≤4320列出不等式组,解不等式组即可得不等式组的解集,从而确定方案.23.【答案】(1)−3;−4;6;(2)证明:如图2中,∵∠CPQ =∠CQP =∠OPB ,AC ⊥BC ,∴∠CBQ +∠CQP =90°,又∵∠ABQ +∠CPQ =90°,∴∠ABQ =∠CBQ ,∴BQ 平分∠CBA .=定值=2.(3)解:如图3中,结论:∠BEC∠BCO理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,−3),D(−4,−3),∴CD//AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴∠BEC=2.∠BCO【解析】(1)解:如图1中,∵|a+3|+(b−a+1)2=0,∴a=−3,b=4,∵点C(0,−3),D(−4,−3),∴CD=4,且CD//x轴,×4×3=6;∴△BCD的面积=12故答案为−3,−4,6.(2)见答案;(3)见答案.【分析】(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题;本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.。

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济宁市曲阜市2020-2021学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n7.在方程组中,如果是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D9.2021学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1二、填空题(每小题3分,共15分)11.﹣64的立方根是__________.12.若关于x的不等式的整数解共有4个,则m的取值范围是__________.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=__________°.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=__________,●=__________.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是__________(用含n的代数式表示)三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.17.解不等式组,并把解集在数轴上表示出来.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为2021米,210千米,22021,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.2021图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为__________.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.山东省济宁市曲阜市2020-2021学年七年级下学期期末数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.9的平方根为( )A.3 B.﹣3 C.±3 D.考点:平方根.专题:计算题.分析:根据平方根的定义求解即可,注意一个正数的平方根有两个.解答:解:9的平方根有:=±3.故选C.点评:此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.在平面直角坐标系中,点(1,﹣3)在( )A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民日平均用水量,采用全面调查方式D.了解北京市每天的流动人口数,采用抽样调查方式考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式所有灯管都报废,这样就失去了实际意义,故本选项错误;B、旅客上飞机前的安检,是精确度要求高的调查,适于全面调查,故本选项错误.C、了解北京市居民日平均用水量,采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项错误;D、了解北京市每天的流动人口数采用全面调查方式,所费人力、物力和时间较多,适合抽样调查,故本选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠ABE C.∠C=∠ABC D.∠A=∠EBD考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;故选:B.点评:本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)考点:坐标确定位置.分析:根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.解答:解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.点评:本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.6.若m>n,则下列不等式中成立的是( )A.m+a<n+b B.ma<nb C.ma2>na2D.a﹣m<a﹣n考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边加的数不同,错误;B、不等式两边乘的数不同,错误;C、当a=0时,错误;D、不等式两边都乘﹣1,不等号的方向改变,都加a,不等号的方向不变,正确;故选D.点评:不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.在方程组中,如果是它的一个解,那么a,b的值是( )A.a=4,b=0 B.a=,b=0 C.a=1,b=2 D.a,b不能确定考点:二元一次方程组的解.分析:将x,y的值代入原方程组,得到关于a,b的方程组,然后求解此方程组得到a,b的值.解答:解:将x,y的值代入原方程组,得关于a,b的方程组,解此方程组得a=4,b=0.故选A.点评:解此类方程组首先将已知的x,y值代入原方程组得到关于a,b的方程组,求解关于a,b的方程组即可得到a,b的值.8.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.9.2021学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:应用题.分析:设男生有x人,女生有y人,根据男女生人数为2021种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.关于x、y的二元一次方程组的解满足不等式x+y>0,则a的取值范围是( )A.a<﹣1 B.a<1 C.a>﹣1 D.a>1考点:解二元一次方程组;解一元一次不等式.分析:解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a 的取值范围.解答:解:方程组中两个方程相加得4x+4y=2+2a,即x+y=,又x+y>0,即>0,解一元一次不等式得a>﹣1,故选C.点评:本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.二、填空题(每小题3分,共15分)11.﹣64的立方根是﹣4.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.若关于x的不等式的整数解共有4个,则m的取值范围是6<m≤7.考点:一元一次不等式组的整数解;不等式的性质;解一元一次不等式;解一元一次不等式组.专题:计算题.分析:关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.解答:解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.点评:本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.13.如图,AB∥CD,AF交CD于E,∠CEF=140°,那么∠A=40°.考点:平行线的性质.分析:根据邻补角的知识,求出∠CEA的度数,然后根据平行线的性质,得出∠A=∠CEA,即可求解.解答:解:∵∠CEF=140°,∴∠CEA=180°﹣∠CEF=40°,∵AB∥CD,∴∠A=∠CEA=40°(两直线平行,内错角相等).故答案为:40.点评:本题考查了平行线的性质以及邻补角的知识,解答本题的关键是掌握平行线的性质:两直线平行,内错角相等.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★,这个数★=﹣2,●=8.考点:二元一次方程组的解.专题:计算题.分析:把x=5代入方程组第二个方程求出y的值,将x与y的值代入第一个方程左边即可得到结果.解答:解:把x=5代入2x﹣y=12中,得:y=﹣2,当x=5,y=﹣2时,2x+y=10﹣2=8,故答案为:﹣2;8.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n 的代数式表示)考点:算术平方根.专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.三、解答题(共55分)16.(1)计算:|﹣|+﹣.(2)解方程组:.考点:实数的运算;解二元一次方程组.分析:(1)本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)先将方程组整理为一般形式,再根据加减消元法解二元一次方程组即可求解.解答:解:(1)|﹣|+﹣=3﹣2﹣=.(2),方程组整理得,①×3﹣②得:4x=12,解得x=3,将x=3代入①得:y=3.故原方程组的解为.点评:本题考查实数的综合运算能力,是各地2021届中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.同时考查了加减消元法解二元一次方程组.17.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.解答:解:解不等式①得x<3,解不等式②得x≥,∴不等式组的解集为≤x<3.其解集在数轴上表示为:.点评:解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.18.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为2021米,210千米,22021,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?考点:条形统计图;扇形统计图;加权平均数.分析:(1)根据条形统计图和扇形图可知,将一次充电后行驶的里程数分为B等级的有30辆电动汽车,所占的百分比为30%,用30÷30%即可求出电动汽车的总量;分别计算出C、D 所占的百分比,即可得到A所占的百分比,即可求出A的电动汽车的辆数,即可补全统计图;(2)用总里程除以汽车总辆数,即可解答.解答:解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:202100×100%=2021A所占的百分比为:100%﹣40%﹣202130%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.19.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′的坐标;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,求直接写出点P的坐标;若不存在,说明理由.考点:作图-平移变换.分析:(1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出点A′、B′的坐标;(3)设P(0,y),再根据三角形的面积公式求出y的值即可.解答:解:(1)如图所示:(2)由图可知,A'(0,4),B'(﹣1,1);(3)存在.设P(0,y),则y=1或y=﹣5,故点P的坐标是(0,1)或(0,﹣5).点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.2021图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.考点:平行线的性质.分析:由AC丄AB,∠1=60°,易求得∠B的度数,又由直线a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.点评:此题考查了平行线的性质与垂直的定义.此题难度不大,注意掌握数形结合思想的应用.21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.阅读探索(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(3)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为.考点:解二元一次方程组.专题:阅读型.分析:(1)知识累计观察阅读材料的解题方法,理解换元法;(2)拓展提高设﹣1=x,+2=y,根据(1)中的结论确定出关于x与y方程组,求出解得到x与y的值,即可求出a与b的值;(3)能力运用设,根据已知方程组的解确定出m与n的值即可.解答:解:(1)知识累计解方程组解:设a﹣1=x,b+2=y,原方程组可变为解方程组得:即所以此种解方程组的方法叫换元法;(2)拓展提高设﹣1=x,+2=y,方程组变形得:,解得:,即,解得:;(3)能力运用设,可得,解得:,故答案为:点评:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.23.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.考点:不等式的解集;解二元一次方程组.分析:首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.解答:解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.点评:主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).。

相关文档
最新文档