图与网络分析64777
合集下载
第八章图与网络分析-PPT精选文档
v1 v3 v5 v2 v4 v6
图及 其分 类
X:{v1, v3, v5} Y:{v2, v4, v6}
定义5
以点v为端点的边的个数称为点v 的度 (次),记作 d (。 v) 图中d(v1)= 4,d(v6)= 4(环计两度)
顶点 的次
度为零的点称为弧立点,度为1的点称为悬挂 点。悬挂点的关联边称为悬挂边。度为奇数的 点称为奇点,度为偶数的点称为偶点。
定义7
图G=(V,E),若E′是E的子集,V′是V的子集,且E′ 中的边仅与V′中的顶点相关联,则称G′=(V′,E′)是G 的一个子图。特别是,若V′=V,则G′称为G的生成 子图(支撑子图)。
子图
v1 e1 e6
v2 e7
e2
e8 e9
v3 e3 v1
e1 e6
v2 e7
e8 v7 v5 (b)
定义8
无向图G=(V,E),若图G中某些点与边的交替序列 可以排成(vi0,ei1,vi1,ei2,…,vik-1,eik,vik)的形式,且 eit=(vit-1,vit)(t=1,…,k),则称这个点边序列为连接vi0 与vik的一条链,链长为k。 点边列中没有重复的点和重复边者为初等链。
对于有向图可以类似于无向图定义链和圈,初等 链、圈,此时不考虑边的方向。而当链(圈)上的 边方向相同时,称为道路(回路)。 对于无向图来说,道路与链、回路与圈意义相同。
v2 v4 v6
图及 其分 类
A = {(v1 , v3 ) , (v2 , v1) , (v2 , v3 ) , v1
( v2 , v5 ) , ( v3 , v5 ) , ( v4 , v5 ) ,
( v5 , v4 ) , ( v5 , v6 ) }
图及 其分 类
X:{v1, v3, v5} Y:{v2, v4, v6}
定义5
以点v为端点的边的个数称为点v 的度 (次),记作 d (。 v) 图中d(v1)= 4,d(v6)= 4(环计两度)
顶点 的次
度为零的点称为弧立点,度为1的点称为悬挂 点。悬挂点的关联边称为悬挂边。度为奇数的 点称为奇点,度为偶数的点称为偶点。
定义7
图G=(V,E),若E′是E的子集,V′是V的子集,且E′ 中的边仅与V′中的顶点相关联,则称G′=(V′,E′)是G 的一个子图。特别是,若V′=V,则G′称为G的生成 子图(支撑子图)。
子图
v1 e1 e6
v2 e7
e2
e8 e9
v3 e3 v1
e1 e6
v2 e7
e8 v7 v5 (b)
定义8
无向图G=(V,E),若图G中某些点与边的交替序列 可以排成(vi0,ei1,vi1,ei2,…,vik-1,eik,vik)的形式,且 eit=(vit-1,vit)(t=1,…,k),则称这个点边序列为连接vi0 与vik的一条链,链长为k。 点边列中没有重复的点和重复边者为初等链。
对于有向图可以类似于无向图定义链和圈,初等 链、圈,此时不考虑边的方向。而当链(圈)上的 边方向相同时,称为道路(回路)。 对于无向图来说,道路与链、回路与圈意义相同。
v2 v4 v6
图及 其分 类
A = {(v1 , v3 ) , (v2 , v1) , (v2 , v3 ) , v1
( v2 , v5 ) , ( v3 , v5 ) , ( v4 , v5 ) ,
( v5 , v4 ) , ( v5 , v6 ) }
新编第6章图与网络分析精选文档PPT课件
有向图
由点和弧组成的图称为有向图。
有向图是一个有序二元组(V,A),记为 D=(V,A),其中 V=(v1,v2,…….vp)是 p 个点 的集合,A={a1,a2,……aq}是 q 条弧的集合,并且 ai 是一个有序二元组,记为 aij=(vi,vj)≠ (vj,vi),vi,vj∈V,并称 aij 是以 vi 为始点,vj 为终点的弧, i, j 的顺序不能颠倒,图中弧的方 向用箭头标识。
上图中的{ v1,v2,v3 },{ v2,v4,v5},{ v1,v2,v4,v5}都是链。 闭链或圈:两个端点重合的链,称为圈。上图中的{ v1,v2,v3 , v1}就是圈。 简单链与初等链:若链μ中,若含的边数均不相同,则称之为简
单链;若链μ中,顶点 vi1,vi2,…,vik 都不相同,则称此链为初等链。 除非特别交代,以后我们讨论的均指初等链。
V=(v1,v2,v3,v4,v5) E={e1,e2,e3,e4,e5,e6,e7,e8}
e1
v2
e2
v1
e6
e4
e5
e3 v3
e7
2020/7/31
v4
e8
v5
4
无向图
点集 V 中元素的个数成为图 G 的点数,记为 p(G)=| V |。如上图中,p(G)=5。 边集 E 中元素的个数成为图 G 的边数,记为 q(G)=| E |。如上图中,q(G)=8。 边 e=[vi,vj]∈E,称 vi,vj 为 e 的端点,e 为 vi,vj 的关联边。上图中,v1,v2 为 e2 的端点,e2 为 v1,v2 的关联边。 若边 ei,ej 有一公共端点,则称 ei,ej 相邻。如上图中中,e7,e8 相邻。 若点 vi,vj 有边相连,即[vi,vj]∈E,则称 vi,vj 相邻。如上图中中,v3,v5 相 邻。
8图和网络分析-文档资料77页
4
7
5
6
5
2
3
4
6
7
4
8 8
min {c12,c16,c42,c47}=min {0+2,0+3,1+10,1+2}=min {2,3,11,3}=2 X={1,2,4}, p2=2
(vi ,vj)E (vi ,vj)E
称矩阵A为网络G的权矩阵。
设图G=(V,E)中顶点的个数为n,构造一个
矩阵 A(aij)nn ,其中:
aij 01
称矩阵A为网络G的邻接矩阵。
(vi ,vj)E (vi ,vj)E
v1 4
v2
例
36
72
v6 4
3
3
v3
5
2
v5
v4
权矩阵为:
(一)、 狄克斯屈拉(Dijkstra)算法 适用于wij≥0,给出了从vs到任意一个点vj的最短路。
算法步骤: 1.给始点vs以P标号 P(vs) 0,这表示从vs到 vs的最短距离 为0,其余节点均给T标号,P (v i) (i 2 ,3 , ,n )。 2.设节点 vi 为刚得到P标号的点,考虑点vj,其中
v2 2
3
v1
1
2
5 v3 4
v4
4
2
v6
2 v5
(5) P(v3) 4 (6) T ( v 5 ) m i n [ T ( v 5 ) , P ( v 3 ) l 3 5 ] m i n [ 5 , 4 4 ] 5 (7) P(v4)5 P(v5) 5 (8) T ( v 6 ) m T ( v 6 ) i ,P ( n v 4 ) l 4 [ ] 6 m ,5 i 4 n ] 9 [
第八章 图与网络分析
[解]设以vi(i=1,2,3,4,5)表示“第i年初购进一台新设备”这 种状态,以v6表示“第5年末”这种状态;以弧(vi, vj)表示 “第i年初购置的一台设备一直使用到第j年初”这一方案,以 wij表示这一方案所需购置费和维护费之和。
(21,V1) v2
32 63
(44,V1) v4 27
37 (78,V3)
例9:(图8-31)
步骤 v1 v2 v3 v4 v5 v6 v7 v8 最短 前向 路 结点
1
2 3
0*
∞
4*
∞
6 6*
∞
∞ 9 9 9*
∞
∞ 8 8*
∞
∞ ∞ ∞ 13 13 *
∞
∞ ∞ ∞ 14 14 14*
∞
∞ ∞ ∞ ∞ ∞ 17
0
4 6 8 9 13 14 15 v1 v1 v2 v2 v5 v5
w(T)=Σwij
(vi,vj)∈T
如果支撑树T*的权w(T*)是G的所有支撑树的权中最小者,则称T*是G的 最小生成树(最小支撑树,简称最小树) w(T*)=min w(T)
2)求最小树的方法: 方法一(避圈法) 开始选一条最小权的边,以后每一步中,总从未被 选取的边中选一条权最小的边,并使之与已选取的边不构成圈。 方法二(破圈法) 任取一个圈,从圈中去掉一条权最大的边。在余下 的图中,重复这个步骤,一直到一个不含圈的图为止,这时的图便是 最小树。 例 用破圈法求下图的最小树
2、中国邮路问题:给定一个连通图G,每边有非负权l(e),要求一 条回路过每边至少一次,且满足总权最小。
8.2 树(是最简单又十分重要的图)
例如:比赛中的相遇情况、组织结构图、家庭树
1、定义:一个无圈的连通图称为树。
第6章 图与网络分析――基础知识PPT课件
D
E
F
甲
√
√
√
乙
√
√
√
丙
√
√
丁
√
√
戊
√
√
√
己
√
√
√
将研究对象用点表示。对象与对象之间用边表示。依题意,找出不相邻的顺序。
B
C
ACBFED
A
D
36
F
E
类型2. 求最小部分树。避圈法和破圈法
基本定理:图中任一个点i,若j是与i相邻点 中距离最短的,则边[i,j]一定含在该图的 最小部分树内。
推论:把图的所有点分成集合V和它的补集两 个集合,则两集合之间连线的最短边一定 包含在最小部分树内。
A
7
2 2
S
5
B
5
D
5
T
1
1
4
3
7
C
E
4
39
[例2]如图6-2,SABCDET代表村镇,它们中间 连线表明各村镇间现有道路交通情况,连线旁 数字代表道路的长度。现要求沿图中道路架设 电线,使上述村镇全部通上电,应如何架设使 总的长度为最短。
A
7
2 2
S
5
B
5
D
5
T
1
1
4
3
7
C
E
4
40
[例2]如图6-2,SABCDET代表村镇,它们中间 连线表明各村镇间现有道路交通情况,连线旁 数字代表道路的长度。现要求沿图中道路架设 电线,使上述村镇全部通上电,应如何架设使 总的长度为最短。
点边交替序列,点边均不重 复。
点边交替序列,起点和终点 不重复。 点边交替序列,起点和终点 重复。
运筹学图与网络分析
第5章 图论与网络分析
网络分析
➢ 图的基本概念 ➢最小支撑树问题 ➢ 最短路径问题 ➢网络最大流问题
图论起源:哥尼斯堡七桥问题
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发;走过七 座桥;且每座桥只走过一次;最后回到出发点
结论:每个结点关联的边数均为偶数
§1 图的基本概念
1图
由点和边组成;记作G=V;E;其中 V=v1;v2;……;vn为结点的集 合;E=e1;e2;……;em 为边的集合; 点表示研究对象 边表示研究对象之间的特定关系
例 : G1为不连通图; G2为连通图
G1
G2
5 支撑子图
图G=V;E和G'=V ' ;E ';若V =V ' 且E ' E ;则 称G' 为
G的支撑子图;
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
G1
v2
v3
G2
例 : G2 是G1 的子图;
v2
e1 v1
e6 e7
e2
v3
e8 e9
两条以上的边都是权数最大的边;则任意去掉其 中一条: ③若所余下的图已不含圈;则计算结束;所余下的图 即为最小支撑树;否则;返问①;
例 求上例中的最小支撑树
v1
5
v2
7.5 4
5.5
3
v5
2
解:
v3 3.5 v4 v1
5
v2
75 4
55
3
v5
2
v3 3 5 v4
算法2避圈法:从某一点开始;把边按权从小到大 依次添入图中;若出现圈;则删去其中最大边;直至 填满n1条边为止n为结点数 ;
网络分析
➢ 图的基本概念 ➢最小支撑树问题 ➢ 最短路径问题 ➢网络最大流问题
图论起源:哥尼斯堡七桥问题
A
A
C
D
C
D
B
B
问题:一个散步者能否从任一块陆地出发;走过七 座桥;且每座桥只走过一次;最后回到出发点
结论:每个结点关联的边数均为偶数
§1 图的基本概念
1图
由点和边组成;记作G=V;E;其中 V=v1;v2;……;vn为结点的集 合;E=e1;e2;……;em 为边的集合; 点表示研究对象 边表示研究对象之间的特定关系
例 : G1为不连通图; G2为连通图
G1
G2
5 支撑子图
图G=V;E和G'=V ' ;E ';若V =V ' 且E ' E ;则 称G' 为
G的支撑子图;
例 :G2为G1的支撑子图
v5
v5
v1
v4 v1
v4
v2
v3
G1
v2
v3
G2
例 : G2 是G1 的子图;
v2
e1 v1
e6 e7
e2
v3
e8 e9
两条以上的边都是权数最大的边;则任意去掉其 中一条: ③若所余下的图已不含圈;则计算结束;所余下的图 即为最小支撑树;否则;返问①;
例 求上例中的最小支撑树
v1
5
v2
7.5 4
5.5
3
v5
2
解:
v3 3.5 v4 v1
5
v2
75 4
55
3
v5
2
v3 3 5 v4
算法2避圈法:从某一点开始;把边按权从小到大 依次添入图中;若出现圈;则删去其中最大边;直至 填满n1条边为止n为结点数 ;
图与网络分析
end;
例 1 中 1 到 7 点的最短路是 1-2-5-7
查伴随矩阵 E 的第一行
1234567
10020255 19
hw
小结
• 最短路有广泛的应用 (P176案例) • 最短路的多种形式:无向图,有向图无循环圈,有向
图,混合图,无负边权,有负边权,有负回路,k-最 短路等 • 当存在负权值边时,Floyd算法比Dijkstra算法效率高, 且程序极简单。但Dijkstra算法灵活 • 若图是前向的,则Dijkstra算法也可以求两点间最长路 • 一般情况下,两点间最长路是 NP-complete,但最短 路是 P算法 • 两点间k-最短路:分为边不相交的和边相交的 求边不相交的k-最短路非常容易:先求最短路,将该 最短路中的边从网路删去,再用Dijkstra算法可求次最 短路,以此类推
hw
6.1.4 链,圈,路径,回路,连通图
• 走过图中所有边且每条边仅走一次的闭行走称为欧拉 回路
定理 2:偶图一定存在欧拉回路(一笔画定理) 6.1.4 连通图,子图,成分
• 设有两个图 G1(V1, E1), G2(V2, E2), 若V2 V1, E2 E1, 则 G2 是 G1 的子图
• 无向图中,若任意两点间至少存在一条路径,则称为 连通图(connected graph),否则为非连通图( disconnected graph);非连通图中的每个连通子图称为成分 (component)
线表示实体间的关联
A
A D
C
C
D
B
B
2
hw
6.1 图与网络的基本概念
6.1.1图与网络 • 节点 (Vertex)
– 物理实体、事物、概念 – 一般用 vi 表示
《图与网络分析》课件
广度优先搜索
2
历图中的节点。
通过按逐层扩展的方式,搜索和遍历图 中的节点。
最短路径算法
1
Dijkstra算法
寻找两个节点之间最短路径的一种算法,适用于无负权重边的情况。
2
Floyd算法
寻找所有节点之间最短路径的一种算法,适用于有向图和无向图。
最小生成树算法
1
Prim算法
找出连接所有节点的最小成本树的算法。
Kruskal算法
2
找出连接所有节点的最小成本树的另一 种算法。
应用案例
1 社交网络分析
通过图与网络分析方法, 揭示社交网络中的关键人 物和社群结构。
2 物流网络优化
使用图与网络分析技术来 优化物流网络的路径和资 源分配。
3 路网分析
通过图与网络分析,提高 交通规划和城市布局的效 率。
网络分析的思路
顶点
网络中的数据节点或实体。
边
连接顶点的关系或连接。
权重
边的属性或度量,用于表示连接的强度或重要性。
图的分类与存储结构
有向图
边具有方向性,表ห้องสมุดไป่ตู้顶点之间 的单向关系。
无向图
边没有方向性,表示无序关系。
加权图
边具有权重,表示连接的强度 或重要性。
图搜索算法
1
深度优先搜索
通过探索尽可能深入的路径,搜索和遍
网络分析的思路是通过对网络结构和属性的分析,揭示出潜在的模式、关系和洞察力,帮助我们洞悉复杂系统 的运作。
《图与网络分析》PPT课 件
欢迎来到《图与网络分析》PPT课件!本课程将帮助您深入了解图网络分析的 概念和应用。准备好探索各种令人兴奋的网络分析方法和工具了吗?让我们 开始吧!
图与网络分析
图与网络分析
引言 第一节 图与网络的基本概念 第二节 树 第三节 最短路径问题 第四节 网络最大流问题 第五节 最小费用最大流问题
引言
图论(Graph Theory)是研究图的理论, 是运筹学中一重要 的分支. 有200多年历史, 大体可划分为三个阶段.
图论发展的三个阶段
第一阶段
第二阶段
第三阶段
从十八世纪中叶 到十九世纪中叶
e1
v1
e2
v2
v6
e5
e6
e3
v4
e8
e4
图-9
v3 e7 v5
定义4: 若图G=(V,E)的点集V可分为两个非空子集X, Y, 满 足: XY=V, XY=, 使得E中的每条边的两上顶点必有 一个端点属于X,而另一个端点Y,则称G为二部图(偶图)
v1
e1
v2
v1
U1
e4
e2
v2
v3
U2
v4
C
River
7
5
3
D
2
B 图-1
Euler在1736年发表了一篇题为“依据几何位置的解题 方法”论文,有效解决了Konigsber七桥难题,这是有记 载的第一篇图论论文,Euler也被公认为图论的创始人.
A
C
D
B
例2: Hamilton回路是19世纪英国数学家Hamilton提出
给出一个正12面体图形,共有20个顶点,分别表示全球20个主 要城市,要求从某个城市出发沿着棱线寻找一条经过每个城 市一次而且仅一次,最后回到原处的周游世界线路(并不要求 经过每条边).-环球旅行问题.
定义9 无向图G=(V, E), 连接 vi0与vik 的一条链是同一 个点时, 称为圈(circle). 若圈中没有重复的点与重复边者称为初等圈
引言 第一节 图与网络的基本概念 第二节 树 第三节 最短路径问题 第四节 网络最大流问题 第五节 最小费用最大流问题
引言
图论(Graph Theory)是研究图的理论, 是运筹学中一重要 的分支. 有200多年历史, 大体可划分为三个阶段.
图论发展的三个阶段
第一阶段
第二阶段
第三阶段
从十八世纪中叶 到十九世纪中叶
e1
v1
e2
v2
v6
e5
e6
e3
v4
e8
e4
图-9
v3 e7 v5
定义4: 若图G=(V,E)的点集V可分为两个非空子集X, Y, 满 足: XY=V, XY=, 使得E中的每条边的两上顶点必有 一个端点属于X,而另一个端点Y,则称G为二部图(偶图)
v1
e1
v2
v1
U1
e4
e2
v2
v3
U2
v4
C
River
7
5
3
D
2
B 图-1
Euler在1736年发表了一篇题为“依据几何位置的解题 方法”论文,有效解决了Konigsber七桥难题,这是有记 载的第一篇图论论文,Euler也被公认为图论的创始人.
A
C
D
B
例2: Hamilton回路是19世纪英国数学家Hamilton提出
给出一个正12面体图形,共有20个顶点,分别表示全球20个主 要城市,要求从某个城市出发沿着棱线寻找一条经过每个城 市一次而且仅一次,最后回到原处的周游世界线路(并不要求 经过每条边).-环球旅行问题.
定义9 无向图G=(V, E), 连接 vi0与vik 的一条链是同一 个点时, 称为圈(circle). 若圈中没有重复的点与重复边者称为初等圈
运筹学课件-第六章图与网络分析
运筹学课件-第六章 图与网络分析
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
contents
目录
•的算法 • 图的应用
01
CATALOGUE
图的基本概念
图的定义
总结词
图是由顶点(或节点)和边(或弧) 组成的数据结构。
详细描述
图是由顶点(或节点)和边(或弧) 组成的数据结构,其中顶点表示对象 ,边表示对象之间的关系。根据边的 方向,图可以分为有向图和无向图。
04
CATALOGUE
图的算法
深度优先搜索
要点一
总结词
深度优先搜索是一种用于遍历或搜索树或图的算法。
要点二
详细描述
该算法通过沿着树的深度遍历树的节点,尽可能深地搜索 树的分支。当节点v的所在边都己被探寻过,搜索将回溯到 发现节点v的那条边的起始节点。这一过程一直进行到已发 现从源节点可达的所有节点为止。如果还存在未被发现的 节点,则选择其中一个作为源节点并重复以上过程,整个 进程反复进行直到所有节点都被访问为止。
物流网络设计的应用
在物流规划、供应链管理、运输优化等领域有广泛应用,例如通过物 流网络设计优化货物运输路径、提高仓储管理效率等。
生物信息学中的图分析
生物信息学中的图分析
利用图论的方法对生物信息进 行建模和分析,以揭示生物系 统的结构和功能。
生物信息学中的节点
代表生物分子、基因、蛋白质 等。
生物信息学中的边
Dijkstra算法
总结词:Dijkstra算法是一种用于在有向图中查找单源 最短路径的算法。
详细描述:Dijkstra算法的基本思想是从源节点开始, 逐步向外扩展,每次找到离源节点最近的节点,并更新 最短路径。该算法使用一个优先级队列来保存待访问的 节点,并将源节点加入队列中。然后,从队列中取出具 有最小优先级的节点进行访问,并将其相邻节点加入队 列中。这一过程一直进行,直到队列为空,即所有可到 达的节点都已被访问。Dijkstra算法的时间复杂度为 O((V+E)logV),其中V是节点的数量,E是边的数量。
第6章 图与网络分析
X={1,2,4}, P2=2
24
X={1,2,4}
P1=0
P2=2
2
6
1
2
3
1 P4=1 10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
P6=3
8 8
min {c16,c23,c25,c47}=min {0+3,2+6,2+5,1+2}=min {3,8,7,3}=3 X={1,2,4,6}, P6=3
25
X={1,2,4,6}
3
2
顶点的次
以顶点v为端点的边数称为点v的次。记作deg(v).
次为奇数的点称为奇点 次为偶数的点称为偶点
deg(2)=4 deg(1)=3 2
1
4
顶点次数的总和等于边数的二倍。
次为奇数的点必为偶数个。
3
权与网络
与点或边有关的数量指标称为“权”。
权可以代表种种意义,如距离、费用、容量等。
点或边带有某种数量指标的图称为网络(赋权图)
X={1,4}, P4=1
起点经i点到j点的最短路径长度
23
cij Pi lij
X={1,4}
P1=0
P2=2
2
6
1
2
3
1 P4=1 10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
min {c12,c16,c42,c47}=min {0+2,0+3,1+10,1+2}=min {2,3,11,3}=2
24
X={1,2,4}
P1=0
P2=2
2
6
1
2
3
1 P4=1 10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
P6=3
8 8
min {c16,c23,c25,c47}=min {0+3,2+6,2+5,1+2}=min {3,8,7,3}=3 X={1,2,4,6}, P6=3
25
X={1,2,4,6}
3
2
顶点的次
以顶点v为端点的边数称为点v的次。记作deg(v).
次为奇数的点称为奇点 次为偶数的点称为偶点
deg(2)=4 deg(1)=3 2
1
4
顶点次数的总和等于边数的二倍。
次为奇数的点必为偶数个。
3
权与网络
与点或边有关的数量指标称为“权”。
权可以代表种种意义,如距离、费用、容量等。
点或边带有某种数量指标的图称为网络(赋权图)
X={1,4}, P4=1
起点经i点到j点的最短路径长度
23
cij Pi lij
X={1,4}
P1=0
P2=2
2
6
1
2
3
1 P4=1 10
5
9
3
4
7
5
6
5
2
3
4
6
7
4
8 8
min {c12,c16,c42,c47}=min {0+2,0+3,1+10,1+2}=min {2,3,11,3}=2
第6章 图与网络分析――基础知识PPT课件
B
C
A
D
23
E
A
B
C
D
E
F
甲
√
√
√
乙
√
√
√
丙
√
√
丁
√
√
戊
√
√
√
己
√
√
√
将研究对象用点表示。对象与对象之间用边表示。
B
C
A
D
24
F
E
A
B
C
D
E
F
甲
√
√
√
乙
√
√
√
丙
√
√
丁
√
√
戊
√
√
√
己
√
√
√
将研究对象用点表示。对象与对象之间用边表示。
B
C
A
D
25
F
E
A
B
C
D
E
F
甲
√
√
√
乙
√
√
√
√
戊
√
√
√
树中任意两点之间有一条且仅有一条 惟一通路。
如果G1是G2的部分图,又是树图,
则称G1是G2的部分树(支撑树)。
树图的各条边称为树枝。一般G2有
多个树图,其中树枝总长度最小的
部分树称为最小部分树。
11
基本概念
有向图
(以前研究的都是无向图)
容量网络
发点(源点s) 中间点 收点(汇点t) 网络最大流
流
基础知识部分
第6章 图与网络分析
1.问题的提出 2.问题的模型 3.问题的求解
数学建模中的图与网络分析
生物信息学中的网络分析
生物信息学中的网络分析
生物分子相互作用网络
利用图与网络理论,对生物分子相互作用 、基因调控、蛋白质互作等生物信息进行 建模和分析。
研究生物分子之间的相互作用关系,揭示 生命活动的内在机制。
基因调控网络
蛋白质互作网络
研究基因转录调控的相互作用关系,揭示 基因表达的调控机制。
研究蛋白质之间的相互作用关系,揭示蛋 白质的功能和结构。
析等方面发挥重要作用。
THANKS
感谢观看
动态图
总结词
动态图是随着时间变化的图结构,可以表示事物随时间变化的关系。
详细描述
动态图是图论中的一个重要分支,它研究的是图结构随时间的变化。在动态图中,节点和边的出现、消失以及变 化都可以被建模。这种模型在处理时间序列数据、预测未来趋势和动态系统分析等方面具有广泛应用。
加权图与网络
总结词
加权图与网络中,边具有权重,可以表示节点之间的连接强度或关系。
性质
图具有方向性(有向图和无向图)和 权重(加权图和无权图)等性质。
图的分类
有向图
边具有方向,表示对象之间的单向关 系。
无向图
边没有方向,表示对象之间的双向关 系。
加权图
边具有权重,表示对象之间的关系强 度。
无权图
边没有权重,表示对象之间的关系存 在与否。
图的表示方法
邻接矩阵
用矩阵表示图中顶点之间的关系,矩阵元素 表示顶点之间的连接关系。
规则图
根据预设规则生成节点和边,如网格、环状、星 状等。
社区结构图
根据节点间的相似性或关联性生成图,形成具有 社区结构的网络。
网络的形成
无向网络
节点间连接无方向,表示相互关系。