大学物理学答案

合集下载

大学物理试题及答案 13篇

大学物理试题及答案 13篇

大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。

答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。

答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。

答案:两倍9. 加速度是速度的_____,速度是位移的_____。

答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。

答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。

12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。

求该飞船的向心加速度。

解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。

《大学物理》试题及答案

《大学物理》试题及答案

《 大学物理学 》课程试题一、选择题(单选题,每小题3分,共30分)1、质点的运动方程为:)()28()63(22SI j t t i t t r,则t=0时,质点的速度大小是[ ]。

(A )5m.s -1 (B )10 m.s -1 (C) 15 m.s -1 (D) 20m.s -1 2、一质点在半径为0.1m 的圆周上运动,其角位置为3t 42 (SI )。

当切向加速度和法向加速度大小相等时,θ为[ ]。

(A) 2rad (B) 2/3rad (C) 8rad (D) 8/3rad 3、有些矢量是对于一定点(或轴)而确定的,有些矢量是与定点(或轴)的选择无关的。

在下述物理量中,与参考点(或轴)的选择无关的是[ ]。

(A )力矩 (B )动量 (C )角动量 (D )转动惯量 4、半径为R 的均匀带电球面的静电场中,各点的电势V 与距球心的距离r 的关系曲线为[ ]。

5、在真空中,有两块无限大均匀带电的平行板,电荷面密度分别为+σ和-σ的,则两板之间场强的大小为[ ]。

(A )0E (B) 02 E (C) 02E (D )E=06、关于静电场的高斯定理有下面几种说法,其中正确的是[ ]。

(A )如果高斯面上电场强度处处为零,则高斯面内必无电荷;(B )如果高斯面内有净电荷,则穿过高斯面的电场强度通量必不为零; (C )高斯面上各点的电场强度仅由面内的电荷产生;(D )如果穿过高斯面的电通量为零,则高斯面上电场强度处处为零。

7、静电场的环路定理说明静电场的性质是[ ]。

(A )电场线不是闭合曲线; (B )电场力不是保守力;(C )静电场是有源场; (D )静电场是保守场。

8、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。

(A) B r 22 (B) B r 2 (C) 0 (D) 无法确定9、关于真空中电流元I 1dl 1与电流元I 2dl 2之间的相互作用,正确的是[ ]。

(完整版)大学物理学上下册习题与答案

(完整版)大学物理学上下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。

大学物理学(第五版)上册课后习题选择答案_马文蔚

大学物理学(第五版)上册课后习题选择答案_马文蔚

习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。

(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( C )(A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。

对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。

大学物理教材习题答案

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

《大学物理学》第二版上册习题解答

《大学物理学》第二版上册习题解答

大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆有区别吗?0dv dt = 和0d v dt= 各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

大学物理考试题及答案

大学物理考试题及答案

大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。

A. 力是物体间的相互作用,具有大小和方向。

B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。

C. 力的作用效果与力的作用点有关。

D. 以上选项均正确。

答案:D2. 物体做匀速直线运动时,下列说法正确的是()。

A. 物体的速度不变。

B. 物体的加速度为零。

C. 物体所受合力为零。

D. 以上选项均正确。

答案:D3. 关于功的定义,下列说法正确的是()。

A. 功是力和力的方向的乘积。

B. 功是力和力的方向的点积。

C. 功等于力的大小乘以物体在力的方向上的位移。

D. 功是力对物体所做的功。

答案:C4. 根据牛顿第二定律,下列说法正确的是()。

A. 物体的加速度与作用力成正比。

B. 物体的加速度与物体的质量成反比。

C. 加速度的方向与作用力的方向相同。

D. 以上选项均正确。

答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。

A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。

答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。

答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。

答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。

答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。

答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。

解:首先分解力F为水平分量和垂直分量。

大学物理学(第四版)课后习题答案(下册)

大学物理学(第四版)课后习题答案(下册)

大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。

[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。

[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。

大学物理学第二版答案

大学物理学第二版答案

大学物理学第二版答案【篇一:大学物理上第二版网上考试答案第三四期】绳子各一端,他们由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是:(正确答案:c 提交答案:c 判题:√ 得分:10分)a、甲先到达b、乙先到达c、同时到达d、无法确定2、假设某卫星环绕地球中心作椭圆轨道运动,则在运动过程中,卫星对地球中心的(正确答案:b 提交答案:b 判题:√ 得分:10分)a、角动量守恒,动能守恒b、角动量守恒,机械能守恒c、角动量不守恒,机械能守恒d、角动量不守恒,动能守恒3、几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(正确答案:d 提交答案:d 判题:√ 得分:10分)a、必然不会转动b、转速必然不变c、转速必然改变d、转速可能不变,也可能改变4、一水平放置的直杆,质量为m,长度为l,绕其一端作匀速率转动(转动惯量度为v,则杆的动能为(正确答案:c 提交答案:c 判题:√ 得分:10分)a、b、c、d、),外端点线速5、一质点作匀速率圆周运动时(正确答案:c 提交答案:c 判题:√ 得分:10分)a、它的动量不变,对圆心的角动量也不变b、它的动量不变,对圆心的角动量不断改变c、它的动量不断改变,对圆心的角动量不变d、它的动量不断改变,对圆心的角动量也不断改变6、一水平圆盘可绕固定铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统(正确答案:c 提交答案:d 判题:╳得分:0分)a、动量守恒b、机械能守恒c、对中心轴的角动量守恒d、动量、机械能和角动量都守恒7、多个力作用在有固定转轴的刚体上,这些力的矢量和为零,则刚体绕该轴转动的角加速度将(正确答案:d 提交答案:d 判题:√ 得分:10分)a、保持不变的恒量b、为0c、不为0的变量d、无法确定8、有两个半径相同,质量相等的细圆环a和b,a环的质量分布均匀,b环的质量分布不均匀,它们对通过环心与环面垂直的轴的转动惯量分别为、,则()(正确答案:c 提交答案:d 判题:╳得分:0分)a、a环的转动惯量较大b、b环的转动惯量较大c、一样大d、不能确定9、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为,然后她将两臂收回,使转动惯量减少为。

大学物理学第一章习题答案

大学物理学第一章习题答案

习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。

[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。

[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。

如人相对于岸静止,则、与的关系就是。

[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。

(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又就是位移对时间的两阶导数。

于就是可得(3)为匀变速直线运动。

其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。

因加速度为正所以就是加速的。

大学物理答案完整版

大学物理答案完整版

作业1 (静电场一)1.关于电场强度定义式,下列说法中哪个是正确的?[ ] A .场强E 的大小与试探电荷0q 的大小成反比。

B .对场中某点,试探电荷受力F 与0q 的比值不因0q 而变。

C .试探电荷受力F 的方向就是场强E 的方向。

D .若场中某点不放试探电荷0q ,则0F =,从而0E =。

答案: 【B 】[解]定义。

场强的大小只与产生电场的电荷以及场点有关,与试验电荷无关,A 错;如果试验电荷是负电荷,则试验电荷受的库仑力的方向与电场强度方向相反,C 错;电荷产生的电场强度是一种客观存在的物质,不因试验电荷的有无而改变,D 错;试验电荷所受的库仑力与试验电荷的比值就是电场强度,与试验电荷无关,B 正确。

2.一个质子,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示,已知质点运动的速率是递增的,下面关于C 点场强方向的四个图示哪个正确?[ ]答案: 【D 】[解]a m E q=,质子带正电且沿曲线作加速运动,有向心加速度和切线加速度。

存在向心加速度,即有向心力,指向运动曲线弯屈的方向,因此质子受到的库仑力有指向曲线弯屈方向的分量,而库仑力与电场强度方向平行(相同或相反),因此A 和B 错;质子沿曲线ACB 运动,而且是加速运动,所以质子受到的库仑力还有一个沿ACB 方向的分量(在C 点是沿右上方),而质子带正电荷,库仑力与电场强度方向相同,所以,C 错,D 正确。

3.带电量均为q +的两个点电荷分别位于X 轴上的a +和a -位置,如图所示,则Y 轴上各点电场强度的表示式为E = ,场强最大值的位置在y = 。

答案:j y a qyE 23220)(2+=πε,2/a y ±= [解]21E E E += )(422021y a q E E +==πε关于y 轴对称:θcos 2,01E E E y x ==j y a qyj E E y 23220)(2+==∴πε沿y 轴正向的场强最大处0=dydEy y a y y a dy dE 2)(23)(25222322⨯+-+∝-- 2/a y = 2/a y ±=处电场最强。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

大学物理学(第三版上) 课后习题5答案详解

大学物理学(第三版上)  课后习题5答案详解

习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A)kA 2 (B) kA 2/2 (C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A ± (C) 23A ±(D) 22A± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。

若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。

[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。

振子在位移为零,速度为-ωA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。

振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力为-KA 的状态,则对应曲线上的____________点。

题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。

(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。

(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。

[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。

大学物理学(第三版)第二章课后答案

大学物理学(第三版)第二章课后答案

习题22.1选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。

(B)它的动量不变,对圆心的角动量不断改变。

(C)它的动量不断改变,对圆心的角动量不变。

(D)它的动量不断改变,对圆心的角动量也不断改变。

[答案:C](2) 质点系的内力可以改变(A)系统的总质量。

(B)系统的总动量。

(C)系统的总动能。

(D)系统的总角动量。

[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

[答案:C]2.2填空题(1) 某质点在力(SI)的作用下沿x轴作直线运动。

在从x=0移动到x=10m的过程中,力所做功为。

[答案:290J](2) 质量为m的物体在水平面上作直线运动,当速度为v时仅在摩擦力作用下开始作匀减速运动,经过距离s后速度减为零。

则物体加速度的大小为,物体与水平面间的摩擦系数为。

[答案:](3) 在光滑的水平面内有两个物体A和B,已知m A=2m B。

(a)物体A以一定的动能E k与静止的物体B发生完全弹性碰撞,则碰撞后两物体的总动能为;(b)物体A以一定的动能E k与静止的物体B发生完全非弹性碰撞,则碰撞后两物体的总动能为。

[答案:]2.3 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动;(2)质点作匀减速直线运动;(3)质点作匀速圆周运动;(4)质点作匀加速圆周运动。

解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反;(3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。

大学物理课后习题答案

大学物理课后习题答案

大学物理课后习题答案(共15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1—1 一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。

(1)以时间t 为变量,写出质点位置矢量的表示式; (2)计算第1秒内质点的位移;(3)计算0t = s 时刻到4t = s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算4t = s 时质点的速度; (5)计算0t = s 到4t = s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。

(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i j i +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i tr V ∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1—2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和加速度。

解:23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x tt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m xP .31 1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一物体。

大学物理学课后习题参考答案

大学物理学课后习题参考答案

习题1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dtr d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) tRπ2,0(C) 0,0 (D)0,2tRπ [答案:B]填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m ·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

下面几个质点运动学方程,哪个是匀变速直线运动(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度和加速度,并说明该时刻运动是加速的还是减速的。

大学物理学第四版答案

大学物理学第四版答案

大学物理学第四版答案【篇一:大学物理(第四版)课后习题及答案机械振动】13-1分析弹簧振子的振动是简谐运动。

振幅a、初相?、角频率?是简谐运动方程x?acos??t???的三个特征量。

求运动方程就要设法确定这三个物理量。

题中除a、?已知外,?可通过关系式??2?确定。

振子运动的速度t和加速度的计算仍与质点运动学中的计算方法相同。

解因??2?,则运动方程 t?2?t?x?acos??t????acos?t??? ?t?根据题中给出的数据得x?(2.0?10?2m)cos[(2?s?1)t?0.75?]振子的速度和加速度分别为v?dx/dt??(4??10?2m?s?1)sin[(2?s?1)t?0.75?]a?d2x/dt2??(8?2?10?2m?s?1)cos[(2?s?1)t?0.75?x-t、v-t及a-t图如图13-l所示???13-2 若简谐运动方程为x?(0.01m)cos?(20?s?1)t??,求:(1)振幅、频率、角频率、周期和4??初相;(2)t=2s 时的位移、速度和加速度。

13-2分析可采用比较法求解。

将已知的简谐运动方程与简谐运动方程的一般形式x?acos??t???作比较,即可求得各特征量。

运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。

解(l)将x?(0.10m)cos[(20?s?1)t?0.25?]与x?acos??t???比较后可得:振幅a= 0.10 m,角频率??20?s?1,初相??0.25?,则周期 t?2?/??0.1s,频率??1/t?10hz。

(2)t= 2s时的位移、速度、加速度分别为x?(0.10m)cos(40??0.25?)?7.07?10?2mv?dx/dt??(2?m?s?1)sin(40??0.25?)a?d2x/dt2??(40?2m?s?2)cos(40??0.25?)若有一质量为m的质点在此隧道内做无摩擦运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业1-1填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s时,质点的速度v= 。

[答案: 23m ·s -1 ]1-2选择题(1) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s(C)等于2m/s (D)不能确定。

[答案:D](2) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) t R π2,0(C) 0,0 (D) 0,2t R π[答案:B] (3)一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx +[答案:D]1-4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又是位移对时间的两阶导数。

于是可得(3)为匀变速直线运动。

其速度和加速度表达式分别为22484dx v t dtd x a dt==-+==- t=3s 时的速度和加速度分别为v =-4m/s ,a =-4m/s 2。

因加速度为正所以是加速的。

1-7 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r )4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有 j i r 5.081-= m2114r i j =+m213 4.5r r r i j ∆=-=+m(3)∵ 0454,1716r i j r i j =-=+ ∴ 104s m 534201204-⋅+=+=--=∆∆=j i j i r r t r v (4) 1s m )3(3d d -⋅++==j t i t r v 则 j i v 734+= 1s m -⋅(5)∵ j i v j i v 73,3340+=+= 24041m s 44v v v j a j t --∆====⋅∆(6) 2s m 1d d -⋅==j tv a这说明该点只有y 方向的加速度,且为恒量。

1-15 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值.解: ∵ x v v t x x v t v a d d d d d d d d ===分离变量:2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-17 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,式中θ以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解: 2d d 9,18d d t t t t θωωα====(1)s 2=t 时, 2118236m s a R τα-==⨯⨯=⋅2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ 即 2R R ωα=亦即 t t 18)9(22= 则解得 923=t于是角位移为 ()322(0)2323rad 93t t θθ-=+-=⨯= 2-1填空题 (1) 某质点在力i x F )54(+=(SI )的作用下沿x 轴作直线运动。

在从x=0移动到x=10m 的过程中,力F 所做功为 。

[答案:290J ](2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。

则物体加速度的大小为,物体与水平面间的摩擦系数为。

[答案:22;22v vs gs](3) 在光滑的水平面内有两个物体A和B,已知m A=2m B。

(a)物体A以一定的动能E k 与静止的物体B发生完全弹性碰撞,则碰撞后两物体的总动能为;(b)物体A以一定的动能E k与静止的物体B发生完全非弹性碰撞,则碰撞后两物体的总动能为。

[答案:2;3k kE E]2-2选择题(1) 质点系的内力可以改变(A)系统的总质量 (B)系统的总动量。

(C)系统的总动能。

(D)系统的总角动量。

[答案:C](2) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。

②质点运动经一闭合路径,保守力对质点作的功为零。

③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

在上述说法中:(A)①、②是正确的。

(B)②、③是正确的。

(C)只有②是正确的。

(D)只有③是正确的。

[答案:C]2-8 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-8.题2-8图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α 2-9 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的(1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a yy (1)21021035'22m s 8477'2m s 168x x x y y y v v a dt v v a dt --=+=-+⨯=-⋅-=+=⨯=-⋅⎰⎰ 于是质点在s 2时的速度1s m 8745-⋅--=j i v(2)2211()221317(224)()428216137m 48x x y r v t a t i a t j i j i j =++-=-⨯+⨯⨯+⨯=-- 2-11一质量为m 的质点以与地的仰角θ=30°的初速0v 从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-11图题2-11图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p -=∆ 由矢量图知,动量增量大小为0v m ,方向竖直向下.2-12 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s 后,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p -=∆方向竖直向上,大小 mg mv mv p =--=∆)(12碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-17 设N 67j i F -=合.(1) 当一质点从原点运动到m 1643k j i r ++-=时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F 为恒力, ∴ )1643()67(k j i j i r F A ++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-22 如题2.22图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.题2.22图解: 取物体、弹簧、地球为研究对象,物体压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

则由功能原理,有22011sin 3722r f s kx mv mgs ⎛⎫-=-+︒ ⎪⎝⎭ 2021sin 37212r mv mgs f s k x +︒-= 式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得-11450N m k =⋅再次运用功能原理,求木块弹回的高度h '2o2137sin kx s mg s f r -'='- 代入有关数据,得 1.45m s '=,则木块弹回高度o sin 370.87m h s ''==2-23 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2.23图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.题2.23图解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR += 又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+3-1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J + (B) 02)(ωR m J J + (C) 02ωmR J (D) 0ω[答案: (A)](2) 如题3-1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为(A)13rad/s (B)17rad/s(C)10rad/s (D)18rad/s(a)(b)题3-1(2)图[答案: (A)](3)如3-1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度 在距孔为R的圆周上转动,今将绳从小孔缓慢往下拉,则物体3-1(3)图(A)动能不变,动量改变。

相关文档
最新文档