概率论与数理统计(第二版)徐全智课后习题答案第一章

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

《概率论与数理统计》第一章作业解答

《概率论与数理统计》第一章作业解答

=
C52 · 63 75
=
0.1285
P (B)
=
C75 · 5! 75
=
0.1499
6、有一个随机数发生器,每一次等可能地产生 0,1,2,3,... ,9 十个数字,由这些数字随
机编成的 n 位数码(各数字允许重复),从全部 n 位数码中任意选取一个,其最大数字不超过 k
(k ≤ 9)的概率.
解:基本事件的总数 10n,全部 n 位数码中任意选取一个,其最大数字不超过 k 的方法有:kn,
P (A ∩ B) = P (A) + P (B) − P (A ∪ B) = 0.92 + 0.93 − 0.988 = 0.862 (2)两个系统中仅有一个有效的概率:
P (AB ∪ AB) = (P (A) − P (AB)) + (P (B) − P (AB)) = 0.92 − 0.862 + 0.93 − 0.862 = 0.126
because therefore
0 ≤ P (A2) − P (A1 ∪ A2) ≤ 1
P (A) ≥ P (A1A2) = P (A1) + P (A2) − P (A1 ∪ A2) ≥ P (A1) + P (A2) − 1
17、掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正 面的概率是多少? 解:设 A={第五次出现正面},B={第六次停止},则
P (A) = (10 − 4 + 1)P44P66 = 1
10!
30
P (B) = (10 − 4 + 1)P66 = 1
10!
720
5、一辆公共汽车出发前载有 5 名乘客,每一位乘客独立地在七个站中的任一个站离开,试求

概率论与数理统计习题答案1-19章

概率论与数理统计习题答案1-19章

1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。

设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P 设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P 故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则(1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃= 75.04341313131==-++=3 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==A PB P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=4 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++=于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P又设B 表示“电路发生间断”,则321A A A B +=于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+= 328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+ 0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q -=1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP相对误差为.5168877.0168031355.0168877.0000≈-=δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C ------=16308.0≈六、设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=6 随机变量的分布函数·连续随机变量的概率密度一、函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-).解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x 因为)0( 0)1(2)('22<>+-=x x xx F ,所以)(x F 在(0,∞-)上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以0sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx 时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度. (3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是,⎪⎩>3,1x四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A ==即)( ,arctan 121)(+∞<<-∞+=x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π. 五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Aex f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx ,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx.7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,1)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率.解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰ee dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上 的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥.(2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=. 解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X XY -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yX yY e F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即 )( )1(2)(2+∞<<-∞+=y e e y f y yY π.8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan(),(y C x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度.解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ 2arctan 121xπ+=yx y Y y dy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan 1)9(3),()(2ππ 3arctan 121yπ+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ )4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dx x y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有16132==⎰⎰∞+∞+--A dy e dx e A y x ,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy⎩⎨⎧>>--=--其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰00020006),()(2032x x ex x dy e e dy y x f x f x y x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰0030006),()(3032y y e x x dx e e dx y x f y f y y x Y(4)⎰⎰⎰⎰---==∈x y xR dy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥.解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx e dy e dx dxdy y x f X Y P x xy xy xy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥1021022102)(21),()(7869.0)1(2221122≈-=-=--e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jj n Y in i i n X ====--证明它们的和Y X Z +=也服从二项分布.证明: 设j i k +=, 则ik n i k i k n ki i n i i n k i Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()( ∑=-+=ki kn n k i n in q p C C2121)( 由knm ki ik n k m C C C +=-=∑, 有kn n ki in i n C C C21210+==∑. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z +==-++ 由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,; 2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ . 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0, 2 1,10 ,210,10,),(其它当当y x y y x y y x fY X Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z ∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z z z z z F Z 从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、电子仪器由六个相互独立的部件ij L (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ij X 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i个并联组才停止工作,所以有)3,2,1(),max(21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ 设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ 故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为X1 2 3 …… n ……p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以ξ没有数学期望.四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D .解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdx x x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00=⨯+⨯=EY 72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf . 弦OB 的长为 ]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRRd R4sin 4cos 4202===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0, 0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元, 调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<104110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni i X n X 11的数学期望与方差.解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量n X X X ,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni i n i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 =i ). 则i X 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i ,1,0 于是i X 的概率分布为设∑==ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-= 即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++1112022222A dr rrd A dxdy y xAπθπ解得, π1=A .(2) ()011),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知 0)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dx y xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰22022220223]11)1ln([1)1(211rr dr r rr r dr rr d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxydy dxdy y x xyf π.二、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么? 解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-1210322),(dx x dy xdx dxdy y x xf EX x x0),(10===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(010==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有 ⎰⎰+∞∞--===x dy dy y x f x f xxX 2),()(; 当)1,0(∉x 时, 有0)(=x f X .即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f 同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y因为 ),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X σ的概率.解:91)3()3(2=≤>-ξξξξξD D D E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==n p q D ξ 于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理)因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ. 查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=--二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯=故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y ≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y . 当0>y 时,有dx ey X P y F yx Y ⎰∞---=≤=ln 2)(221)ln ()(σμσπ.此时亦有222)(ln 21)(σμσπ--='y Y eyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有(1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++=212222212221μσμσσσ++=.14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.解:已知0==y x μμ,416==x σ,525==y σ,53),cov(),(===y x Y X Y X r σσ.从而2516)53(1122=-=-r ,5412=-r .进一步按公式])())((2)([)1(21222121),(yy y x y x x x y y x r x r y x ery x f σμσσμμσμσπσ-+-------=,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x ey x f +--=π.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32+-=Y X Z 的概率密度. 解:由题设,有0)(=X E ,1)(=X D ,1)(=Y E ,4)(=Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()(=+-=+-=E Y E X E Y X E Z E . 8)3()()(4)32()(=++=+-=D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z =,故随机变量32+-=Y X Z 的概率密度为16)2(82)2(2241821)(--⨯--==z z Z eez f ππ )(+∞<<-∞z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率. 解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设X Y Z -=根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z =⨯-+⨯-+.根据题目假设,我们知道当31≤-=≤X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31(-Φ=-Φ-Φ=≤-≤-=-≤-≤-=≤≤Z P Z P Z P9544.019772.02=-⨯=.四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;。

概率论与数理统计习题解答(第二版)李书刚编,科学出版社

概率论与数理统计习题解答(第二版)李书刚编,科学出版社

概率论与数理统计习题解答〔第二版〕李书刚编,科学出版社概率论与数理统计习题参考答案〔仅供参考〕第一章第1页 (共79页)第一章随机事件及其概率1. 写出以下随机试验的样本空间:〔1〕同时掷两颗骰子,记录两颗骰子的点数之和;〔2〕在单位圆内任意一点,记录它的坐标;〔3〕10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;〔4〕测量一汽车通过给定点的速度. 解所求的样本空间如下〔1〕S= {2,3,4,5,6,7,8,9,10,11,12} 〔2〕S= {(x, y)| x2+y20} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示以下事件:〔1〕A发生,B和C不发生;〔2〕A与B都发生,而C不发生;〔3〕A、B、C都发生;〔4〕A、B、C都不发生;〔5〕A、B、C不都发生;〔6〕A、B、C至少有一个发生;〔7〕A、B、C不多于一个发生;〔8〕A、B、C至少有两个发生. 解所求的事件表示如下(1A)BC)BC (5A(7A)B(8A)B(2A)BC(6A)(3A)BC(4A)BCBACCACBCBC3.在某小学的学生中任选一名,假设事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运发动,那么〔1〕事件AB 表示什么?〔2〕在什么条件下ABC=C成立?〔3〕在什么条件下关系式C?B是正确的?〔4〕在什么条件下A?B成立?解所求的事件表示如下〔1〕事件AB表示该生是三年级男生,但不是运发动.概率论与数理统计习题参考答案〔仅供参考〕第一章第2页 (共79页) 〔2〕当全校运发动都是三年级男生时,ABC=C成立.〔3〕当全校运发动都是三年级学生时,关系式C?B是正确的.〔4〕当全校女生都在三年级,并且三年级学生都是女生时,A?B成立. 4.设P(A)=0.7,P(A-B)=0.3,试求P(AB) 解由于 A?B = A – AB, P(A)=0.7 所以P(A?B) = P(A?AB) = P(A)??P(AB) = 0.3,所以 P(AB)=0.4, 故P(AB)= 1?0.4 = 0.6.485. 对事件A、B和C,P(A) = P(B)=P(C)=1 ,P(AB) = P(CB) = 0, P(AC)=1 求A、B、C中至少有一个发生的概率. 解由于ABC?AB,P(AB)?0,故P(ABC) = 0那么P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)11115????0?0??0? 444886. 设盒中有α只红球和b只白球,现从中随机地取出两只球,试求以下事件的概率: A={两球颜色相同}, B={两球颜色不同}.解由题意,根本领件总数为Aa2?b,有利于A的事件数为Aa2?Ab2,有利于B 的事件数为111111AaAb?AbAa?2AaAb, 那么2Aa?Ab2P(A)?2Aa?b12AaAP(B)?2bAa?b17. 假设10件产品中有件正品,3件次品,〔1〕不放回地每次从中任取一件,共取三次,求取到三件次品的概率;〔2〕每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解〔1〕设A={取得三件次品} 那么33C3A316P(A)?3?或者P(A)?3?C10120A10720.〔2〕设B={取到三个次品}, 那么3327P(A)?3?101000.8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:〔1〕此人会讲英语和日语,但不会讲法语的概率;〔2〕此人只会讲法语的概率.解设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) P(ABC)?P(AB)?P(ABC)?32?9?23100100100 (2)P(ABC)?P(AB)?P(ABC)?P(A?B)?0?1?P(A?B)?1?P(A)?P(B)?P(AB)9. 罐中有12颗围棋子,其中8颗白子4颗黑子,假设从中任取3颗,求:概率论与数理统计习题参考答案〔仅供参考〕第一章第3页 (共79页) 〔1〕取到的都是白子的概率;〔2〕取到两颗白子,一颗黑子的概率;〔3〕取到三颗棋子中至少有一颗黑子的概率;〔4〕取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 那么3C814P(A)?3??0.255.C1255(2) 设B={取到两颗白子, 一颗黑子}1C82C4P(B)?3?0.509.C12(3) 设C={取三颗子中至少的一颗黑子} P(C)?1?P(A)?0.745.(4) 设D={取到三颗子颜色相同}33C8?C4P(D)??0.273. 3C1210. 〔1〕500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?〔2〕6个人中,恰好有个人的生日在同一个月的概率是多少?解(1) 设A = {至少有一个人生日在7月1日}, 那么364500P(A)?1?P(A)?1??0.746 5003651C64?C12?112P(B)??0.0073 612 (2)设所求的概率为P(B)11. 将C,C,E,E,I,N,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p. 解由于两个C,两个E共有A22A22种排法,而根本领件总数为A77,因此有12. 从5副不同的手套中任取款4只,求这4只都不配对的概率. 解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有C54A={4只手套都不配对},那么有C54?2480 P(A)?4?210C10?24中取法.22A2Ap?72?0.000794A7设13. 一实习生用一台机器接连独立地制造三只同种零件,第i只零件是不合格的概率为pi?1 1?i,i=1,2,3,假设以x表示零件中合格品的个数,那么P(x=2)为多少?1 1?i解设Ai = {第i个零件不合格},i=1,2,3, 那么P(Ai)?pi?所以P(Ai)?1?pi?i 1?iP(x?2)?P(A1A2A3)?P(A1A2A3)?P(A1A2A3)由于零件制造相互独立,有:P(A1A2A3)?P(A1)P(A2)P(A3),P(A1A2A3)?P(A1)P(A2)P(A3)P(A1A2A3)?P(A1)P(A2)P(A3)概率论与数理统计习题参考答案〔仅供参考〕第一章第4页 (共79页) 14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},Bi ={第i次击中目标}, i=1,2.那么 P(A)=0.7, P(Bi|A)=0.6 另外 B=B1+B2,由全概率公式P(B)?P(AB)?P(AB)?P(AB)?P(A)P(B|A) ?P(A)P((B1?B2)|A)另外, 由于两次射击是独立的, 故P(B1B2|A)= P(B1|A) P(B2|A) = 0.36 由加法公式P((B1+B2)|A)= P(B1|A)+ P(B2|A)-P(B1B2|A)=0.6+0.6-0.36=0.84 因此×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解设Ai ={一批产品中有i件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意P(B|A0)?019C1C491P(B|A1)??10C50519C2C4816P(B|A2)??10C504919C3C4739P(B |A3)??10C509819C4C46988P(B|A1)??10C502303由于 A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式P(B)??P(Ai)P(B|Ai)?0.196i?04由Bayes公式P(A0)P(B|A0)?0P(B)P(A1)P(B|A1)P(A1|B)??0.255P(B)P(A2)P(B|A2)P(A2|B)??0.333P(B)P(A0|B)?故P(C)??P(Ai|B)?0.588i?0216. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,概率论与数理统计习题参考答案〔仅供参考〕第一章第5页 (共79页) 0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少〔这里设物品件数很多,取出一件后不影响下一件的概率〕.解设B={三件都是好的},A1={损坏2%}, A2={损坏10%}, A1={损坏90%},那么A1, A2, A3是两两互斥, 且A1+ A2 +A3=Ω, P(A1)=0.8, P(A2)=0.15,P(A2)=0.05. 因此有 P(B| A1) = 0.983, P(B| A2) = 0.903, P(B| A3) = 0.13, 由全概率公式P(B)??P(Ai)P(B|Ai)i?13?0.8?0.983?0.15?0.903?0.05?0.103?0.8624由Bayes公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为P(Ai)P(B|Ai)0.8?0.983P(A1|B)???0.8731P(B)0.8624P(Ai)P(B|Ai)0.15?0.903 P(A2|B)???0.1268P(B)0.8624P(Ai)P(B|Ai)0.05?0.103P(A3|B)???0.0001P(B)0 .8624由于P( A1|B) 远大于P( A3|B), P( A2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料说明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;假设未发现残次品,那么通过验收,否那么要逐一检验并更换残次品,试求:〔1〕一次通过验收的概率α;〔2〕通过验收的箱中确定无残次品的概率β. 解设Hi={箱中实际有的次品数},P(A|H0)?1,4C235P(A|H1)?4?,C2464C2295P(A|H2)?4?C24138i?0,1,2, A={通过验收}那么 P(H0)=0.8, P(H1)=0.15, P(H2)=0.05, 那么有:(1)由全概率公式??P(A)??P(Hi)P(A|Hi)?0.962i?0(2)由Bayes公式得??P(Hi|A)?P(H0)P(A|H0)0.8?1??0.83P(A)0.9618. 一建筑物内装有5台同类型的空调设备,调查说明,在任一时刻,每台设备被使用的概率为0.1,问在同一时刻〔1〕恰有两台设备被使用的概率是多少?〔2〕至少有三台设备被使用的概率是多少?解设5台设备在同一时刻是否工作是相互独立的, 因此此题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1?p=0.9, 故。

概率论与数理统计及其应用第二版

概率论与数理统计及其应用第二版

=0.99978
www.khd课后a答w案.网com
14,一种用来检验 50 岁以上的人是否患有关节炎的检验法,对于确 实患关节炎的病人有 85%的给出了正确的结果;而对于已知未患关节 炎的人有 4%会认为他患关节炎。已知人群中有 10%的人患有关节炎, 问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。
4
课后答案网
第 1 章 随机事件及其概率习题解答
也是红球”记为事件 B 。则事件 A 的概率为
P( A) = 2 × 2 × 2 + 2 × 1 = 5 (先红后白,先白后红,先红后红) 43 43 6
所求概率为
P(B
|
A)
=
P( AB)
=
2×1 43
=
1
P( A) 5 5
P(B | A) = P(BA) = P(B)P(A | B) = 10%(1 − 85%) = 17.06%
P(A) 1 − P(A)
(1)4 只中恰有 2 只白球,1 只红球,1 只黑球。
(2)4 只中至少有 2 只红球。
(3)4 只中没有白球。
解:
(1)所求概率为
C52
C
C1 1
43
=
8

C142
33
2
课后答案网
第 1 章 随机事件及其概率习题解答
(2)
所求概率为
C
2 4
C82
+
C
C3 1
48
+
C
30% + 10% 4
6
课后答案网
第 1 章 随机事件及其概率习题解答
13,一在线计算机系统,有 4 条输入通讯线,其性质如下表,求一随

概率论与数理统计习题册答案

概率论与数理统计习题册答案

第一章 随机事件与概率 § 随机试验 随机事件 一、选择题1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D.2. 由A B B A B B A AB =⇔⊂⇔⊂⇔=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间1. {}3,420,,2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度;三、1任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω=2{}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=,{}15,AB ωω=四、1ABC ;2ABC ;3“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;4A B C ;5“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB ACBC .§ 随机事件的概率 一、填空题1. 试验的样本空间包含样本点数为10本书的全排列10,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!⋅,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排;故8!3!1()10!15P A ⋅==; 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =⨯=,故2!2!1()7!1260P A ⋅==二、求解下列概率1. 1 25280.36C C ≈; 2 1515373766885!0.3756!C C C A C A == 2. 412410.427112A -≈3. 由图所示,样本点为随机点M 落在半圆202 ()y ax x a <<-为正常数内,所以样本空间测度可以用半圆的面积S 表示;设事件A 表示远点O 与随机点M 的连线OM 与x 轴的夹角小于4π,则A 的测度即为阴影部分面积s , 所以2221142()22a a s P A S aπππ+===+ §概率的性质 一. 填空题 1.; 2. 1p -; 3. 16; 4. 712二. 选择题1. C;2. A;3. D;4. B;5. B. 三. 解答题解:因为,AB A AB ⊆⊆所以由概率的性质可知:()()().P AB P A P A B ≤≤又因为()0,P AB ≥所以可得 ()()(),P AB P A P B ≤+于是我们就有()P AB ≤ ()()P A P A B ≤()()P A P B ≤+.如果,A B ⊆则,AB A = ()()P AB P A =; 如果,B A ⊆则,AB A =这时有()().P A P A B =如果,AB φ=则(0,P AB =)这时有()()().P A B P A P B =+§ 条件概率与事件的独立性aa2a1.1图一. 填空题 1.23;2. 0.3、;3. 23;4. 14; 5. 2; 5. 因为AB AB =,所以()(),()()AB AB AABB AB AB AB AB φ====,则有,AB A B A B φ=+=+=Ω,因为,AB A B φ=+=Ω且所以A 与B 是对立事件,即A B A B ==,;所以,()()1,P A B P A B ==于是()()2P A B P A B +=二. 选择题1. D ;2. B ;3. A ;4. D ;5. B1. 已知()()1,P A B P A B +=又()()1,P A B P A B +=所以()(),P A B P A B =于是得()()()()P AB P AB P B P B =,注意到()()(),()1(),P AB P A P AB P B P B =-=-代入上式并整理后可得()()()P AB P A P B =;由此可知,答案D; 三. 解答题 1.33105,; 2. 2n§ 全概率公式和逆概率Bayes 公式 解答题 1. 2. 1;23.10.943;20.848§ 贝努利概型与二项概率公式 一. 填空题1. 11(1),(1)(1)n n n p p np p ----+-;2.23二. 解答题 1. .2. 0.94n,222(0.94)(0.06)n n n C --,11(0.94)(0.06)(0.94)n n n ---3.1,2,3章节测验一. 填空题 1.825; 2. 对立;3. 0.7; 4. 84217,二. 选择题 三、解答题 1.1; 22232. .0038 四、证明题略; 随机变量 分布函数一、填空题1.)(1a F -;)1()1(--F F ;)()()(b F a F b F -;2. 1,12a b ==/π;3.121--e二、选择题1、D ;2、A ; 三、计算题1.所以得随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,154,10443,1013,0)(x x x x x F2.解:1由条件知,当1-<x 时,0)(=x F ; 由于81}1{=-=X P ,则81}1{)1(=-≤=-X P F ; 从而有 8581411}1{}1{1}11{=--=-=-=-=<<-X P X P X P ;由已知条件当11<<-x 时,有 )1(}111{+=<<-≤<-x k X x X P ; 而1}1111{=<<-≤<-X X P ,则21=k 于是,对于11<<-X 有}111{}11{}11,1{}1{<<-≤<-⋅<<-=<<-≤<-=≤<-X x X P X P X x X P x X P 16)1(52185+=+⨯=x x 所以 167516)1(581}1{}1{)(+=++=≤<-+-≤=x x x X P X P x F 当1≥x 时,1)(=x F ,从而⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F2略;离散型与连续性随机变量的概率分布 一、填空题1.3827;2.2二、选择题; ;三、计算题1.12,1==B A ;2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤<=2,121,12210,20,0)(22x x x x x x x x F ;343 2.略;常用的几个随机变量的概率分布 一、填空题1.649;2.232-e ;3.2.0 二、计算题 1、43;2、352.0;3、5167.0;4、19270.01)5.1()5.2(=-Φ+Φ;229.3=d随机向量及其分布函数 边际分布 一、填空题1、(,)(,)(,)(,)F b b F a b F b a F a a --+;(,)(,)F b b F a b -;2、0;1 二、计算题1、12,2,12πππ===C B A ;2161; 3R x x x F X ∈+=),2arctan 2(1)(ππ,R y yy F Y ∈+=),3arctan 2(1)(ππ 2、1⎩⎨⎧≤>-=-0,00,1)(2x x e x F x X ,⎩⎨⎧≤>-=-0,00,1)(y y e y F y Y ,;242---e e;3、⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππx x x x x x F X ,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-+<=2,120),cos 1(sin 210,0)(ππy y y y y y F Y二维离散型与连续性随机向量的概率分布一、填空题1、87;2、∑+∞=1j ij p ,∑+∞=1i ij p ;3、41;4、41二、计算题1、1=c ;⎩⎨⎧≤>=-0,00,)(x x e x f xX ;⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2y y y y f Y2、16,(,)(,)0,x y Df x y ∈⎧=⎨⎩其它;226(),01()0,X x x x f x ⎧-<<=⎨⎩其它;),01()0,Y y y f y ⎧<<⎪=⎨⎪⎩其它3、条件分布 随机变量的独立性一、选择题1、B ;2、A ;3、D ;4、C ;5、D 二、计算题1、2、||2,012,01(|),(|)0,0,X Y Y X x x y y f x y f y x ≤≤≤≤⎧⎧==⎨⎨⎩⎩其它其它 3、18=c ;241}2{=<X Y P ;3不独立; 4、)1(11121Φ-+⎪⎪⎭⎫ ⎝⎛--e π 随机变量函数的概率分布一、填空题1、2、1,01()0,Y y f y ≤≤⎧=⎨⎩其它二、选择题1、B ;2、D ; 三、计算题1、⎩⎨⎧<<=else y y f ,010,1)(;2、⎪⎩⎪⎨⎧≥-<<-<=--1,)1(10,10,0)(z e e z e z z f z zZ3、⎪⎪⎩⎪⎪⎨⎧≥<<≤=1,110,21,0)(z z z z f Z ;⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<≤=1,21110,20,0)(z zz z z z F Z 第二章测验一、填空题1、41;2、34;3、0;4、2.0 二、选择题1、C ;2、A ;3、B 三、计算题1、~(3,0.4)X B ,则随机变量的概率函数为其分布函数为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<=3,132,12511721,1258110,125270,0)(x x x x x x F2、124=A ;2⎩⎨⎧≤≤-=其它,010),1(12)(2x x x x f X ,⎩⎨⎧≤≤-=其它,010),1(12)(2y y y x f X ;3不独立;4⎪⎩⎪⎨⎧<<<<=⎪⎩⎪⎨⎧<<<<--=其它其它,010,10,2)|(,,010,10,)1()1(2)|(2|2|y x x y x y f y x y x y x f X Y Y X ;3、1⎩⎨⎧≤>=-0,00,)(z z ze z f z Z ;2⎪⎩⎪⎨⎧≤>+=0,00,)1(1)(2z z z z f Z第三章 随机变量的数字特征数学期望 一 、填空题1、13,23,3524 ; 2、21,0.2 3、 2 ,4796二、计算题1. 解: 11211()(1)(1)1k k k k k a a a E X k k a a a -+∞+∞+==⎛⎫== ⎪+++⎝⎭∑∑ 根据公式()''12111(1)11k k k k x kx x x x x +∞+∞-==⎛⎫⎛⎫===< ⎪ ⎪-⎝⎭-⎝⎭∑∑ 得到221()(1)11a E X a a a a ==+⎛⎫- ⎪+⎝⎭2. 0 ;3.:2a4. 2/3,4/3 ,-2/3,8/5 ; 5.4/5,3/5,1/2,16/15 方差一、填空题1. 0.49 ;2. 1/6 ;3. 8/9 ;4. 8 , 二、计算题 1.: , 提示: 设0,1,i i X i ⎧=⎨⎩部件个不需要调整部件个需要调整则123,,X X X 相互独立,并且123X X X X =++,显然1(1,0.1),X B2(1,0.2),X B 3(1,0.3)X B2.:1/3,1/3 ; 3.: 16/3 ,28三、 证明题提示: [][]22()())D XY E XY E XY E XY EX EY =-=-[]2)E XY YEX YEX EX EY =-+-[]2()()E Y X EX EX Y EY DX DY =-+-≥ 协方差与相关系数 一、 选择题 1. A ; ; 二、 计算题1. ()()0E X E Y ==,()()0.75D X D Y ==, 0XY ρ=, () 1.5D X Y += X 与Y 不独立2. 0 ,0提示:111()0Y y f y π⎧=-≤≤⎪=⎨⎪⎩⎰其它 1211()10E Y yy dy π-=-=⎰()0.25D Y =同理可得()()0E X E Y ==,()()0.25D X D Y ==221(,)()0x y xyCov X Y E XY dxdy π+≤===⎰⎰3. :2222a b a b-+ 矩与协方差矩阵1. 33321132v v v v μ=-+2.1,,, ;2 ;340.210.020.020.24-⎡⎤⎢⎥-⎣⎦第三章 测验 一、 填空题1. ; 2. 1 ,; 3. ab二、 选择题 1.B ; ;三、 计算题1.解:设X 表示该学徒工加工的零件中报废的个数,又设 0,1,i i X i ⎧=⎨⎩第个零件未报废第个零件报废则由题设知1111iX i i i ⎡⎤⎢⎥⎢⎥++⎣⎦于是有 101i i X X ==∑ 且1()(1,2,,10)1i E X i i ==+从而1010101111111()()() 2.0212311i i i i i E X E XE X i =======+++=+∑∑∑ 2.: 10分25秒提示:设乘客到达车站的时间为X ,由题意可知X 为0,60上的均匀分布,根据发车时间可以得到等候时间Y ,且Y 是关于X 的函数10010301030()553055705560X X X X Y g X X X XX -<≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩3. 0,0第四章习题切比雪夫不等式 随机变量序列的收敛性 1.解:由切比雪夫不等式知,2221(37)(|5|2)12221(|5|8)832P X P X P X <<=-<≥-=->≤=2.解:设X 为在n 次试验中事件A 出现的次数,则~(,)X B n p ,Xn为频率. 21110.750.25()()0.750.75,()()X X E E X n D D X n n n n n n⨯==⨯⨯=== 由题意知{0.70.8}0.9,XP n<<≥而由切比雪夫不等式有20.750.25{|0.75|0.05}10.05X n P n ⨯-<≥- 所以有20.750.2510.90.05n ⨯-=,得750n =大数定理1. 证:有题设知n n=2,3,…的概率分布为:故n 的数学期望为()012101n -)(n =⨯+⎪⎪⎭⎫⎝⎛-⨯+⨯=nn n n X EX n 的方差为()(22222121()[()]012n nn D X E X E X n n n⎛⎫=-=⨯+⨯-+⨯= ⎪⎝⎭故∑==Nnn X NX 11的数学期望 ()()01111==⎪⎪⎭⎫ ⎝⎛=∑∑==Nnn Nn n X E N X NE X E方差()()NN X D N X ND X D Nn Nn n Nn n 2211112121===⎪⎪⎭⎫ ⎝⎛=∑∑∑===在利用车比雪夫不等式得(){}()0222−−−−→−≤≤≥-+∞→N N X D XE X P εεε因此,X 1,X 2,…,X n ,…服从大数定理;2.证:由于X 1,X 2,…,X n 相互独立,且()i i E X μ=,()i D X 存在,令 n 11ni i X X n ==∑则 ()()k k 111111n nn nki i i EX E X E X n n n μ===⎛⎫=== ⎪⎝⎭∑∑∑有限;()()k k 211110n n n ni i D X D X D X n n →∞==⎛⎫==−−−→ ⎪⎝⎭∑∑故由车比雪夫不等式知,0>∀ε; ()()()()1222111nknn k n n D XD X P XE X n εεε→∞=-≤≥-=-−−−→∑即 1111lim {||}1n ni i n i i P X n n με→+∞==-<=∑∑中心极限定理1.解:设X 为抽取的100件中次品的件数,则(100,0.2)XB ,()1000.220,()200.816E X D X =⨯==⨯=则18202025201205{1825}{}{}444244(1.25)(0.5)(1.25)(0.5)10.89440.691510.5859X X P X P P ----<<=<<=-<<=Φ-Φ-=Φ+Φ-=+-=2.解:1 设X 为一年中死亡的人数,则(,)XB n p ,其中n =10000,p =保险公司亏本则必须1000X>120000,即X>120 P{保险公司亏本}={120}P X >=P >=7.769}P >1(7.769)0≈-Φ=2P{保险公司获利不少于40000元}{120000100040000}{80}(2.59)0.995P X P X P -≥=≤=≤=Φ=3.解:设X i ={每个加数的舍入误差},则X i ~ U, ,()0i =X E ,()121i =X D ,i = 1, 2, …故由独立同分布中心极限定理知X 1,X 2,…服从中心极限定理;1[][][]802.10)9099.01(2)4.31(121)4.31(21)4.31()4.31(11211500015001512115000150012115000150015-1151511511515001150011500115001=-⨯=Φ-=-Φ-=-Φ-Φ-≈⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯-≤⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯--=⎪⎭⎫⎝⎛≤≤--=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>∑∑∑∑====i i i i i i i i X P X P X P X P 21{||10}0.9n i i P X =<≥∑,|0.9n i X P ⎧⎫⎪⎪⎪<≥⎨⎪⎪⎩∑由中心极限定理得,210.9,0.95Φ-≥Φ≥,所以1.65≥,解得440n =.第四章 测验一、填空题 1.1/4;211k-. 2.221n σε-.提示:利用切比雪夫不等式估计. 3.1/12 4.0. 5.. 6.()x Φ. 二、选择题1.A 2.C 3 D .三、应用题1.解:设X 为1000次中事件A 出现的次数,则(1000,0.5)X B()500,()5000.5250E X D X ==⨯=25039{400600}{|500|100}10.9751000040P X P X <<=-<≥-==2.解:设至少要掷n 次,有题设条件知应有()9.06.04.0≥<<n X P其中∑==nii X nX 1n1, i=1,2,…独立同分布,且()()5.001i i ====X P X P , 5.0)(i =X E ,25.05.05.0)(i =⨯=X D1 用切比雪夫不等式确定()()()2n 1.011.05.06.04.0nn X D X P X P -><-=<<而()nnX D n X n D X D ni ni i ni 25.05.0111)(12212n ===⎪⎪⎭⎫ ⎝⎛=∑∑∑==即要求90.01.025.012≥-n即)次(2501.025.03=≥n 即至少应掷250次才能满足要求; 2用中心极限定理确定()0.40.60.50.50.5210.90555n n X P X P n n n n n n ⎛⎫<<=<<⎛⎫⎛⎫⎛⎫=Φ-Φ-=Φ-≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得10.900.9552n ⎛⎫+Φ≥= ⎪ ⎪⎝⎭查标准正态分布表的645.15≥n ,225.8645.15=⨯≥n所以6865.67225.82≈=≥n即在这种情况下至少应掷68次才能满足要求; 3.解:设X 为每天去阅览室上自习的人数; 则有(12000,0.08),()120000.08960,()9600.92883.2X B E X D X =⨯==⨯=1{880}1{880}9608809601{}883.2883.21( 2.692)(2.692)0.996P X P X X P >=-≤--=-≤≈-Φ-=Φ= 2设总座位数为n960960{}0.8,{}0.8883.2883.2X n P X n P --<=≤=由中心极限定理知, 960()0.8883.2n -Φ=,查表得960883.2n -=,986n =,所以应增添986-880=105个座位; 4.解:令n 为该药店需准备的治胃药的瓶数 X 为在这段时间内购买该药的老人数则由题意知(2000,0.3)XB ,()20000.3600,()6000.7E X D X =⨯==⨯{}0.99600600{}0.99420420P X n X n P ≤=--≤=由中心极限定理知, 600()0.99420n -Φ≈,查表得6002.33420n -=,所以648n ≈四、证明题1.证明:设则有,11,()()(1)4nn k k k k k k k M X E X p D X p p ====-≤∑ 11111()()().nknn n k k k k k pM E E X E X n n n n======∑∑∑12221111114()()().4nnnn k k k k k M D D X D X n n n nn=====≤≤∑∑∑ 由切比雪夫不等式得,1222()111{||}4nn nM D M p p p n P n n n εεε++-≤-≤-<,所以当n →+∞时121{||}1n nM p p p P n nε++≤-<≤,即12{||}1n n M p p p P n nε++-<=.2.证:因为12,,,n X X X 相互独立且同分布,所以21X ,22X ,…,2n X 相互独立且同分布,且有相同的数学期望与方差:()22a X E i =,()()()[]()0a -22242242≠=-==σa X E X E X D ii i满足独立分布中心极限定理条件,所以∑=nii X 12近似服从正太分布()22,σn na N,即∑==ni i nX n Y 121近似服从⎥⎦⎤⎢⎣⎡-n a a a N 2242)(, 第五章 数理统计的基本概念总体 样本 统计量 一、选择题 1.D2.A ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑3. D二、应用题1. 5,2.551251511()(,,...)(),,...0,i X i i b a f x x x f x a x x b=⎧⎪-==<<⎨⎪⎩∏其它3.0,11,124()3,2341,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩抽样分布 一、选择题 1.C 注:1~(1)t n -才是正确的.2.B 根据()()2221~1n S n χσ--得到()221()~1ni i X X n χ=--∑ 3.A 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、应用题 1. (1,1)F n -2. 13~(10,)2X N 23.第五章 测验一、选择题 1. C2.C 注:统计量是指不含有任何未知参数的样本的函数 3D对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.C 注:1~(0,)X N n~(1)t n -才是正确的5.C 12345{max(,,,,)15}P X X X X X >123451{max(,,,,)15}P X X X X X =-≤ ()15115,,15P X X =-≤≤=5)]5.1([1Φ- 二、填空题 1.μ,2nσ2.1nii Xn=∑()2111n i i X X n =--∑,11i n k i X n =∑,()11nk i i X X n =-∑ 3. ,pqp n4. 252(1)n χ-三、应用题1.(1)21211(,,...)()!!n n knn n ni i f x x x e e k k λλλλ+--====∏∏2. 0.13.(1)t n -第六章 参数估计参数的点估计 一、选择题二、解答题 1.解 1()()∑∑∞=-∞=-===1111}{x x x p p x x X xP X E ∑∞='⎪⎪⎭⎫ ⎝⎛-==11x x q q p q dq dpp1=()p q -=1 用X 代替()X E ,则得p 的矩估计量Xp 1=⎪⎭⎫ ⎝⎛=∑=n i i X n X 112分布参数p 的似然函数()()∏∏=-=-===ni x i n i p p x X P p L i 1111}{()∑-=-=ni i nx np p 11取对数 ()()p n x p n p L n i i -⎪⎭⎫⎝⎛-+=∑=1ln ln ln 1解似然方程 ()011ln 1=⎪⎭⎫⎝⎛---=∑=n i i n x p p n dp p L d得p 的极大似然估计量 Xp 1=⎪⎭⎫⎝⎛=∑=n i i X n X 112.解 1()()()26;32θθθθθ=-==⎰⎰∞+∞-dx x x dx x xf X E ,用∑==ni i X n X 11代替总体均值()X E ,则得参数θ的矩估计量为.2X =θ2()()()⎪⎭⎫ ⎝⎛===∑=n i i X n D X D X D D 11442θ()()()∑====ni iX D nX nD nX D n122444因为()()()()⎰∞+∞-⎪⎭⎫⎝⎛-=-=22222;][θθdx x f x X E XE X D ()⎰=--=θθθθθ022332046 dx x x 所以 ()nn D 520422θθθ==3.解 取()()∑-=+-=112121,,,,n i i i n X X C X X X ϕ由定义()]()⎢⎢⎣⎡⎢⎣⎡=⎥⎦⎤-=∑-=+112121,,,n i i i n X X C E X X X E ϕ()∑-=+=-1121n i i i X X E C][=+-∑-=++1121212n i i i i i X X X X E C ()()()][∑-=++=+-1121212n i i i i i X E X X E X E C()()()()][=+-∑-=++1121212n i iii i X E X E X E XE C ()()()][∑-=+=+-1122212n i ii X E X E X E C()()21122221σσσσ=-=+∑-=n i n C C所以 ()121-=n C参数的区间估计 一、选择题1. C2. A一个总体均值的估计1.解 由于,99.01=-α 故,31,01.0=-=n 又α查t 分布表得()0.0123 5.841,t =又%,03.0%,34.8==s x 故得μ的99%的置信区间为][%428.8%,252.8)%403.0841.534.8()%,403.0841.534.8( =⎢⎣⎡⎥⎦⎤⨯+⨯- 2.解 计算得样本均值16,0171.0,125.22===n s x10.120.10,1.645,0.01,u ασ=== 总体均值μ的90%的置信区间为]22 2.121, 2.129x u x u αα⎡⎤⎡-+=⎢⎣⎢⎣2.151,10.0=-=n α查t 分布表得()0.1215 1.753t =()753.11510.0=t ,总体均值μ的90%的置信区间为((]2211 2.117, 2.133x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣3.解:计算得265,3000,0.05x s α===, n -1=7,查t 分布表得()0.1027 1.895t =,计算得株高绝对降低值μ的95%的置信下限为(2128.298x t n α--=. 4.解 每20.10hm 的平均蓄积量为315m ,以及全林地的总蓄积量375000m ,估计精度为0.9505A =5. ,一个总体方差与频率的估计1.解 由样本资料计算得3750.60=x ,3846.02=s ,6202.0=s ,又由于05.0=α,025.02=α,975.021=-α,151=-n 查2χ分布表得临界值,488.27)15(2025.0=χ,262.6)15(2975.0=χ从而2σ及σ的置信概率为%95的置信区间分别为,与,.2. 解 1由于,14=n ,05.0=α查t 分布表得()0.05213 2.16,t =又67.1,7.8==s x ,故得总体均值μ的95%的置信的区间为((]22117.736,9.664x t n x t n αα⎡⎤⎡--+-=⎢⎣⎢⎣2由于,10.0=α 05.0=2α,,95.021=-α,131=-n 查2χ分布表得()362.2213205.0=χ,()892.513295.0=χ,故得总体方差2σ的90%的置信区间为()()()()][153.6,621.111,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n S n n S n ααχχ 3. 解,41,95.021,05.02,10.0=-=-==n ααα查2χ分布表得(),488.94205.0=χ ()711.04295.0=χ,又计算得1.21=x ,505.82=s ,故得该地年平均气温方差2σ的90%的置信区间为()()()()][85.47,58.311,112212222=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----n s n n s n ααχχ 4. 解 造林成活率的置信区间为[0.8754,0.9369] 两个总体均值差的估计1. 解 由于182,05.021=-+=n n α,查t 分布表得临界值()0.05218 2.101.t =又,8.126,06.14,1021====y x n n ,96.71,93.162221==s s 从而求得21μμ-的置信概率为95%的置信区间为,.即以95%的概率保证每块试验田甲稻种的平均产量比乙稻种的平均产量高7.536kg 到20.064kg.2.解由样本值计算得5,5,27,4.24221=====A B A n n y x σ,82=Bσ,05.0=α,,96.105.0=u 故21μμ-的95%的置信区间为()()]5.76,0.56A B A B x y x y ⎡⎢⎡---+=-⎣⎢⎣3.解由样本值计算得222211.10,875.75,30.11,44.81====B B A A s y s x ,,91=n ,82=n ,05.0=α 查t 分布表得()0.05215 2.131,t =故得B A μμ-的95%的置信区间为4. ,两个总体方差比的估计解 ,025.02,05.0,911===-=-ααB A n n 查F 分布表得()=--1,12B A n n F α()(),03.49,91,1025.02==--F n n F A B α故 2221σσ的95%的置信区间为:()()][⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤----6008.3,2217.01,1·,1,11·222222 n n F s s n n F s s A B BA B AB A αα第六章 测验一、选择题二、填空题 1.12α=2.21ˆ2X θ-= 3. ][588.5,412.4 4. 21;1λλ 5. ()0.351t n k -=三、计算题1.解 因为X ~N (),4,2μ所以(),9492222χχ~S =于是, ⎩⎨⎧=⎭⎬⎫>=>1.0169169}{22σS P a S P 查2χ分布表得,684.14169=a所以.105.26≈a ()(()(12212222 5.58,16.71.A B A B x y t n n x y t n n αα⎡--+-⎢⎣⎡⎤⎤-++-=-⎢⎥⎥⎦⎦⎣2.解 1()()λλλ-==∏∏==ex x f x x x f n i ni ix in i1121!;,,, ∏=-∑==ni i x n x eni i 1!·1λλ;2()()()λλλnn S E nX D X E n 1,,2-===. 3.解 因为X ~N()22,30 ,于是()(),)21(,30)162(,3022 =N ~N X 从而()1,02130 ~N X U -=,故 }{⎩⎨⎧⎭⎬⎫-<-<-=<<2/130312/1302/130293129X P X P()()()9545.0197725.0212222221302=-⨯=⎩⎨⎧-Φ=-Φ-Φ=⎭⎬⎫<-<-=X P4.解 1178320,314022====b x σμ ;219813322==s σ5.解 设施肥与不施肥的收获量分别为总体,,Y X 且X ~N (),,21σμY ~N)(~22σμ,N Y ,计算可得,1738.1,9227.0,7.9,4.11222221====s s y x 又,05.0,162,10,82121==-+==αn n n n 查t 分布表得临界值()0.05216 2.12,t =从而计算均值差21μμ-的95%的置信区间为()()][.7773.2,6227.016810181738.199227.0712.27.94.11,16810181738.199227.0712.27.94.112222=⎥⎦⎤⨯⨯⨯+⨯+-⎢⎣⎡⨯⨯⨯+⨯--故在置信概率下,每201亩水稻平均收获量施肥比不施肥的增产到斤.第七章 假设检验假设检验概念和原理 一、填空题:1、概率很小的事件在一次试验抽样中是不至于发生的;2、0H 为真,通过一次抽样拒绝0H 所犯错误; 0H 为假,通过一次抽样接受0H 所犯错误; 二、选择题 1、B ;2、D;三、应用计算题1、解:{}1232|1258P x x x p α=++≥=={}1232|14364P x x x pβ=++<==2、解:1、0.62c ==2、因c u α= 故拒绝原假设00:0H μμ==;3、{}1.15P x P α⎫=≥=≥[]3.6412(3.64)10.0003P ⎫⎪=≥=-Φ-=⎬⎪⎭一个总体参数的假设检验 一、填空题:1、X U =12(,,):1n X x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭;3、1(,,):n R x x u p α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭二、选择题1.A 3. B 三、应用计算题1、1若根据以往资料已知σ=14 ;2σ未知; 解:101:500:500H H μμ=↔≠ 0.452x u ===因 20.452 1.96u u α=<= 故接受原假设0H . 从而包装机工作正常; 2.先检验标准差 0010:=15:H H σσσσ≥↔< 22222(1)(101)1610.2415n S χσ--=== 22110.24 3.325(1)n αχχ-=<=- 故拒绝原假设00:=15H σσ≥其次检验01:500:500H H μμ=↔≠ 0.395x T ===因2T 0.395 2.262(1)t n α=<=- 故接受原假设0:500H μ= 所以,综合上述两个检验可知包装机工作正常;2、解:0010:=0.3:=0.3H H σσσσ≤↔<22222(1)(251)(0.36)0.3456(0.3)n S χσ--=== 220.345636.415(1)n αχχ=<=- 故接受原假设;标准差没有明显增大;3、解:0010:0.9:0.9H p p H p p ≤=↔>= 4400.88500W ==1.49U ===-0.050.011.645, 2.33u u ==0.05 1.645U u <= 0.01 2.33U u <= 故两个水平下均接受原假设;两个总体参数的假设检验 一、填空题 1、等方差; 2、22122212S S F σσ=服从12(1,1)F n n --.分布;3、U =, 其中112212n W n W W n n +=+;二、选择题 1、 B 2. A 三、应用计算题1、解:012112::H H μμμμ=↔≠X YT =0.206==-因20.206 2.131(15)T t α=<= 故接受原假设;2、解:检验012112::H H μμμμ=↔≠1.5X Y U ==-因21.5 1.96U u α=<= 故接受原假设即认为两种工艺下细纱强力无显著差异; 3、解:012112::H p p H p p ≤↔>1202000.1W == 2152000.75W ==112212350.07500nW n W W n n +===+5.97U ==因 5.97 1.645U u α=>= 故拒绝原假设,即认为乙厂产品的合格率显著低于甲厂; 非参数假设检验 一、填空题 1、1m k --2、由抽样检验某种科学科学理论假设是否相符合;3、(1)(1)r c --; 二、选择题 1. A ;2. C 三、应用计算题1、解:0:H 该盒中的白球与黑球球的个数相等;记总体X 表示首次出现白球时所需摸球次数,则X 服从几何分布{}1(1)k P X k p p -==-,1,2,k=其中p 表示从盒中任摸一球为白球的概率;若何种黑球白球个数相等,则此时12p = 从而{}1112p P X ===, {}2214p P X === ,{}3318p P X === {}44116p P X ===,{}552116kk P X +∞-=≥==∑2521() 3.2i i i i v np np χ=-=∑2(4)9.488αχ= 223.29.488(4)αχχ<= 则接受原假设;2、解:0:H X 的概率密度为()2f x x = (01)x <≤{}100.250.0625p P X =<≤=,{}20.250.50.1875p P X =<≤={}30.50.750.3125p P X =<≤=,{}40.7510.4375p P X =<≤= 2421()64 1.82935i i i i v np np χ=-==∑ 2(3)7.815αχ= 因221.8297.815(3)αχχ<=故接受原假设即认为X 的概率密度为()2f x x = (01)x <≤; 3、解:0:H 公民对这项提案的态度与性别相互独立223211()2173.7ij ij i j ijn e e χ==-==∑∑因222173.7 5.991(2)αχχ>= 故拒绝0H ,即认为公民对这项提案的态度与性别不独立;4、略;第七章 测验一、填空题每小题4分,共20分1、12(,,):2n X R x x u α⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭2、X T =3、222(1)n S χσ-=;2χ;4、2122S F S =;(){}222211221212,,:,n R x x S S F S S F αα-=≥≤或;5、 =14α; 916β=.二、选择题每空4分,共20分1、A ;2、C ;3、B ;4、C ;5、A三、应用题共60分1、解:检验01:70:70H H μμ=↔≠ 1.4x T ===因2T 1.4 2.02(1)t n α=<=- 故接受原假设0:70H μ= 2、解: 001:=8:8H H σσσ=↔≠ 2220(1)(101)75.73310.6564n S χσ--⨯===221210.65 2.7(1)n αχχ-=>=- 故拒绝原假设00:=8H σσ=3、解:先检验2222012112::H H σσσσ=↔≠2122 3.3251.492.225S F S ==2212S S > 查表的212((1),(1)) 5.35F n n α--=因2121.49 5.35((1),(1))F F n n α=<=--故可认为方差相等; 其次检验012112::H H μμμμ≤↔>X YT =3.52=-因 3.52 2.552(18)T t α=-<= 故接受原假设012:H μμ≤ 4、解:0010:0.2:H p p H p p ≤=↔>,3.5U ===因 3.5 1.645U u α=>= 故拒绝原假设; 5、解:(1)1.026α= (2)0.0132β=第八章 方差分析与回归分析方差分析的概念与基本思想 一、名词解释1. 因素:影响试验指标变化的原因;2. 水平:因素所设置的不同等级3. 单因素试验:在试验中仅考察一个因素的试验4. 多因素试验:在试验中考察两个或两个以上因素的试验,这类试验一般可用因素的数目来命名5. 处理:一个试验中所考察因素不同水平的组合6. 处理效应组间误差:试验中所考虑且加以控制的因素不同水平对试验指标的影响7. 随机误差:试验中为考虑或未控制的随机因素所造成的试验指标的变异 二、问答题1. 单因素试验中,因素的每一个水平即为一个处理,试验有几个水平,就相应地有几个处理;多因素试验中,处理的数目是各因素水平的乘积;例如,三因素试验中,A 因素有a 个水平,B 因素有b 个水平,C 因素有c 个水平,则处理数为abc 个;2. 方差分析的基本思想:将测量数据的总变异按照变异来源分解为处理效应和随机误差,利用数理统计的相关原理建立适当的统计量,在一定显著性水平下比较处理效应和随机误差,从而检验处理效应是否显著; 单因素方差分析 一、填空题1. 平方根变换,角度弧度反正弦变换,对数变换;2. 最小显著差数法,最小显著极差法;新复极差法,q 法;3. 总平方和,随机误差平方和,组间平方和; 二、计算题 1.2.解:112229i n r i j i j T X ====∑∑,211199327in rij i j X ===∑∑, ()222112229199327589.3625in rT ij i j T SS X n ===-=-=∑∑()()222122291200704219024174724495.36525ri A i iT T SS n n ==-=+++-=∑589.36495.3694e T A SS SS SS =-=-=方差分析表如下:因为0.01=26.35 4.43(4,20)F F >=,所以,当显著性水平=0.01α,5个温度对产量的影响有显著差异;3.该题属于单因素4水平等重复试验的方差分析;其方差分析表如下:多重比较省略;4.母猪对仔猪体重存在极显著的影响作用; 双因素方差分析1.F 检验结果表明,品种和室温对家兔血糖值的影响均达极显著水平; 2.; 回归分析的基本概念1.如何用数学语言描述相关关系相关关系就是一个或一些变量X 与另一个或一些变量Y 之间有密切关系,但还没有确切到由其中一个可以唯一确定另一个的程度,其数学语言描述可为:如果给定变量X 任意一个具体取值0x ,存在变量Y 的一个概率分布与其对应,并且该概率分布随0x 的不同而不同;同时给定变量Y 任意一个具体取值0y ,存在变量X 的一个概率分布与其对应,并且该概率分布随0y 的不同而不同,则称X 与Y 之间具有相关关系;相关关系是两个随机变量之间的平行相依关系;2.什么是回归关系回归关系与相关关系有何联系回归关系是指在相关关系中,如果X 容易测定或可人为控制,就将X 看成为非随机变量,并记为x 称为预报因子,这时x 与Y 称为预报量之间的关系称为回归关系; 回归关系是相关关系的简化,是变量之间的因果关系;一元线性回归模型的建立与检验 一、填空题 1.()211ˆ2n i i i Y y n =--∑; 2.01ˆˆy x ββ=- , ()()()1121ˆ=ni i xy i n xxi i x x Y Y L L x x β==--=-∑∑; 二、应用题1. 解:21111211113755.68,11xx i i i i L x x ==⎛⎫=-= ⎪⎝⎭∑∑11111111118708.58,11xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-= ⎪⎪⎝⎭⎝⎭∑∑∑2111121116050.58311yy i i i i L y y ==⎛⎫=-= ⎪⎝⎭∑∑1先求回归方程,由于1=0.633,xy xxL L β=01=-38.97,y x ββ-=所以Y 关于x 的回归方程为ˆy0.633-38.97,x = 2用相关系数检验法计算样本相关系数00.955r ==因为()0.0190.7348,r =而()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的 3把0200x =代入回归直线方程,得ˆ0.633200-38.9787.63y=⨯=, 2. 略; 3. 证明略;预测、控制与残差分析(1) 解:211112211113675051013104.55,1111xx i i i i L x x ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑11111111111139105102143988.18,1111xy i i i i i i i L x y x y ===⎛⎫⎛⎫=-=-⨯⨯= ⎪⎪⎝⎭⎝⎭∑∑∑2111122111154222141258.731111yy i i i i L y y ==⎛⎫=-=-⨯= ⎪⎝⎭∑∑1先求回归方程,由于13988.18=0.304,13104.55xy xxL L β==01214510=0.304 5.36,1111y x ββ-=-⨯= 所以Y 关于x 的回归方程为ˆy5.360.304,x =+ 在检验,用相关系数检验法计算样本相关系数00.982r ===取=0.01α,查相关系数检验表得,()0.0190.7348,r =由于()00.019,r r >故可认为Y 与x 的线性相关关系是极显著的;2把075x =代入回归直线方程,得ˆ 5.360.3047528.16y=+⨯=, ˆ 2.301σ==,0.05(9) 2.626t =, 故当075x s =时,腐蚀深度Y 的95%预测区间为[]28.16 2.262 2.301 1.074,28.16 2.262 2.301 1.074,-⨯⨯+⨯⨯即 []22.57.7,335. 3要使腐蚀深度在1020m μ之间,即1210,20,y y Y ==的取值在区间[]1020,内时,则由方程组10112012ˆ2ˆ2,y x y x ββσββσ=+-⎧⎨=++⎩ 解得()()()()1101220111ˆ210 5.362 2.30130.40,0.30411ˆ220 5.362 2.30133.02.0.304x y x y βσββσβ=-+=⨯-+⨯==--=⨯--⨯=可线性化的一元非线性回归 一、填空题011ln ,ln ,ln ,Y Y x x ββββ''''====;00111ln ,,ln ,Y Y x xββββ''''====;ln ,lg Y Y x x ''==;二、解答题解:做散点图如右图;由于Y 与x 散点图呈指数曲线形状,于是有•,x Y e βαε=()2ln 0,N εσ两边取对数,令ln ,ln ,,,ln Y Y a b x x αβεε'''=====模型转化为线性模型()2,0,Y a bx N εεσ''''=++对所给数据进行形影变换得到10ˆˆ0.29768,8.164585ββ=-= 所以Y '对x '的样本回归方程为 8.164585-0.29768Y x ''=用t 检验法检验'Y 对'x 的回归效果是否显著,取显著性水平为,可得()0.02532.36938 2.3060t t ==>=即线性回归效果是显著的;代回原变量,得曲线回归方程()0.29768ˆˆexp 3514.26x yy e -'== 第八章 测验一、选择题1、A ;2、C ;3、B ;4、D 二、填空题1. 正态 ,独立, 等方差 ;2. ()201,~0,Y x N ββεεσ=++;3. ˆr β=三、解答题 1.提示与解答:方差分析结果表明,农药的杀虫效果是极显著的;2. 提示与解答:一元线性回归方程建立、检验、应用. 销售费用Y 与销售收入x 之间的经验回归方程为ˆ 3.140.108Yx =+ 销售费用Y 与销售收入x 之间的线性回归关系是显著的;。

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新

概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新

习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/65/36 1/9 1/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。

故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= 12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

概率论与数理统计(第二版)课后答案

概率论与数理统计(第二版)课后答案

各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。

概率论与数理统计第一章课后答案

概率论与数理统计第一章课后答案

第5题
必然事件是指概率为1的事件,因此 C选项正确。
习题二答案与解析
1. C 答案
2. B
01
03 02
习题二答案与解析
01
3. D
02
4. A
03
5. B
习题二答案与解析
第1题
根据概率的加法公式,两个互斥事件之和的概率等于它们概率的和,因此C选项正确。
第2题
根据概率的乘法公式,两个独立事件同时发生的概率等于它们概率的乘积,因此B选项 正确。
习题二答案与解析
01
02
第3题
第4题
根据概率的加法公式,两个对立事件 之和的概率等于1减去它们的概率之 和,因此D选项正确。
根据概率的加法公式,两个互斥且对 立事件之和的概率等于1减去它们的 概率之和,因此A选项正确。
03
第5题
根据概率的加法公式,两个独立事件 同时发生的概率等于它们概率的乘积 加上它们的概率之和减去它们同时发 生的概率,因此B选项正确。
3. C 4. B 5. C
习题一答案与解析
第1题
根据概率的基本性质,任何事件的概率都介 于0和1之间,因此A选项正确。
第2题
互斥事件是指两个事件不可能同时发生,因 此D选项正确。
习题一答案与解析
第3题
独立事件是指一个事件的发生不受另 一个事件是否发生的影响,因此C选
项正确。
第4题
不可能事件是指概率为0的事件,因 此B选项正确。
概率论与数理统计的应用领域
金融
概率论与数理统计在金融领 域中广泛应用于风险评估、 投资组合优化和金融衍生品 定价等方面。
医学
在医学领域,概率论与数理 统计用于临床试验设计、流 行病学研究、诊断和预后评 估等方面。

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案

概率论与数理统计学1至7章课后答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足 式.解:由表格知并且,361)12()2(====X P X P ;362)11()3(====X P X P ;363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。

即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a . 解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。

故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。

所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k ,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾;(2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。

概率论第二版第1、2章习题解答

概率论第二版第1、2章习题解答

第1章 随机事件与概率习 题 1.22.一批产品由95件正品和5件次品组成,从中不放回抽取两次,每次取一件.一件.求:(1)第一次抽得正品且第二次抽得次品的概率;(2)抽得正品和次品各一件的概率.品各一件的概率.解 设A ={第一次抽得正品且第二次抽得次品},B ={抽得正品和次品各一件},则,则11955111009919()0.048396C C P A C C ×==»×,1111955595111009938()0.096396C C C C P B C C ×+×==»×. 3.从0,2,3,4,5,6这六个数中任取三个数,求取得的三个数字能组成三位数且为偶数的概率.且为偶数的概率.解 据题意,可分为“个位是0”与“个位不是0”两种情况,即所求事件的概率为的概率为2111534436543441765430A C C C p A +´+´´===´´. 4.已知某城市中有55%的住户订日报,65%的住户订晚报,的住户订晚报,且至少订这两且至少订这两种报中一种的住户比同时订两种报的住户多一倍,求同时订两种报的住户占百分之几.分之几.解 设A ={住户订日报},B ={住户订晚报},则()0.55P A =,()0.65P B =,且()2()P A B P A B = , 从而有从而有 ()()()2(P A P B P A B P A B +-=,11()[()()](0.550.65)0.433P AB P A P B =+=+=, 即同时订两种报的住户占百分之四十.即同时订两种报的住户占百分之四十.5.从0~9十个数字中任取三个不同的数字,求:三个数字中不含0或5 的概率.的概率.解 设A ={不含数字0},B ={不含数字5},则所求概率为()P A B .33399833310101014()()()()15C C C P A B P A P B P AB C C C =+-=+-= . 6.10把钥匙中有3把能打开一把锁,现任取两把,求能打开锁的概率.把能打开一把锁,现任取两把,求能打开锁的概率. 解 设A ={任取两把钥匙,能打开锁},利用对立事件,有,利用对立事件,有2721078()1()111515C P A P A C =-=-=-=. 7.一盒中有10只蓝色球, 5只红色球,现一个个的全部取出.求第一个取出的是蓝色球,最后一个取出的也是蓝色球的概率.解 设A ={第一个取出的是蓝色球,最后一个取出的也是蓝色球},则113110139151510913!3()15!7C A C P A A ´´===. 8.把12枚硬币任意投入三只盒中,求第一只盒子中没有硬币的概率.枚硬币任意投入三只盒中,求第一只盒子中没有硬币的概率. 解 设A ={第一只盒子中没有硬币},则,则12121222()33P A æö==ç÷èø. 9.把7个编号的同类型的球投进4个编号的盒子中,每个球被投进任何一个盒子中都是等可能的.求第一个盒子恰有2个球的概率.个球的概率.解 设A ={第一个盒子中恰有2个球},则,则25773()0.3114C P A ×=».10.从5副不同的手套中任意取4只手套,求其中至少有两只手套配成1副的概率.副的概率.解 设A ={至少有两只手套配成1副 },则,则411115222241013()1()121C C C C C P A P A C ××××=-=-=. 或 121125422541013()21C C C C C P A C +==.11.一副没有王牌的扑克牌共52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张牌花色各异;(2)四张牌中只有两种花色;(3)四张牌中有三种花色.)四张牌中有三种花色.解 设A ={四张牌花色各异},B ={四张牌中只有两种花色},C ={四张牌中有三种花色},则,则111113131313452()0.1055 C C C C P A C ×××=», 2221134131321313452()()0.2996C C C C C C P B C ×+××=» , 3121143131313452()0.5843 C C C C C P C C ××××==. 12.掷三枚均匀的骰子,已知它们出现的点数各不相同,求其中有一枚骰子的点数为4的概率.的概率.解 设A ={其中有一枚骰子的点数为4 },则,则1113541116543541()6542C C C P A C C C ´´===´´.13.一间宿舍内住有8位同学,求他们之中至少有2个人的生日在同一个月份的概率.月份的概率.解 设A ={至少有2个人的生日在同一个月份},则,则81288!()1()10.95412C P A P A ×=-=-». 14.四个人参加聚会,由于下雨他们各带一把雨伞.聚会结束时每人各取走一把雨伞,求他们都没拿到自己雨伞的概率.走一把雨伞,求他们都没拿到自己雨伞的概率.解 设i A ={第i 个人拿到自己的雨伞个人拿到自己的雨伞},B ={四个人都没有拿到自己的雨伞 },则,则12341234124()()()1()P B P A A A A P A A A A P A A A A ===-11131[1]2!3!4!8=--+-=. 15.有四个人等可能的被分配到六个房间中的任一间中.求:(1)四个人都分配到不同房间的概率;(2)有三个人分配到同一房间的概率.)有三个人分配到同一房间的概率.解 设A ={四个人分配到不同房间},B ={四个人中有三个人分配到同一房间},则,则4644!5()618C P A ´==, 31146545()654C C C P B ´´==.16.一袋中有n 个黑球和2个白球,现从袋中随机取球,每次取一球,求第k 次和第k +1次都取到到黑球的概率.次都取到到黑球的概率.解 设A ={第k 次和第k +1次都取到到黑球},则,则111!(1)()(2)!(2)(1)n n C C n n n P A n n n -××-==+++. 17.n 个人围一圆桌坐,求甲、乙两人相邻而坐的概率.个人围一圆桌坐,求甲、乙两人相邻而坐的概率.解 设A ={甲、乙两人相邻而坐},则,则2(2)!2()(1)!(1)n P A n n -==--.18.6个人各带一把铁锹参加植树,休息时铁锹放在一起,休息后每人任取一把铁锹继续劳动,求至少一个人拿对自己带来的铁锹的概率.取一把铁锹继续劳动,求至少一个人拿对自己带来的铁锹的概率.解 设i A ={第i 个人拿到自己的铁锹个人拿到自己的铁锹},B ={至少有一人拿对自己带来的铁锹铁锹 },则,则12345612456()1()1()()P B P B P A A A A A A P A A A A A A =-=-=111119110.6322!3!4!5!6!144=-+-+-=».19.两艘轮船都要停靠同一泊位,它们可能在一昼夜的任意时间到达,设两船停靠泊位的时间分别需要1小时与2小时,求一艘轮船停靠泊位时,另一艘轮船需要等待的概率.艘轮船需要等待的概率.解 设,x y 分别为甲,乙两船到达码头的时间,设A ={一艘轮船停靠泊位时,另一艘轮船需要等待}.故样本空间{(,)|024,024}x y x y W =≤≤≤≤, A 发生的等价条件为“1x y x +≤≤”或“2y x y +≤≤”,令 {(,)(1)(2),(,)}D x y x y x y x y x y =++ÎW ≤≤≤≤, 则样本空间的面积则样本空间的面积 2424576S W =´=,且区域D 的面积的面积 2221124232269.522D S =-´-´=, 则 ()0.1207DS P A S W =».20.平面上画有间隔为d 的等距平行线,向平面任意投掷一枚长为()l l d <的针,求针与平行线相交的概率.的针,求针与平行线相交的概率.解 以x 表示从针的中点到最近一条平行线的距离,针与其所夹角为j ,则样本空间(,)0,02d x x j j ìüW =p íýîþ≤≤≤≤,事件A ={针与平行线相交}发生的等价条件“sin 2l x j ≤”,令{(,)sin ,(,)}2l D x x x j j j =ÎW ≤, 则样本空间为边长分别为p 及2d 的矩形,面积为的矩形,面积为 2d S W p =,且区域D 的面积的面积 0s i n d 2D l S l pj j ==ò, 则 2()D S l P A S dW==p .习 题1.3 1.某种动物的寿命在20年以上的概率为0.8,在25年以上的概率为0.4. 现有一该种动物的寿命已超过20年,求它能活到25年以上的概率.年以上的概率.解 设A ={该种动物能活到25年以上},B ={该种动物的寿命超过20年},即A B Ì.已知.已知()0.4, ()0.8P A P B ==. 所求概率为所求概率为 ()()(|)0.5()()P A B P A P A B P B P B ===. 2. 在100件产品中有5件是次品,从中不放回地抽取3次,每次抽1件. 求第三次才取得次品的概率.第三次才取得次品的概率.解 设i A ={第i 次取到合格品},B ={第三次才取到次品},由乘法公式有,由乘法公式有12312131295945()()()(|)(|)0.04601009998P B P A A A P A P A A P A A A ===××». 3.有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,三厂产品中合格品率分别为95%、90%、85%,现从这批产品中随机抽取一件,求该产品为合格品的概率.解 设1A ={甲厂的产品},2A ={乙厂的产品},3A ={丙厂的产品},B ={取到一件合格品}.即123,,A A A 构成一个完备事件组.则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.50.950.30.90.20.85=´+´+´=.4. 一袋中有黄球10个,红球6个. 若不放回取球两次,每次取一球. 求下列事件的概率:(1)两次都取到黄球;(2)第二次才取到黄球;(3)第二次取到黄球.取到黄球.解 设1A ={第一次取到黄球},2A ={第二次取到黄球},则,则(1)121211093()()(|)16158P A A P A P A A ==×=; (2)121216101()()(|)16154P A A P A P A A ==×=; (3)21211211096105()()(|)()(|)161516158P A P A P A A P A P A A =+=×+×=. 5. 一城市位于甲、乙两河的交汇处,若有一条河流泛滥,一城市位于甲、乙两河的交汇处,若有一条河流泛滥,该市就会受灾,该市就会受灾,已知在某季节内,甲、乙两河泛滥的概率均为0.01,且当甲河泛滥时引起乙河泛滥的概率为0.5.求在此季节内该市受灾的概率..求在此季节内该市受灾的概率.解 设A ={甲河泛滥甲河泛滥 },B ={乙河泛滥乙河泛滥 },由题意有,由题意有()0.01,()0.01,(|)0.5P A P B P B A ===,则 ()()(|)0.0P A B P A P B A ==.在此季节内该市受灾的概率为在此季节内该市受灾的概率为()()()()0.010.010.0050.015P A B P A P B P AB =+-=+-= .6. 在下列条件下,求:(|),(|), (), ()P A B P B A P AB P AB . (1)已知()0.4, ()0.3, ()0.18 P A P B P AB ===;(2)已知()0.4, ()0.3P A P B ==,且A ,B 互不相容.互不相容.解 (1)()0.18(|)0.6()0.3P AB P A B P B ===,()0.18(|)0.45()0.4P AB P B A P A ===,()()()0.30.180.12P AB P B P AB =-=-=,()()1()1[()()()]P AB P A B P A B P A P B P AB ==-=-+-1(0.40.30.18)0.48=-+-=.(2)由于A ,B 互不相容,故()0P AB =,所以,所以()(|)0()P AB P A B P B ==,()(|)0()P AB P B A P A ==,()()()()0.3P AB P B P AB P B =-==,()()1()1[()()]P AB P A B P A B P A P B ==-=-+ 1(0.40.3)0.3=-+=. 7. 某体育比赛采用五局三胜制,甲方在每一场比赛中胜乙方的概率是0.6(假定没有和局),求甲方最后取胜的概率.,求甲方最后取胜的概率.解 比赛采用五局三胜制,甲最终获胜,至少需要比赛三局,且最后一局必须是甲胜,而前面甲需要胜二局,例如,比赛三局,甲胜:甲甲甲;比赛四局,甲胜:甲乙甲甲,乙甲甲甲,甲甲乙甲;再由独立性,甲最终获胜的概率为甲胜:甲乙甲甲,乙甲甲甲,甲甲乙甲;再由独立性,甲最终获胜的概率为P (甲胜)=32323234(1)(1)p C p p C p p +-+-323232340.60.6(10.6)0.6(10.6)0.6826C C =+-+-=.8. 设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(1)取出的零件有一个为一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率.的条件下,后取的仍是一等品的条件概率.解 设i A ={第i 箱被挑中},i =1,2,121()()2P A P A ==;设j B ={第j 次取出的是一等品},j =1,2.(1)取出的零件有一个为一等品的概率为)取出的零件有一个为一等品的概率为12121212()()()P B B B B P B B P B B =+1211212122()()(|)()(|)P B B P A P B B A P A P B B A =+11040118120.205772504923029=××+××»,1211212122()()(|)()(|)P B B P A P B B A P A P B B A =+ 14010112180.205772504923029=××+××»,所求概率为所求概率为 12121212()()()0.4115P B B B B P B B P B B =+» . (2)1211212122211111212()()(|)()(|)(|)()()(|)()(|)P B B P A P B B A P A P B B A P B B P B P A P B A P A P B A +==+ 11091181725049230290.4856110118250230××+××=»×+×. 在先取的是一等品的条件下,后取的仍是一等品的条件概率为0.4856.9. 设玻璃杯整箱出售,每箱20只,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1. 一顾客选出一箱玻璃杯,随机查看4只,若无残次品,该顾客则购买此箱玻璃杯,否则不买.客则购买此箱玻璃杯,否则不买.求:(1)顾客买此箱玻璃杯的概率;(2)若顾客购买了此箱玻璃杯,箱中确实无残次品的概率.顾客购买了此箱玻璃杯,箱中确实无残次品的概率.解 设i A ={箱中有i 件 残次品},i =0,1,2;B ={顾客买下该箱玻璃杯},则,则012()0.8,()0.1,()0.1P A P A P A ===,441918012442020412(|)1,(|),(|)519C C P B A P B A P B A C C =====. (1)由全概率公式,有)由全概率公式,有001122()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++41210.80.10.10.943519=´+´+´».(2)由贝叶斯公式,有)由贝叶斯公式,有000()(|)10.8(|)0.848()0.943P A P B A P A B P B ´==». 10. 某年级三个班报名参加志愿者的人数分别为10人、15人、25人,其中女生的分别为3人、7人、5人.人.现随机地从一个班报名的学生中先后选出两人,求:(1)先选出的是女生的概率;(2)已知后选出的是男生,而先选出的是女生的概率.的是女生的概率.解 设i A ={取到第i 班报名表},i =1,2,3,1231()()()3P A P A P A ===; 设j B ={第j 次选出的报名表是女生},j =1,2.(1)由全概率公式,有)由全概率公式,有1111212313()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++1317152931031532590=´+´+´=.(2)已知后选出的是男生,先选出的是女生的概率为12122()(|)()P B B P B B P B =, 而 2121222323()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 17181206131031532590=´+´+´=, 12112121223123()()(|)()(|)()(|)P B B P A P B B A P A P B B A P A P B B A =++13717815202310931514325249´´´=´+´+´=´´´, 从而从而 12122()2920(|)()619061P B B P B B P B ===. 11. 某产品的合格品率为97%时则达到行业标准.商家批量验收时,误拒收“达标的产品”的概率为0.02,误接收“未达标产品”的概率为0.05. 求一批产品被接收,此批产品确已达标的概率.解 设A ={产品合格},A ={产品不合格},()0.97,()0.03P A P A ==; B ={接收产品},B ={拒收产品},(|)0.02,(|)0.05P B A P B A ==.由贝叶斯公式,所求概率为()(|)(|)()(|)()(|)P A P B A P A B P A P B A P A P B A =+0.970.980.99840.970.980.030.05´=»´+´.12. 一盒中有12个乒乓球,其中9个是新的.第一次比赛时从中任取3个来用,比赛后仍放回盒中,第二次比赛时再从盒中任取3个.个. 求:(1)第二次取出的球皆为新球的概率;(2)若第二次取的球皆为新球,求第一次取到的都是新球的概率.都是新球的概率.解 设i A ={第一次取到i 个新球},i =0,1,2,3, B ={第二次取出的都是新球}.312213393939012333331212121212710884(),(),(),()220220220220C C C C C C P A P A P A P A C C C C ========.3398013312128456(|),(|)220220C C P B A P B A C C ====,3376233312123520(|),(|)220220C C P B A P B A C C ====. (1)由全概率公式,有)由全概率公式,有00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++0.1458»;(2)由贝叶斯公式,有)由贝叶斯公式,有333()(|)(|)0.2381()P A P B A P A B P B =».13. 某人忘记了某电话号码的最后一个数字,但知最后一个数字为奇数,求拨号不超过3次而接通电话的概率.次而接通电话的概率.解 设i A ={第i 次拨号拨通电话},i =1,2,3, B ={拨号不超过3次接通电话},则112123B A A A A A A = .11()5P A =,12121411()()(|)545P A A P A P A A ==×=,1231213124311()()(|)(|)5435P A A A P A P A A P A A A ==××=,故 1121233()()()()5P B P A P A A P A A A =++=.14. 某仓库有同样规格的产品12箱,其中甲、乙、丙三个厂生产的产品分别为6箱、4箱、2箱,且三个厂的次品率分别为8%、6%、5%. 现从12箱中任取一箱,再从该箱中任取一件产品,求取到一件次品的概率.箱中任取一箱,再从该箱中任取一件产品,求取到一件次品的概率.解 设1A ={甲厂的产品},2A ={乙厂的产品},3A ={丙厂的产品},B ={取到一件次品}.即123,,A A A 构成一个完备事件组.构成一个完备事件组. 则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++6420.080.060.050.0683121212=´+´+´=.15. 第一箱中有2个白球和6个黑球,第二箱中有4个白球与2个黑球. 现从第一个箱中任取出两球放到第二个箱中,然后从第二个箱中任意取出一球,求此球是白球的概率.求此球是白球的概率.解 设1A ={从第一箱中取出2个白球},2A ={从第一箱中取出1个白球1个黑球},3A ={从第一箱中取出2个黑球},B ={从第二箱中取出1个白球}. 即123,,A A A 构成一个完备事件组,且构成一个完备事件组,且1122266212122288811215(),(),()282828C C C C P A P A P A C C C ======.则 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++16125154928828828816=´+´+´=.16. 设袋中有n 个黑球,m 个白球,现从袋中依次随机取球,每次取一个球,观察颜色后放回,并加入1个同色球和2个异色球. 求第二次取到黑色球且第三次取到白色球的概率.且第三次取到白色球的概率.解 设i A ={第i 次取到白色球},i =1,2,3,则所求概率为,则所求概率为 2312311231()()(|)()(|)P A A P A P A A A P A P A A A =+23143636mn m nn m n m n m n m n m n m n m ++++=××+××++++++++++.习 题 1.41. 已知()0.4, ()=0.3P A P B =,且A 、B 相互独立,试求:(|),(),P A B P A B (), (), ()P AB P AB P A B .解 ()()()(|)()0.4()()P A B P A P B P A B P A P B P B ====,()()()()()()()()0.58P A B P A P B P AB P A P B P A P B =+-=+-= ,()()()(10.4)0.30.18P AB P A P B ==-´=, ()()()(10.4)(10.3)0.42P AB P A P B ==-´-=,()()()()(10.4)0.30.180.72P A B P A P B P AB =+-=-+-= .2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8,求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.目标被命中的概率.解 设A ={甲击中目标},B ={乙击中目标},则()0.7,()0.8P A P B ==. (1)()()()0.70.80.56P AB P A P B ==´=;(2)()()()()()()()0.38P AB AB P AB P AB P A P B P A P B =+=+= ; (3)()()()()()()()()0.94P A B P A P B P AB P A P B P A P B =+-=+-= . 3. 甲、乙二人约定,将一枚匀称的硬币掷三次,若至少出现两次正面,则甲胜;否则乙胜.求甲胜的概率.则甲胜;否则乙胜.求甲胜的概率.解 至少出现两次正面包含两种情况:恰有两次出现正面、三次都是正面.恰有两次出现正面的概率为223113()228C ×=;三次都是正面的概率为33311()28C =.故甲胜的概率为故甲胜的概率为311882+=. 5. 甲、乙二人进行棋类比赛,假设没有和棋,每盘甲胜的概率为p ,乙胜的概率为1-p . 每盘胜者得1分,输者得0分.分. 比赛独立地进行到有一人首先超过对方2分时结束.分时结束. 求甲首先超过对方2分的概率.分的概率.解 设{}C =甲首先超过对方甲首先超过对方22分,每盘比赛若甲胜记为A , 若乙胜记为B , 根据题意,比赛共进行偶数盘,若甲首先超过对方2分时,则有分时,则有共赛两盘共赛两盘: :AA ; 共赛四盘共赛四盘: :ABAA BAAA ; 共赛六盘共赛六盘: :ABABAA BAABAA ABBAAA BABAAA ; 共赛八盘共赛八盘: :ABABABAA BAABABAA ABBAABAA ABABBAAABABAABAA BAABBAAA ABBABAAA BABABAAA ; ……即 23242353464()2(1)2(1)2(1)2(1)P C p p p p p p p p p =+-+-+-+-+ 2222333444[12(1)2(1)2(1)2(1)]p p p p p p p p p =+-+-+-+-+20[2(1)]kk p p p ¥==-å212(1)p p p =--.6. 一汽车沿一街道行驶,要经过三个有信号灯的路口,每个信号灯工作都是相互独立,且红、黄、绿信号显示时间的比例为2:1:2,求此车通过三个路口时遇到一次红灯的概率.口时遇到一次红灯的概率.解 汽车经过三个有信号灯的路口,可以看作是3重伯努利试验.此车通过三个路口时遇到一次红灯的概率为过三个路口时遇到一次红灯的概率为12323()()0.43255C ×=. 7. 甲、乙、丙三人同时独立的向一飞机射击,他们击中飞机的概率分别为0.4,0.5,0.7. 设若只有一人击中,飞机坠毁的概率为0.2,若恰有两人击中,飞机坠毁的概率为0.5,若三人均击中,,若三人均击中,飞机坠毁的概率为飞机坠毁的概率为0.8. 求飞机坠毁的概率.毁的概率.解 设i A ={飞机被i 个人击中},i =1,2,3, B ={飞机坠毁},由独立性有,由独立性有1()0.40.50.30.60.50.30.60.50.70.36P A =´´+´´+´´=, 2()0.40.50.30.40.50.70.60.50.70.41P A =´´+´´+´´=, 3()0.40.50.70.14P A =´´=.123(|)0.2,(|)0.5,(|)0.8P B A P B A P B A ===, 故 31()()(|)0.360.20.410.50.140.80.389i ii P B P A P B A ===´+´+´=å.8. 某厂生产的仪器,经检验可直接出厂的占0.7,需调试的占0.3,调试后可出厂的占0.8,调试后仍不能出厂的占0.2. 现新生产(2)n n ≥台仪器(设每台仪器的生产过程相互独立),求:(1)全部能出厂的概率;(2)恰有两台不能出厂的概率;(3)至少两台不能出厂的概率.)至少两台不能出厂的概率.解 设A ={1台仪器可直接出厂}, B ={1台仪器最终能出厂},则,则,A B B A BA Ì=+,()()()()()(|)0.70.30.80.94p P B P A P BA P A P A P B A ==+=+=+´=. (1)P {仪器全部能出厂}0.94n n p ==; (2)P {恰有两台不能出厂}222222(1)0.940.06n nn nn nC pp C----=-=;(2)P {至少两台不能出厂}11111[(1)]10.940.060.94nn nn n n p C p p C --=-+-=--×.9. 5个元件工作独立,每个元件正常工作的概率为p ,求以下系统正常工作的概率.,求以下系统正常工作的概率.(1)串联;(2)并联;(3)桥式连接(如图1.4.1).解 设C 为系统正常工作,利用独立性有为系统正常工作,利用独立性有(1) 当元件串联时,需5个元件都正常工作,系统才能正常工作:个元件都正常工作,系统才能正常工作:5555()P C C p p ==;(2)当元件并联时,5个元件至少有一个正常工作,系统才能正常工作:5()1(1)P C p =--;(3)记中间的元件为5A ,左面两个元件分别为13,A A ,右面两个元件为24,A A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档