芳烃简介

合集下载

多环芳烃PAH简介

多环芳烃PAH简介

PAHspolycyclic aromatic hydrocarbons联系方式:Hanmenduxue@什么是多环芳烃•多环芳烃是分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等200 余种化合物。

•英文全称为polycyclic aromatic hydrocarbon,简称PAHs。

•有些多环芳烃还含有氮、硫和环戊浣;•常见的多环芳烃具有致癌作用(多为四到六环的稠环化合物)。

•国际癌研究中心(IARC)(1976年)列出的94种对实验动物致癌的化合物。

其中15种属于多环芳烃,由于苯并[a]芘是第一个被发现的环境化学致癌物,而且致癌性很强,故常以苯并[a]芘作为多环芳的代表,它占全部致癌性多环芳烃10%-20%。

来源多环芳烃的污染源有自然源和人为源两种。

9自然源主要是火山爆发、森林火灾和生物合成等自然因素所形成的污染。

9目前,产生多环芳烃人为源主要有以下几种:( 1)石油化工厂、焦化厂、炼油厂等工业污染源,向大气和水体排放相当数量的PAHs;(2)柴油机、汽油发动机工作时,由于燃料不完全燃烧产生一定量的PAHs;(3) 修建公路使沥青加热时排放的沥青烟气,含有大量的PAHs;( 4)露天焚烧废旧轮胎、塑料及城市垃圾时排放的PAHs;( 5 ) 锅炉燃烧、家庭小炉灶燃烧时排放的PAHs、香烟烟雾中含有多种致癌性PAHs,用木炭烧烤肉制品时,排放的烟气和食品中都产生大量的PAHs; (6)家庭装修中,粘合木质材料的胶中含有PAHs。

9四环以下分子量较的多环芳烃多以蒸气态存在,而分子量较大的则被吸附在颗粒物表面,尤其是在小于5μM的颗粒上,可以进入肺的深部。

空气中的颗粒可以在空气中悬浮几天到几周,从而形成远距离转移。

分布•人类在工农业生产,交通运输和日常生活中大量使用的煤炭,石油,汽油,木柴等燃料,可产生多环芳烃的污染.•每公斤燃料燃烧所排出的苯并[α]芘量分别约为:煤炭67~137mg,木柴61~125mg,原油40~68mg,汽油12~50mg.因此,人类的外环境如大气,土壤和水中都不同程度地含有苯并[α]芘等多环芳烃.•多环芳烃在大气的污染为其直接进入食品—落在蔬菜,水果,谷物和露天存放的粮食表面创造了条件.食用植物也可以从受多环芳烃污染的土壤及灌溉水中聚集这类物质,多环芳烃污染水体,可以使之通过海藻,甲壳类动物,软体动物和鱼组成的食物链向人体转移,最终都有可能聚集在人体中.毒性•环芳烃的致癌性已被人们研究了200多年,被证实具有致癌、致畸、致突变的作用。

多环芳烃的介绍

多环芳烃的介绍

多环芳烃(PAHs)的介绍一、简介PAHs,学名多环芳烃。

是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一.在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。

PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。

PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。

PAHs主要包括以下16种同类物质:1 Naphthalene 萘2 Acenaphthylene 苊烯3 Acenaphthene 苊4 Fluorene 芴5 Phenanthrene 菲6 Anthracene 蒽7 Fluoranthene 荧蒽8 Pyrene 芘9 Benzo(a)anthracene 苯并(a)蒽10 Chrysene 屈11 Benzo(b)fluoranthene 苯并(b)荧蒽12 Benzo(k)fluoranthene 苯并 (k)荧蒽13 Benzo(a)pyrene 苯并(a)芘14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯)性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。

我们为您提供的测试标准:EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!二、来源有机物的不完全燃烧,煤/油/气/烟草/烤肉/木炭,原油,木馏油,焦油,药物,染料,塑料,橡胶,农药,发动机,发电机产生PAHs石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一.在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。

16种多环芳烃简介

16种多环芳烃简介

萘(NAPHTHALENE)
分子式:C10H8
毒性:属低毒类。
健康危害:具有刺激作用,高浓度 致溶血性贫血及肝、肾损害。
侵入途径:吸入、食入、经皮吸收 急性中毒:吸入高浓度萘蒸气或 粉尘时,出现眼及呼吸道刺激、 角膜混浊、头痛、恶心、呕吐、 食欲减退、腰痛、尿频、尿中出 现蛋白及红白细胞。亦可发生视 神经炎和视网膜炎。重者可发生 中毒性脑病和肝损害。口服中毒 主要引起溶血和肝、肾损害,甚 至发生急性肾功能衰竭和肝坏死 。
致突变性:
微粒体致突变:鼠伤寒沙门氏 菌50μg/plate(JJIND862,893,79) ;
DNA损伤:大肠杆菌
10μmol/L(MUREAV 89,95,81)
分子式:C13H10
用途:用作有机合成原料。可制成 三硝基芴酮,用于静电复印;合 成芳基透明尼龙;可代替蒽醌合 成阴丹士林染料;用于制造抗痉 挛药、镇静药,镇痛药,降血压 药;合成杀虫剂,除草剂;制备 抗冲击有机玻璃和芴醛树脂;亦 可用作湿润剂,洗涤剂,液体闪 光剂,消毒剂等。
慢性中毒:反复接触萘蒸气,可引 起头痛、乏力、恶心、呕吐和血 液系统损害。可引起白内障、视 神经炎和视网膜病变。皮肤接触 可引起皮炎。
蒽(ANTHRACENE )
分子式:C14H10 侵入途径:吸入、食入、经皮吸收。
健康危害:纯品基本无毒。工业品因 含有菲、咔唑等杂质,毒性明显增 大。由于本品蒸气压很低,故经吸 入中毒可能性很小。对皮肤、粘膜 有刺激性;易引起光感性皮炎。
毒性:属微毒类。对动物有致癌 作用,对皮肤有刺激作用和致 敏作用。
急性毒性:LD501.8~2g/kg(大鼠 经口);700mg/kg(小鼠经口)
致肿瘤:小鼠经皮最小中毒剂量 71mg/kg阳性。

加州汽油标准 芳烃 烯烃

加州汽油标准 芳烃 烯烃

加州汽油标准芳烃烯烃
加州汽油标准是指加利福尼亚州政府制定的一系列规定,旨在
保护环境和人类健康,减少汽车尾气排放对空气质量的影响。

其中,芳烃和烯烃是汽油中的两种重要化合物。

芳烃是一类含有芳香环结构的化合物,常见的芳烃化合物包括苯、甲苯、二甲苯等。

芳烃在燃烧过程中会产生有害的尾气排放物,例如苯类化合物会对人体健康产生负面影响,甚至可能导致癌症。

为了减少这些有害物质的排放,加州汽油标准规定了芳烃的最大含
量限制。

根据加州空气资源委员会(CARB)的规定,加州汽油中芳
烃的最大含量为10%。

烯烃是一类含有碳碳双键的化合物,常见的烯烃化合物包括乙烯、丙烯、丁烯等。

烯烃在燃烧过程中也会产生有害的尾气排放物,例如一氧化碳和氮氧化物。

为了减少这些有害物质的排放,加州汽
油标准同样规定了烯烃的最大含量限制。

根据CARB的规定,加州汽
油中烯烃的最大含量为1.0%。

加州汽油标准的制定是为了提高空气质量,减少汽车尾气排放
对环境和人类健康的影响。

这些标准要求汽油供应商在加州销售的
汽油中控制芳烃和烯烃的含量,以确保车辆燃烧汽油时产生的有害
物质尽量少。

同时,加州政府也鼓励汽车制造商开发更环保的车辆
技术,例如电动汽车和混合动力汽车,以进一步减少尾气排放和对
环境的影响。

总之,加州汽油标准对芳烃和烯烃的含量进行了限制,以保护
环境和人类健康。

这些标准是加州政府为改善空气质量所采取的一
项重要措施,旨在减少汽车尾气排放对空气质量的负面影响。

芳香族化合物1、含苯环的的有机化合物2、芳香烃

芳香族化合物1、含苯环的的有机化合物2、芳香烃

易取代、能加成、难氧化
常 见 的 烃
第二节
芳香烃的来源与应用
一、芳香烃的来源
起初来源:煤焦油 现代来源:石油化学工业中的催化重整和裂化
作为基本有机原料应用最多的 芳烃是:苯、乙苯、对二甲苯……
常 见 的 烃
二、苯的同系物 1.定义
--苯环上氢原子被烷基代替而得到的芳烃 苯环上可以连接1~6个烷基
升高温度、增大反应物浓度、增大压强、使用催化剂
常 见 的 烃
(1)氧化反应
反应机理
| —C—H |
高锰酸钾的酸性溶液
O || C—OH |
烷基上与苯环直接相连的碳含氢
H | —C—H | H H | | —C—C— | | H C | —C—C | C
能被氧化
能被氧化
不能被氧化
常 见 的 烃
CH3 CH3 | | CH3 HOOC CH3 — C — CH | 3 KMnO /H+ | | 4 | CH3—CH— —C—CH3 CH 3 | | HOOC — CH2—R CH3 | COOH

是黏合剂、油性涂料、油墨等的常用有机溶剂 操作车间空气中苯的浓度≤40mg· m-3 居室内空气中苯含量平均每小时≤0.09mg· m-3 制鞋、皮革、箱包、家具、喷漆、油漆等工作 引起急性中毒或慢性中毒,诱发白血病 致癌物质 萘——过去卫生球的主要成分 秸秆、树叶等不完全燃烧形成的烟雾中 香烟的烟雾中
稠环 芳烃
常 见 的 烃
归纳整理:脂肪烃与芳香烃的比较 烃 烷烃 烯烃 炔烃 芳香烃 碳碳键结构特点 化学性质
碳碳单键 碳碳双键 碳碳三键 介于单双键间的碳碳键
常 见 的 烃
常 见 的 烃
苯的结构——凯库勒式

有机化学-芳烃(全面剖析)

有机化学-芳烃(全面剖析)

苯的氢化热预计: 120 * 3 = 360 kJ/mol 苯的氢化热实测: 208 kJ/mol 离域能(或共轭能) :360 - 208 = 152 kJ/mol
五、苯的共振式和共振论的简介 基本要点: 1.当一个分子、离子或游离基按照理论可以写出两 个以上经典结构式时,这些经典结构式构成了一个 共振杂化体,共振杂化体接近实际分子。
H H H
H
闭 合 H共 轭 体 系 H
三、苯的分子轨道模型
y6=0.408(-f1+f2-f3+f4-f5+f6) y5=0.289(-2f1+f2+f3-2f4+φ5+f6) y4=0.500(f2-f3+f5-f6)
反键轨道
成键轨道
y3=0.500(f2+f3-f5-f6) y2=0.289(2f1+f2-f3-2f4-f5+f6) y1=0.408(f1+f2+f3+f4+f5+f6)
SO3H
﹢ + H3O
+ H2O ……④
4. 傅瑞德—克拉夫茨(Friedel-Crafts)反应
包括 烷基化—— 被 -R 取代 O 酰基化—— 被 R-C- 取代 催化剂:AlCl3 、 FeCl3 、BF3等路易斯酸 烷基化试剂:卤代烷、烯、醇等
C2H5
① 烷基化反应
+ C2H5Br
AlCl3
甲苯基--甲苯分子中苯环上减去一个H所得基团叫甲苯基.
CH2Cl
CH2OH
苄氯(氯化苄)
苄醇(苯甲醇)
5. 苯的衍生物命名 a. -NO2 、-NO、-X 与苯相连时,苯作母体

煤制芳烃简介

煤制芳烃简介

煤制芳烃简介一、产品市场情况我国高质量芳烃产品的生产主要来自石油技术路线,由乙烯裂解生产芳烃产品。

随着对芳烃需求的日益增长,作为芳烃生产原料的石油资源,面临着越来越严重的短缺局面,已成为制约我国芳烃发展的主要瓶颈之一。

芳烃为大宗基础有机化工原料,目前我国年消费量超过2000万吨。

是化纤、工程塑料及高性能塑料等的关键原料,广泛用于服装面料、航空航天、交通运输、装饰装修,电器产品、移动通讯等。

目前芳烃97%以上来源依赖于石油原料,由于受到产能影响,多年来对外依存都接近总需求量的50%。

芳烃产品中产能最大、与国民经济密切相关的对二甲苯,2012年的产量是773万吨,表观消费量1382万吨,自给率55.9%。

2012年,我国芳烃进口量达609万吨,对外依存度为44%。

截止2013年国内PX产能仅896万吨,对外依存度达46%。

预测2015PX进口1000万吨,投资空间3000亿元。

同时,中国PX产能增长一直比较缓慢。

一些拟建或建成的PX装臵因种种原因未能按计划投产,导致国内PX产不足需矛盾加剧。

随着厦门、福州、大连、咸阳等PX项目因当地群众抗议而被迫搁浅。

中国PX正遭遇后续项目断档的危机,这为煤制芳烃的成长与发展提供了巨大的空间。

‚页岩气大规模开发,已经将石油化工领域‘三烯三苯’格局打破,将页岩气作为原料生产烯烃,产品大部分是乙烯,丙烯很少,几乎没有芳烃。

造成了国际上芳烃价格的上涨。

未来十年内芳烃还会处于紧缺状态,5-6年内价格还会上涨。

与芳烃缺口形成鲜明对比的是甲醇的产能过剩。

来自氮肥工业协会统计数据显示,2012年我国甲醇产量为3164万吨,同比增加19.08%,装臵开工负荷仅61.3%。

近年来,我国每年芳烃缺口约为600万至700万吨,如果按1吨芳烃消耗3吨甲醇计算,那么仅用来制芳烃的甲醇就将达到每年2000多万吨。

截止2013底,我国只建成陕西华电榆横煤化工有限公司万吨级中试装臵和内蒙庆华集团10 万吨甲醇制芳烃装臵,国内总产能达11万吨。

芳香烃的定义

芳香烃的定义

芳香烃的定义.txt大悲无泪,大悟无言,大笑无声。

我们手里的金钱是保持自由的一种工具。

女人在约会前,一定先去美容院;男人约会前,一定先去银行。

芳香烃的定义简介芳香族化合物在历史上指的是一类从植物胶里取得的具有芳香气味的物质,但目前已知的芳香族化合芳香烃物中,大多数是没有香味的。

因此,芳香这个词已经失去了原有的意义,只是由于习惯而沿用至今。

[1]? 芳香族化合物是符合休克尔规则的碳环化合物及其衍生物的总称。

它们的分子中都具有闭合环状的共轭体系;Π电子满足4n+2,且高度离域;键长平均化.因此,该类化合物虽然具有高度不饱和的情况,但性质却是比较稳定的,比如容易发生取代,而难加成和氧化。

本部分重点掌握芳烃的结构、命名、化学性质、定位效应以及应用于有机合成。

[2]? 命名两种情况:一是单环芳烃的命名,通常以苯环作母体,烷基作取代基。

二是结构比较复杂的芳烃,通常以烃基为母体,苯环作取代基。

例如:1,2-二甲苯;2-甲基-3-苯基戊烷;二苯甲烷等。

对于多官能团化合物的命名,注意判断官能团的优先次序。

排在前面的优先为母体。

一般为:正离子、COOH、SO3H、COOR、COCl、CONH2、CN、CHO、CO、OH、SH、NH2、炔、烯、醚、X、NO2等。

[2]?结构苯分子的结构特点:1、6个C都是sp2杂化2、所有原子共平面3、分子中有闭合环状的共轭体系,键长平均化4、稳定性高[2]?编辑本段芳香烃的来源芳香烃主要来源于煤、焦油和石油。

芳香烃不溶于水,溶于有机溶剂。

芳香烃一般比水轻;沸点随芳香烃分子量的增加而升高。

芳香烃易起取代反应,在一定条件下也能起加成反应。

如苯跟氯气在铁催化剂条件下生成氯苯和氯化氢,在光照下则发生加成反应生成六氯化苯(C6H6Cl6)。

芳香烃主要用于制药、染料等工业。

编辑本段性质介绍亲电取代反应主要包含五个方面:卤代:与卤素及铁粉或相应的三卤化铁存在的条件下,可以发生苯环上的H被取代的反多环芳香烃应。

芳香烃

芳香烃
+ H2
H = –120kJ/mol
+ 3 H2
H = –208kJ/mol
苯的结构


苯分子是正六边形结构,六个碳原子和六个氢原子 在同一平面上,相邻的碳碳键之间的夹角是120, 碳碳键的键长都是0.139nm。 六个碳原子都是s p2杂化,所有的 键都在同一平 面上。每个碳原子都有一个未参加杂化的P轨道, 并且都垂直于键所构成的平面,六个p轨道侧面 相互重叠形成一个闭合的大 键共轭体系。大 键的电子云就象两个救生圈分布在分子平面的上下 方。 由于 电子的充分离域,离域能大,体系的势能就 低,因此,苯环就特别稳定。由于苯分子中所有的 碳碳键完全相同,为此,常常用正六边形内加一个 圆圈来表示苯的结构。
甲苯
乙苯
丙苯
异丙苯
单环芳香烃的异构和命名

苯的二元取代物有三种异构体。 例如:
C H3 C H3 C H3 C H3 C H3 C H3
1,2-二甲苯 1,3-二甲苯 1,4-二甲苯 (邻二甲苯或o-二甲苯) ( 间二甲苯或m-二甲苯) (对二甲苯或p-二甲苯)
单环芳香烃的异构和命名

取代基相同的三元取代物有三种异构体。 例如:
C H3 H3 C C H3 C H3 C H3 H3 C C H3 C H3 C H3
1,2,3-三甲苯 (连三甲苯)
1,2,4-三甲苯 (偏三甲苯)
1,3,5-三甲苯 (均三甲苯)
苯基

苯分子上去掉一个氢原子剩下的基团 C6H5—叫做苯基。可简写作Ph-。
甲苯基和苯甲基

甲苯分子中苯环上去掉一个氢原子, 得到甲苯基,
苯的共振能
+ 3 H2
150.0(共振能)

芳烃Aromatichydrocarb

芳烃Aromatichydrocarb

在化学工业中的应用
溶剂
芳烃aromatichydrocarb具有较 高的溶解能力和稳定性,常被用 作化学反应的溶剂,如酯化、醚
化、缩合等反应。
合成材料
芳烃aromatichydrocarb可以作 为合成塑料、合成纤维和合成橡 胶等高分子材料的单体或原料, 广泛应用于塑料制品、纺织品和
橡胶制品的生产。
环保领域
芳烃aromatichydrocarb可以用 于废气处理和污水处理等领域, 具有较强的吸附和脱附性能。
04
芳烃 aromatichydrocarb的 未来发展与挑战
面临的挑战
01
环境保护压力
随着全球环保意识的提高,芳烃aromatichydrocarb的生产和使用过程
中产生的污染问题面临越来越大的压力,需要采取有效措施降低环境污
染料和颜料
芳烃aromatichydrocarb可以作 为染料和颜料的重要原料,用于 纺织品、皮革、纸张等材料的染
色和着色。
在医药领域的应用
药物合成
芳烃aromatichydrocarb是许多药物合成的重要原料,如抗生素、 镇痛药、抗癌药等。
诊断试剂
芳烃aromatichydrocarb可以作为诊断试剂中的标记物,用于检测 生物体内的抗原、抗体、激素等物质。
医疗器械
芳烃aromatichydrocarb可以用于制造医疗器械,如导管、支架、 人工关节等。
在其他领域的应用
电子工业
芳烃aromatichydrocarb可以作 为电子元件和电路板制造中的绝 缘材料和封装材料。
能源领域
芳烃aromatichydrocarb可以作 为燃料添加剂,提高燃料的燃烧 效率和环保性能。

芳烃简介——精选推荐

芳烃简介——精选推荐

芳烃车间简介芳烃车间是化工一厂主要生产车间之一,管理着两套芳烃抽提装置,其中芳烃抽提一套装置总投资约为八千万元,占地约为 2.74万平方米,设计年加工加氢汽油10万吨,实际年加工加氢汽油8万吨,芳烃抽提一套装置于1992年9月建成试车,1994年3月开始正式生产;芳烃抽提二套装置总投资约为六千万元,占地约为 1.24万平方米,设计年加工加氢汽油12万吨,实际年加工加氢汽油12万吨,芳烃抽提二套装置于1999年7月建成试车并开始正式生产;两套装置既可单独生产,也可以互相供料,根据原料供应情况灵活变化,降低能耗物耗。

这两套芳烃抽提装置均采用北京石科院的技术专利,两套装置均由大庆石化总厂工程公司承包建设。

芳烃抽提装置由抽提、精馏、公用工程、罐区等部分组成,是以裂解加氢汽油为原料,采用环丁砜抽提技术(UOP抽提技术),以环丁砜为溶剂进行液液抽提,并应用萃取蒸馏和汽提蒸馏,将原料中的混合芳烃分离出来,再经普通精馏进一步分离成纯度较高的最终产品:苯、甲苯、二甲苯以及副产品:抽余油、碳九芳烃。

芳烃抽提一套装置设计能耗为155千克标油/吨原料油,芳烃抽提二套装置设计能耗为147千克标油/吨原料油。

两套同时运行的实际能耗为185千克标油/吨原料油。

芳烃抽提装置从2002年开始采取“两头一尾”操作方案,即开一、二套芳烃抽提系统和二套精馏系统,一套精馏不开备用的模式生产,采取这种操作方案之后,装置能耗大大下降,员工劳动强度也相对减少。

经过多年的实践,能耗为140千克标油/吨原料油。

芳烃车间共有设备419台,其中动设备126台,静设备293台,占地面积20400m2,2011年10月有员工70人,生产班组6个,采取五班三倒一白班制。

1.1.3 工艺流程说明1.1.3.1 芳烃一套装置抽提系统(1)抽提塔T-101塔从G1单元输送来的原料加氢汽油经累计流量表计量同时经抽余油混对后进入原料油中间罐,并由抽提进料泵抽出,经预热后由进料流量调节阀调节送入抽提塔。

芳香烃及亲电取代反应

芳香烃及亲电取代反应

温度对反应速率和产物有一定影响, 通常升高温度有利于提高反应速率。
溶剂
溶剂的极性和酸碱性对反应速率和产 物影响较大。
定位规则
第一类定位基
使苯环活化,增加苯环上羟基的取代 活性,邻对位为主。
第二类定位基
使苯环钝化,降低苯环上羟基的取代 活性,间位为主。
03 芳香烃的亲电取代反应的 实例
甲苯的亲电取代反应
羟基的活化
在苯酚中,羟基(—OH)是一个活化基团,可以与亲电试剂发生 取代反应。
烷基化
在酸性条件下,苯酚与卤代烷反应,生成烷基化的产物,如2-溴丙 烷和2-氯丁烷。
芳香化
在催化剂的作用下,苯酚与甲醛反应,生成酚醛树脂。
硝基苯的亲电取代反应
硝基的活化
在硝基苯中,硝基(— NO2)是一个活化基团, 可以与亲电试剂发生取代 反应。
合成激素
芳香烃亲电取代反应可以用于合成激素类药物,如肾上腺素、胰岛素等。这些激素类药物对于调节人体生理功能具有 重要作用。
合成抗生素
芳香烃亲电取代反应可以用于合成各种抗生素,如青霉素、头孢菌素等。这些抗生素对于治疗各种细菌 感染具有重要作用。
材料科学
高分子材料
芳香烃亲电取代反应可以用于合成高分子材料,如聚乙烯、 聚丙烯等。这些高分子材料在塑料、纤维等领域有广泛应用 。
合成香料
芳香烃亲电取代反应在香料合成中也有重要应用,如苯甲 醛、苯乙酮等香料的合成。这些香料在香水、化妆品、食 品等领域有广泛应用。
合成农药
芳香烃亲电取代反应可以用于合成农药,如苯酚、苯胺等 农药的合成。这些农药对于防治农作物病虫害具有重要作 用。
药物合成
合成生物碱
芳香烃亲电取代反应在生物碱的合成中具有重要应用,如吗啡、可卡因等生物碱的合成。这些生物碱具有特定的生理 活性,在医疗领域有广泛应用。

芳烃技术简介

芳烃技术简介

芳香烃芳香烃简称“芳烃”,通常指分子中含有苯环结构的碳氢化合物。

是闭链类的一种。

具有苯环基本结构,历史上早期发现的这类化合物多有芳香味道,所以称这些烃类物质为芳香烃,后来发现的不具有芳香味道的烃类也都统一沿用这种叫法。

例如苯、萘等。

苯的同系物的通式是CnH2n-6(n≥7)。

根据结构的不同可分为三类:①单环芳香烃,如苯的同系物②稠环芳香烃,如萘、蒽、菲等;③多环芳香烃,如联苯、三苯甲烷。

主要来源于石油和煤焦油。

芳香烃在有机化学工业里是最基本的原料。

现代用的药物、炸药、染料,绝大多数是由芳香烃合成的。

燃料、塑料、橡胶及糖精也用芳香烃为原料。

芳香烃主要来源于煤、焦油和石油。

芳香烃不溶于水,溶于有机溶剂。

芳香烃一般比水轻;沸点随分子量的增加而升高。

芳香烃易起取代反应,在一定条件下也能起加成反应。

如苯跟氯气在铁催化剂条件下生成氯苯和氯化氢,在光照下则发生加成反应生成六氯化苯(C6H6Cl6)。

芳香烃主要用于制药、染料等工业。

芳香族化合物在历史上指的是一类从植物胶里取得的具有芳香气味的物质,但目前已知的芳香族化合物中,大多数是没有香味的.因此,芳香这个词已经失去了原有的意义,只是由于习惯而沿用至今.多环芳香烃的简介多环芳香烃(Polycyclic Aromatic Hydrocarbons, PAH),分子中含有两个或两个以上苯环结构的化合物,是最早被认识的化学致癌物。

早在1775年英国外科医生Pott就提出打扫烟囱的童工,成年后多发阴囊癌,其原因就是燃煤烟尘颗粒穿过衣服擦入阴囊皮肤所致,实际上就是煤炱中的多环芳香烃所致。

多环芳香烃也是最早在动物实验中获得成功的化学致癌物。

1915年日本学者Yamagiwa 和Ichikawa,用煤焦油中的多环芳香烃所致。

在五十年代以前多环芳香烃曾被认为是最主要的致癌因素,五十年代后各种不同类型的致癌物中之一类。

但从总的来说,它在致癌物中仍然有很重要的地位,因为至今它仍然是数量最多的一类致癌物,而且分布极广。

16种多环芳烃简介

16种多环芳烃简介

致癌性:IARC列为对实验动物有 足够证据致癌物。Ames试验鼠 伤寒沙门氏菌TA100、TA98 +S9阳性;小鼠皮下最小中毒 剂量2mg/kg阳性;小鼠非肠道 最小中毒剂量8mg/kg阳性;小 鼠种植最小中毒剂量80mg/kg 阳性;小鼠经皮最小中毒剂
用途:用作有机合成原料。可制成 三硝基芴酮,用于静电复印;合 成芳基透明尼龙;可代替蒽醌合 成阴丹士林染料;用于制造抗痉 挛药、镇静药,镇痛药,降血压 药;合成杀虫剂,除草剂;制备 抗冲击有机玻璃和芴醛树脂;亦
240mg/kg(5周)阳性。
可用作湿润剂,洗涤剂,液体闪
致突变性:
光剂,消毒剂等。
微粒体致突变:鼠伤寒沙门氏
菌50μg/plate(JJIND862,893,79);
DNA损伤:大肠杆菌
10μmol/L(MUREAV 89,95,81)
分子式:C12H10 侵入途径: 吸入、食入。 健康危害: 本品对眼睛、皮肤、
粘膜和上呼吸道有刺激性。
毒性: 属微毒类。 急性毒性: LD5010g/kg(大鼠经
口);2.1g/kg(小鼠经口)
苯并(A)蒽BENZO(A)ANTHRACENE
芴(FLUORENE)
分子式:C18H12
分子式:C13H10
慢性中毒:反复接触萘蒸气,可引 起头痛、乏力、恶心、呕吐和血 液系统损害。可引起白内障、视 神经炎和视网膜病变。皮肤接触 可引起皮炎。
分子式:C14H10
侵入途径:吸入、食入、经皮吸收。
健康危害:纯品基本无毒。工业品因 含有菲、咔唑等杂质,毒性明显增 大。由于本品蒸气压很低,故经吸 入中毒可能性很小。对皮肤、粘膜 有刺激性;易引起光感性皮炎。
荧蒽(FLUORANTHENE)

芳香烃结构及芳香性

芳香烃结构及芳香性
4n+2(n为整数),则该化合物具有芳香性。这是因为这种电子排布方式能够使分子 保持稳定,并具有特殊的化学性质。
芳香性与非芳香性
总结词
芳香性化合物和非芳香性化合物的结构特征 和性质存在显著差异。芳香性化合物具有特 殊的稳定性、反应性和电子云分布,而非芳 香性化合物则不具备这些特性。
详细描述
芳香性化合物和非芳香性化合物的结构特征 和性质存在显著差异。芳香性化合物具有特 殊的稳定性,其分子中的π电子可以自由移动, 形成大π键,使得分子更加稳定。此外,芳香 性化合物在化学反应中表现出特殊的反应性, 如亲电取代反应、加成反应等。而非芳香性
芳香烃的核心结构是苯环 ,由六个碳原子以sp²杂 化形成的闭合环。
取代基
苯环上可以连接不同的取 代基,如烷基、卤素、羟 基等。
键长和键角
苯环上的碳碳键长和键角 相对固定,分别为1.40埃 和120°。
芳香烃的来源
天然来源
一些芳香烃如苯、甲苯等存在于天然物质中,如石油、煤焦 油等。
合成来源
许多芳香烃是通过化学合成方法制备的,如通过烷基化、酰 化等反应合成。
05 芳香烃的应用
工业应用
燃料添加剂
芳香烃可作为燃料添加剂, 提高燃料的燃烧效率,减 少污染物排放。
高分子材料
芳香烃是合成高分子材料 如聚乙烯、聚丙烯等的单 体,广泛应用于塑料、合 成纤维等领域。
橡胶工业
芳香烃可用于合成橡胶, 如丁苯橡胶、丁腈橡胶等, 提高橡胶的性能。
医药应用
药物合成
芳香烃在药物合成中具有重要作用,可用于合成 多种药物,如抗生素、镇痛药等。
苯的衍生物
总结词
苯的衍生物是指分子中苯环被其他基团取代或苯环上增加其他环系的化合物,其结构特点是具有更复 杂的分子结构。

大学有机化学芳香烃PPT课件

大学有机化学芳香烃PPT课件

复合技术
利用纳米技术可以制备出具有特殊功 能的芳香烃纳米材料,如纳米传感器、 纳米催化剂等。
将芳香烃与其他材料复合,可以制备 出具有优异性能的功能复合材料,如 导电高分子材料、耐高温材料等。
表面修饰技术
通过对芳香烃表面进行化学或物理修 饰,可以改变其表面性质,从而赋予 其新的功能,如超疏水、超亲水、抗 菌等。
生物活性评价方法简介
细胞毒性试验
通过测定药物对细胞的毒性作用, 评价药物的生物活性。常用的细 胞毒性试验方法包括MTT法、
LDH法等。
抗菌活性试验
对于具有抗菌作用的药物,可以 通过测定药物对细菌的抑制作用 来评价其生物活性。常用的抗菌 活性试验方法包括琼脂扩散法、
微量肉汤稀释法等。
抗肿瘤活性试验
通过测定药物对肿瘤细胞的增殖 抑制作用,评价药物的抗肿瘤活 性。常用的抗肿瘤活性试验方法 包括MTT法、克隆形成法ቤተ መጻሕፍቲ ባይዱ。
03
钯催化下烯烃与卤代芳烃的偶联反应,可高效构建C-C键,是芳
香烃合成的重要手段。
路线设计原则及实例分析
01
路线设计原则
02
原料易得、价格适中;
03
反应条件温和、操作简便;
04
产物易分离纯化、收率高;
05
符合绿色化学要求,减少废弃物排放。
06
实例分析:以苯乙烯为原料,通过Heck反应合成对甲基苯 乙烯。该路线原料易得,反应条件温和,产物收率高且易于 分离纯化。
高能源利用效率。
04
芳香烃在医药领域应用
药物合成中作用举例
苯环作为核心结构
许多药物都含有苯环,如阿司匹 林、对乙酰氨基酚等,这些药物
的合成离不开芳香烃。
芳香烃侧链修饰

第四章 芳香烃

第四章 芳香烃

CH CH2
苯乙烯 Phenyl ethylene (Styrene)
㈡ 二取代苯的命名
二 单环芳烃的异构和命名
当化合物分子中含2个以上官能团和取代基时,按下 列顺序确定主官能团
COOH S O3H COOR COX CONH2
CN CHO C O OH NH2 OR R -X -NO2
见教材的P145
25℃
或 浓H2SO4 / 75℃
SO 3H Yield 95%
苯磺酸
Benzenesulfonic acid
SO3H CH3
发烟H2SO4 200℃以上
SO3H
SO3H
CH3
CH3
+ H2SO4浓
室温
SO3H +
+2H2O
注意
SO3H
※1 苯的磺化反应是可逆反应,在有机合成中应用广泛
四 单环芳烃的化学性质
三 单环芳烃的物理性质
㈡ 来源之二:石油的芳构化
Pt, H2 环化
CH3
Pt, H2 环化
Pt,高温 异构化
Pt, 3H2 芳构化
CH3 Pt, 3H2 芳构化
Pt, 3H2 芳构化
CH3
三 单环芳烃的物理性质
单环芳烃一般为无色液体,比水轻,不溶于 水,溶于一般的有机溶剂
芳烃的熔点及沸点变化符合一般规律,在各 异构体中,对称性大者,熔点较高
二 单环芳烃的异构和命名
在-OH之前的基团与苯环相连时,苯环作为取代基命名 在-OH之后的基团与苯环相连时,则以苯环为母体命名 多取代苯确定主官能团后,按最低系列原则编号
选择母体的顺序如下:
-N+R3 、 -COOH、 -SO3H、 -COOR(酯)、 -COX(酰卤)、 -CONH2(酰胺)、 -CN、-CHO、 C=O、 -OH、 -NH2、 -OR、 -R、 -X、 -NO2 等

芳香族碳氢化合物简称芳烃

芳香族碳氢化合物简称芳烃

第七章芳烃芳香族碳氢化合物简称芳烃,也叫芳香烃。

芳香族化合物是苯和化学性质类似于苯的化合物。

芳烃按其结构可分为两类:单环芳烃;多环芳烃。

单环芳烃:苯、乙烯苯、乙炔苯等多环芳烃:联苯、对三联苯;多苯代脂肪烃(二苯甲烷、三苯甲烷等);稠环烃(萘、蒽、芘等)第一节苯的结构一、苯的凯库勒(Kekule)式1865年凯库勒从苯的分子式出发,根据苯的一元取代物只有一种,说明六个氢原子是等同的事实,提出了苯的环状构造式。

因为碳原子是四价的,故再把它写成简写为称为:这个式子虽然可以说明苯分子的组成以及原子间连接的次序,但这个式子仍存在着缺点,它不能说明下列问题第一、既然含有三个双键,为什么苯不起类似烯烃的加成反应?第二、根据上式,苯的邻二元取代物应当有两种,然而实际上只有一种。

凯库勒曾用两个式子来表示苯的结构,并且设想这两个式子之间的摆动代表着苯的真实结构:由此可见,凯库勒式并不能确切地反映苯的真实情况。

二、苯分子结构的价键观点根据现代物理方法(如X射线法,光谱法等)证明了苯分子是一个平面正六边形构型,键角都是120o ,碳碳键的键长都是0.1397nm。

按照轨道杂化理论,苯分子中六个碳原子都以sp2杂化轨道互相沿对称轴的方向重叠形成六个C-C σ键,组成一个正六边形。

每个碳原子各以一个sp2杂化轨道分别与氢原子1s轨道沿对称轴方向重叠形成六个C-H σ键。

由于是sp2杂化,所以键角都是120o,所有碳原子和氢原子都在同一平面上。

每个碳原子还有一个垂直于σ键平面的p轨道,每个p轨道上有一个p电子,六个p轨道组成了大π键。

三、苯的分子轨道模型分子轨道法认为六个p轨道线性组合成六个π分子轨道,其中三个成键轨ψ1ψ2ψ3和三个反键轨道ψ4ψ5ψ6。

在这个分子轨道中,有一个能量最低的ψ1轨道,有两个相同能量较高的ψ2和ψ3轨道,各有一个节面,这三个是成键轨道。

ψ4ψ5能量相同,有两个节面,ψ6能量最高有三个节面,这三个是反键轨道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芳烃车间简介芳烃车间是化工一厂主要生产车间之一,管理着两套芳烃抽提装置,其中芳烃抽提一套装置总投资约为八千万元,占地约为2.74万平方米,设计年加工加氢汽油10万吨,实际年加工加氢汽油8万吨,芳烃抽提一套装置于1992年9月建成试车,1994年3月开始正式生产;芳烃抽提二套装置总投资约为六千万元,占地约为1.24万平方米,设计年加工加氢汽油12万吨,实际年加工加氢汽油12万吨,芳烃抽提二套装置于1999年7月建成试车并开始正式生产;两套装置既可单独生产,也可以互相供料,根据原料供应情况灵活变化,降低能耗物耗。

这两套芳烃抽提装置均采用北京石科院的技术专利,两套装置均由大庆石化总厂工程公司承包建设。

芳烃抽提装置由抽提、精馏、公用工程、罐区等部分组成,是以裂解加氢汽油为原料,采用环丁砜抽提技术(UOP抽提技术),以环丁砜为溶剂进行液液抽提,并应用萃取蒸馏和汽提蒸馏,将原料中的混合芳烃分离出来,再经普通精馏进一步分离成纯度较高的最终产品:苯、甲苯、二甲苯以及副产品:抽余油、碳九芳烃。

芳烃抽提一套装置设计能耗为155千克标油/吨原料油,芳烃抽提二套装置设计能耗为147千克标油/吨原料油。

两套同时运行的实际能耗为185千克标油/吨原料油。

芳烃抽提装置从2002年开始采取“两头一尾”操作方案,即开一、二套芳烃抽提系统和二套精馏系统,一套精馏不开备用的模式生产,采取这种操作方案之后,装置能耗大大下降,员工劳动强度也相对减少。

经过多年的实践,能耗为140千克标油/吨原料油。

芳烃车间共有设备419台,其中动设备126台,静设备293台,占地面积20400m2,2011年10月有员工70人,生产班组6个,采取五班三倒一白班制。

1.1.3 工艺流程说明1.1.3.1 芳烃一套装置抽提系统(1)抽提塔T-101塔从G1单元输送来的原料加氢汽油经累计流量表计量同时经抽余油混对后进入原料油中间罐,并由抽提进料泵抽出,经预热后由进料流量调节阀调节送入抽提塔。

溶剂环丁砜分别进入抽提塔顶部和烃相进料中,在溶剂的选择溶解下,进料中的芳烃和非芳烃被分离形成比重较大的富溶剂相(溶剂和芳烃)和较轻的烃相(非芳烃),因比重不同两相形成逆向流动,富溶剂相从塔底靠自压流入提馏塔塔顶,烃相在压力的作用下从抽提塔顶压入抽余油水洗塔。

(2)抽余油水洗塔T-102塔抽余油水洗塔有七块筛孔塔板并设有上(烃)、下(水)循环回路及循环泵,以提高洗涤效果,水洗后的抽余油含溶剂≤5mg/kg,从塔顶出来经泵打出一股回到塔下部做循环回流,一股进入抽余油中间罐TK-104,洗涤水是来自溶剂回收塔顶回流罐冷凝水,抽余油水洗塔底的水液送至水汽提塔加热成水蒸汽蒸出并用做溶剂再生塔及回收塔的汽提水蒸汽,形成洗涤水——汽提水蒸汽的闭路循环。

2010年大检修对T-102塔进行了改造,一是将塔底界位计浮子在原来的基础上又增加了一块,使塔底界位显示从原来的2.2米增加到4.5米;二是在塔底增加了精密压力指示仪表,可以通过塔底压力的细微变化推测塔界位的变化。

(3)提馏塔T-103塔抽提塔底的富溶剂经贫富溶剂换热器换热后,靠自压流入提馏塔顶,为了提高萃取蒸馏效果,提高芳烃与非芳烃的相对挥发度,由有水汽提塔再沸器出来的贫溶剂分出一部分(称为第二溶剂)经调节其流量与富溶剂一起加入提馏塔,提馏塔以2.3MPa蒸汽为热源的塔底再沸器加热,塔顶蒸出物与水汽提塔顶气相物料并同来自精馏部分的拔顶苯一起经水泠器冷凝并贮于提馏塔分水罐中分层,油相由返洗液泵抽出送入抽提塔底作为返洗液,水相由冷凝水泵抽出送往水汽提塔。

当系统内的水或贫溶剂的PH降低时,为避免酸性物质腐蚀设备需往提馏塔分水罐中加入中和剂单乙醇胺,控制溶剂PH值为5.5~6.0。

(4)回收塔T-104塔提馏塔底富溶剂由塔底泵抽出进入回收塔,在该塔内使芳烃和溶剂分离,回收塔中间再沸器和塔底再沸器是用2.3MPa蒸汽加热,塔顶蒸出的混合芳烃及水蒸汽经空冷器及水冷器及后水冷器冷凝后进入回收塔回流罐分层,水层用冷凝水泵抽出送往水洗塔做洗涤水用,混合芳烃由回收塔回流泵抽出,一部分回流至回收塔顶,其余部分采出进入混合芳烃罐作为精馏系统的原料。

回收塔釜的高温溶剂经贫溶剂泵抽出,少部分送到溶剂再生塔进行再生,绝大部分经水汽提塔罐式再沸器换热后送至抽提塔和提馏塔。

(5)水汽提塔T-105塔提馏塔分水罐的冷凝水经泵和抽余油水洗塔底的洗涤水合并为水汽提塔的进料,此进料主体是水,含有微量烃和少量溶剂。

水汽提塔是有罐式再沸器的塔,塔体装有2米高的金属鲍尔环填料,进料从顶部进入,塔顶蒸汽含有微量烃,合并于提馏塔顶物流在水冷器中一起冷凝,大量水蒸汽从罐式再沸器上部导出引向溶剂再生塔继而串联到回收塔为该两塔的汽提蒸汽,再沸器底含有溶剂的水溶液则经泵送到回收塔下部。

(6)溶剂再生塔T-106塔来自水汽提塔的汽提汽从溶剂再生塔釜入塔。

其再沸器用2.3Mpa蒸汽加热。

塔顶含溶剂的蒸汽作为汽提汽直接送入回收塔底部,溶剂再生塔与回收塔在真空条件下串联操作,溶剂中的杂质,逐渐积存于再生塔底,对其不定时清洗。

1.1.3.4 芳烃二套装置抽提系统从外界来的加氢汽油经FIQ-3130累计流量表同时经抽余油混对到车间指定的要求值后,进入原料油中间罐ATK-907E/F罐,并由抽提进料泵P-304A/B抽出,经E-301预热使加氢汽油的进料温度为40℃,由FRC-3101流量调节阀调节其流量将加氢汽油送入抽提塔T-301塔,(1)抽提塔T-301塔加氢汽油由抽提进料泵P-304A/B从原料油罐ATK-907E/F罐抽出,经E-301预热使加氢汽油的进料温度为40℃,由FRC-3101流量调节阀调节其流量送入抽提塔T-301塔,抽提塔T-301塔的进料板设在第48、58、68块塔板上,并根据进料组成确定进料位置,正常时为58层板进料。

环丁砜自回收塔T-304塔底由贫溶剂泵P-310A/B打出经水汽提塔T-305再沸器E-308换热后,温度降低到150℃,再经贫富溶剂换热器E-303A/B/C换热,由于TC-3102控制其温度为80℃,FC-3104调节其流量进入抽提塔T-301塔顶,溶剂相密度比烃相大,沉落在筛板上形成一定高度,能克服筛孔阻力的液层并通过筛孔成分散落入下一层筛板,在两板之间分散的溶剂相与连续的烃相接触。

苯、甲苯、二甲苯等芳烃组分在溶剂相和烃相两种液相之间的分配系数,大于非芳烃组分,经过多组平衡,芳烃组分富集在溶剂中而达到人为要求的目的,抽提塔原料入口以下称为返洗段,抽提物分馏塔T-303顶蒸出的返洗液(含沸点较低的非芳和芳烃)进入抽提塔下部(第80板下)如返洗液中积累多量烯烃,也可分别改入较高位置入塔,返洗液中的芳烃可部分地置换富溶剂相中的非芳烃、低沸点非芳烃可部分地置换溶剂相中的重质非芳烃,从而减少塔底抽出物(富溶剂)非芳烃含量;保证抽提物产品质量(特别是C8芳烃)质量合格。

T-301塔底的富溶剂经E-303A/B/C换热后,靠自压进入提馏塔T-303塔。

(2)抽余油水洗塔T-302塔抽余油水洗塔T-302有七块筛孔塔板并设有上(烃)、下(水)循环回路及循环泵P-306A/B、P-307A/B等设施,以提高洗涤效果,水洗后的抽余油设计指标含溶剂≤5mg/kg,但抽余油中水含量增大,影响产品质量和冬季容易冻凝管线,所以经过协调,抽余油指标(XFS-3#)规定控制含溶剂≤300mg/kg,抽余油从塔顶出来经泵P-307打出一股回到塔下部做循环回流,另一股进入抽余油中间罐TK-104罐或TK-200B罐,TK-104罐或TK-200B罐的抽余油经P-115送到装置外的成品罐区,洗涤水来自溶剂回收塔顶回流罐V-303冷凝水经P-312A/B升压后从T-302上部进入抽余油水洗塔T-302塔,抽余油水洗塔T-302塔底的水液送至水汽提塔T-305成水蒸汽蒸出并用做溶剂再生塔T-306塔及回收塔T-304塔的汽提水蒸汽,形成洗涤水——汽提水蒸汽的闭路循环。

2010年大检修对T-302塔进行了改造,一是将塔底界位计浮子在原来的基础上又增加了一块,使塔底界位显示从原来的2米增加到5米;二是在塔底增加了精密压力指示仪表,可以通过塔底压力的细微变化推测塔界位的变化。

(3)提馏塔T-303塔T-303塔共有34块塔板,从T-301塔底的富溶剂经E-303A/B/C换热后靠自压进入提馏塔T-303塔顶第1块板,为了提高萃取蒸馏效果,提高芳烃与非芳烃的相对挥发度,由E-308出来的贫溶剂分出一部分(称为第二溶剂)经FC-3110调节其流量与富溶剂一起加入提馏塔,经2.3MPa蒸汽为热源的塔底再沸器E-305加热,由FC-3111调节蒸汽进入量与塔底压力PC -3103串级来控制T-303塔底温度,由于溶剂高温分解加快,在E-305物料侧(壳程)入口处增加一股1.0MPa蒸汽做汽提蒸汽,降低塔釜控制温度。

受FC-3109流量调节控制的塔顶蒸出物与T-305塔顶气相物料并同来自精馏部分的拔顶苯(间歇,与精馏调整有关)一起经空冷器E-306、水泠器E-306/1、水泠器E-306/2(不走空冷E-306)冷凝后贮于V-302中分层,V-302中的油相由返洗液泵P-309A/B抽出,由V-302液位LC-3104与FC-3112串级调节其流量送入T-301塔底作为返洗液,水相由冷凝水泵P-308A/B抽出由LC-3105调节水流量控制界面送往T-305塔,当系统内的水或贫溶剂的PH降低时,为避免酸性物质腐蚀设备需往V-302中加入单乙醇胺,控制溶剂PH值5.5~6.0。

T-303塔底富溶剂由塔底泵P-317A/B抽出,用LC-3103控制塔釜液面进入回收塔T-304第16板。

(4)回收塔T-304塔T-303塔底富溶剂由塔底泵P-317A/B抽出,用LC-3103控制塔釜液面进入回收塔T-304第16板,在该塔内使芳烃和溶剂分离,回收塔中间再沸器E-311和塔底再沸器E-307分别用2.3MPa蒸汽加热,E-311设置蒸汽进入量调节阀FC-3113用以控制塔上部温度,E-307蒸汽进入量控制FC-3114与塔釜温度控TC-3113串级调节用以控制塔釜温度,并由FR-3125记录流量,进入回收塔底部再沸器E-307,和T-305塔釜水经水汽提塔底泵P-311A/B抽出,在液面LC-3106控制下送入T-304塔第32板、T-304塔顶蒸出的混合芳烃及水蒸汽及水蒸汽经空冷器E-310及水冷器E-310/1、水冷器E-310/2(不走空冷E-310)进入回收塔回流罐V-303分层,水层用冷凝水泵P-312A/B抽出,由FC-3120调节流量送往水洗塔T-302做洗涤水用,混合芳烃由回收塔泵P-313A/B抽出,部分在FC-3115控制下回流至T-304塔顶,其余部分由回流罐液面控制LC-3108和芳烃抽出量控制FC-3119级调节控制芳烃采出进入二套混合芳烃罐TK-400A/B作为二套精馏系统的原料,或根据实际情况进入一套混合芳烃罐TK-200A/B罐中。

相关文档
最新文档