数学七年级数学上册期末测试卷及答案
七年级数学(上册)期末试卷及答案(完美版)
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
七年级数学上册期末试卷(附答案)
七年级数学上册期末试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 将▱ABCD沿对角线AC折叠, 使点B落在B′处, 若∠1=∠2=44°, 则∠B为()A. 66°B. 104°C. 114°D. 124°3.如图, ∠1=68°, 直线a平移后得到直线b, 则∠2﹣∠3的度数为()A. 78°B. 132°C. 118°D. 112°4. 下列说法正确的是()A.一个数前面加上“-”号, 这个数就是负数B. 零既是正数也是负数C.若是正数, 则不一定是负数D. 零既不是正数也不是负数5.点A在数轴上, 点A所对应的数用表示, 且点A到原点的距离等于3, 则a的值为()A. 或1B. 或2C.D. 16.下列二次根式中, 最简二次根式的是()A. B. C. D.7.明月从家里骑车去游乐场, 若速度为每小时10km, 则可早到8分钟, 若速度为每小时8km, 则就会迟到5分钟, 设她家到游乐场的路程为xkm, 根据题意可列出方程为()A. B.C. D.8. 6的相反数为A. -6B. 6C.D.9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 下列判断正确的是()A. 任意掷一枚质地均匀的硬币10次, 一定有5次正面向上B. 天气预报说“明天的降水概率为40%”, 表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次, 投中”为随机事件D. “a是实数, |a|≥0”是不可能事件二、填空题(本大题共6小题, 每小题3分, 共18分)1.已知, 则=________.2. 如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3. 在关于x、y的方程组中, 未知数满足x≥0, y>0, 那么m的取值范围是_________________.4.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.5. 2的相反数是________.6. 如果, 那么代数式的值是________.三、解答题(本大题共6小题, 共72分)1. 求满足不等式组的所有整数解.2. 已知A-B=7a2-7ab, 且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0, 求A的值.3. 如图, 在平面直角坐标系中, 已知点A(0, 4), B(8, 0), C(8, 6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m, 1), 且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.4. 如图, 已知A.O、B三点共线, ∠AOD=42°, ∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD, 求∠COE的度数.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作, 无人化是自动驾驶的终极目标. 某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场. 今年每辆无人驾驶出租车的改装费用是50万元, 预计明年每辆无人驾驶出租车的改装费用可下降.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、D4、D5、A6、C7、C8、A9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.1002.90°3.-2≤m<34.53°5、﹣2.6、5三、解答题(本大题共6小题, 共72分)1、不等式组的解集:-1≤x<2, 整数解为:-1, 0, 1.2.(1)3a2-ab+7;(2)12.3.(1)24;(2)P(﹣16, 1)4.(1)∠BOD =138°;(2)∠COE=21°.5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
新人教版七年级数学上册期末测试卷及答案【完美版】
新人教版七年级数学上册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A .5个B .4个C .3个D .2个7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A .3B .1C .0D .﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.若264a =3a =________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.若关于,x y 的二元一次方程组213x y a x y +=+⎧⎨-=-⎩的解都为正数. (1)求a 的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a 的值.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、D5、A6、B7、B8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、40°3、724、-15、±26、2或-8三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、(1)a>1;(2)a 的值为2.3、略4、(1)略;(2)略.5、()117、20;()22次、2次;()372;()4120人.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
2023最新七年级上册数学期末试卷及答案
2023最新七年级上册数学期末测试题及答案一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃2.(2分)下列各式中,是一元一次方程的是()A .2x+5y=6 B.3x﹣2 C.x2=1 D.3x+5=83.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B.C.D.4.(2分)下列不是同类项的是()A .3x2y与﹣6xy2B.﹣ab3与b3a C.12和0 D.5.(2分)如图,以A、B、C、D、O为端点的线段共有()条.A .4 B.6 C.8 D.106.(2分)如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A .50°B.75°C.100°D.120°7.(2分)若与互为相反数,则a=()A .B.10 C.D.﹣108.(2分)关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A .10 B.﹣8 C.﹣10 D.89.(2分)已知线段AB,延长AB到C,使BC=2AB,M、N分别是AB、BC的中点,则()A .MN=BC B.AN=AB C.BM:BN=1:2D.AM=BC10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A .2 B.3 C.4 D.5二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据_________ 就能把线画得很准确.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.13.(3分)已知关于x的一元一次方程a(x﹣3)=2x﹣3a的解是x=3,则a= _________ .14.(3分)不大于3的所有非负整数是_________ .15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是_________ .16.(3分)如图所示,将长方形ABCD的一角沿AE折叠,若∠BAD′=30°,那么∠EAD′= _________ °.17.(3分)若线段AB=8,BC=3,且A,B,C三点在一条直线上,那么AC= _________ .18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为_________ .输入… 1 2 3 4 5 …输出……三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a﹣3a2)+(5a﹣6a2);(4)2(2b﹣3a)+3(2a﹣3b);(5)32°49'+25°51';(6)180°﹣56°23'.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x﹣1);(3);(4).四、作图题(每题3分,共6分)21.(3分)如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).22.(3分)淘气有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30度,在B地的南偏东45度,你能帮淘气确定C地的位置吗?五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.24.(3分)先化简,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=,b=10.25.(3分)如图所示,C、D是线段AB的三等分点,且AD=4,求AB的长.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?七、解答题(6分)31.(6分)如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.参考答案与试题解析一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃考点: 有理数的减法. 专题:应用题. 分析: 认真阅读列出正确的算式,温差就是用最高温度减最低温度,列式计算.解答:解:该日的温差=6﹣(﹣2)=8(℃).故选A . 点评: 考查有理数的运算.有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(2分)下列各式中,是一元一次方程的是( ) A . 2x+5y=6 B .3x ﹣2 C .x 2=1 D .3x+5=8考点:一元一次方程的定义. 分析: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a ≠0).解答: 解:A 、含有2个未知数,故选项错误; B 、不是等式,故选项错误;C 、是2次方程,故选项错误;D 、正确.故选D .点评: 本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.3.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B .C . D.考点:简单组合体的三视图.分析:根据所看位置,找出此几何体的三视图即可.解答: 解:从上面看得到的平面图形是两个同心圆,故选:B .点评: 此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.(2分)下列不是同类项的是( )A . 3x 2y 与﹣6xy 2B . ﹣ab 3与b 3aC . 12和0D .考点:同类项.分析: 根据同类项的定义:所含字母相同,相同字母的指数相同即可作出判断.解答: 解:A 、相同字母的指数不同,不是同类项;B 、C 、D 都是同类项.故选A .点评:本题考查同类项的定义,理解定义是关键.5.(2分)如图,以A 、B 、C 、D 、O 为端点的线段共有()条.A . 4B . 6C . 8D .10考点:直线、射线、线段.分析:根据线段的定义结合图形可得出答案.解答: 解:以A 、B 、C 、D 、O 为端点的线段有:AB ,AO ,AD ,BO ,BC ,OC ,OD ,CD 共有8条线段.故选C .点评: 题考查了直线、射线、线段.属于基础题,注意在查找的时候按顺序,避免遗漏.6.(2分)如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A .50°B . 75°C . 100°D .120°考点:角的计算;角平分线的定义.专题:计算题.分析: 根据角的平分线定义得出∠AOD=∠COD ,∠AOB=2∠AOC=2∠BOC ,求出∠AOD 、∠AOC 的度数,即可求出答案.解答: 解:∵OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC ,∴∠AOB=2∠AOC=2(∠AOD+∠COD )=2×(25°+25°)=100°,故选C .点评:本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.7.(2分)若与互为相反数,则a=( ) A .B . 10C .D .﹣10考点:解一元一次方程.专题:计算题.分析: 先根据互为相反数的定义列出方程,然后根据一元一次方程的解法,去分母,移项,化系数为1,从而得到方程的解.解答: 解:根据题意得,+=0,去分母得,a+3+2a ﹣7=0,移项得,a+2a=7﹣3,合并同类项得,3a=4,系数化为1得,a=.故选A .点本题主要考查了解一元一次方程,注意在去分母时,方评: 程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.8.(2分)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A .10B . ﹣8C . ﹣10D .8考点:同解方程.专题:计算题.分析: 在题中,可分别求出x 的值,当然两个x 都是含有m 的代数式,由于两个x 相等,可列方程,从而进行解答. 解答: 解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2 由题意知=m ﹣2 解之得:m=﹣8.故选B .点评:根据题目给出的条件,列出方程组,便可求出未知数.9.(2分)已知线段AB ,延长AB 到C ,使BC=2AB ,M 、N 分别是AB 、BC 的中点,则( )A . MN=BCB . AN=ABC . BM :BN=1:2D . AM=BC考点:两点间的距离.分析: 根据已知得出AM=BM=AB ,AB=BN=NC ,BN=NC=BC ,即可推出各个答案.解答: 解: A 、∵M 、N 分别是AB 、BC 的中点,∴BM=AB ,BN=BC ,∴MN=BM+BN=AB+BC=AC ,故本选项错误;B 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BN=NC=AB ,∴AN=2AB ,故本选项错误;C 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BA=BN=NC ,∴BM=AB=BN ,∴BM :BN=1:2,故本选项正确;D 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴AB=BN=NC ,∴AM=AB=BC ,故本选项错误;故选C .点评: 本题考查了线段的中点和求两点间的距离的应用,能熟练地推出各个有关的关系式是解此题的关键.10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B . 3C . 4D .5考点:一元一次方程的应用.专题:数字问题.分析: 由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.解答:解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程2x=5y ;2z=3y ,消去y 可得:x=z ,则3x=5z ,即三个球体的重量等于五个正方体的重量.故选D .点评:此题的关键是找到球,正方体,圆柱体的关系.二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据 两点确定一条直线 就能把线画得很准确.考点:直线的性质:两点确定一条直线.分析:根据直线的性质,两点确定一条直线解答.解答: 解:先确定两个点的位置,是根据两点确定一条直线. 故答案为:两点确定一条直线.点评: 本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.考点:一元一次方程的应用.分析: 设出洗发水的现价是x 元,直接得出有关原价的一元一次方程,再进行求解.解答: 解:设洗发水的现价为x 元,由题意得:0.8×36=x ,解得:x=28.8(元).故答案为:28.8元.点评: 此题主要考查了一元一次方程的应用中打折问题,也可以直接计算得出.13.(3分)已知关于x 的一元一次方程a (x ﹣3)=2x ﹣3a 的解是x=3,则a= 2 .考点:一元一次方程的解.分析: 把x=3代入方程即可得到一个关于a 的方程,解方程即可求得a 的值.解答: 解:把x=3代入方程得:6﹣3a=0,解得:a=2.故答案是:2.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)不大于3的所有非负整数是 0、1、2、3 .考点:有理数大小比较;数轴.分析:非负整数包括0和正整数,根据题意找出即可.解答: 解:不大于3的所有非负整数是0、1、2、3,故答案为:0、1、2、3.点评: 本题考查了有理数的大小比较,注意:非负整数包括0和正整数.15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是 欢 .考点: 专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答: 解:这是一个正方体的平面展开图,共有六个面,其中面“京”与“你”相对,面“迎”与面“北”相对,“欢”与面“空白”相对.故答案为:欢.点评: 本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.16.(3分)如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD ′=30°,那么∠EAD ′= 30 °.考点:角的计算;翻折变换(折叠问题).分析: 首先根据矩形的性质得出∠DAD ′的度数,再根据翻折变换的性质得出∠DAE=∠EAD ′=∠DAD ′即可得出答案. 解答: 解:∵∠BAD ′=30°,∴∠DAD ′=90°﹣30°=60°,∵将长方形ABCD 的一角沿AE 折叠, ∴∠DAE=∠EAD ′=∠DAD ′=30°.故答案为:30.点评: 此题主要考查了翻折变换的性质以及角的计算,根据已知得出∠DAE=∠EAD ′是解题关键.17.(3分)若线段AB=8,BC=3,且A ,B ,C 三点在一条直线上,那么AC= 5或11 .考点:两点间的距离.分析:根据题意画出符合图形的两种情况,求出即可.解答: 解:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB ﹣BC=8﹣3=5;故答案为:5或11.点评: 本题考查了两点之间的距离的应用,注意要进行分类讨论啊.18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为. 输入 …1 2 3 4 5 … 输出 ……考点:代数式求值.专压轴题;图表型.题:分析: 根据图表找出输出数字的规律,直接将输入数据代入即可求解.解答: 解:输出数据的规律为,当输入数据为8时,输出的数据为=. 点评: 此题主要考查根据已有输入输出数据找出它们的规律,进而求解.三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a ﹣3a 2)+(5a ﹣6a 2);(4)2(2b ﹣3a )+3(2a ﹣3b );(5)32°49'+25°51';(6)180°﹣56°23'.考点:有理数的混合运算;度分秒的换算.分析: (1)先化简,再进行计算即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3)(4)先去括号,再合并同类项;(5)(6)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.解答: 解:(1)(﹣76)+(+26)+(﹣31)+(+17);=﹣76+26﹣31+17=﹣107+43=﹣64;(2)﹣14﹣2×(﹣3)2;=﹣1﹣2×9=﹣1﹣18=﹣19;(3)(2a ﹣3a 2)+(5a ﹣6a 2)=2a ﹣3a 2+5a ﹣6a 2=﹣9a 2+7a ;(4)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(5)32°49′+25°51′=58°40′;(6)180°﹣56°23′=123°37′.点评: 本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.同时考查了整式的混合运算和度分秒的加减运算.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x ﹣1);(3);(4).考点:解一元一次方程.专题:计算题.分析: 利用去分母,去括号,移项合并,将未知数系数化为1,即可求出解.解答: 解:(1)去分母得:3x+8=12﹣x ,移项合并得:4x=4,解得:x=1;(2)去括号得:5x+10=10x ﹣2,移项合并得:﹣5x=﹣12,解得:x=;(3)去分母得:6(x ﹣2)=2x ﹣1,去括号得:6x ﹣12=2x ﹣1,移项合并得:4x=11,解得:x=;(4)去分母得:3(y+3)=2(y ﹣3)+6y ,去括号得:3y+9=2y ﹣6+6y ,移项合并得:﹣5y=﹣15,解得:y=3.点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、作图题(每题3分,共6分)21.(3分)如图所示,直线l 是一条平直的公路,A ,B 是两个车站,若要在公路l 上修建一个加油站,如何使它到车站A ,B 的距离之和最小,请在公路上表示出点P 的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).考点:作图—应用与设计作图.分析:连接AB ,与l 的交点就是P 点.解答:解:如图所示:点P 即为所求.点评: 此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.22.(3分)淘气有一张地图,有A 、B 、C 三地,但地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30度,在B 地的南偏东45度,你能帮淘气确定C 地的位置吗?考方向角.点:专题:作图题.分析: 根据方位角的概念画出:A 地的北偏东30度,B 地的南偏东45度两条直线,两直线的交点就是C .解答:解:如图C 在A 、B 两点的交点上点评: 解答此题需要熟练掌握方位角的概念,认真作图解答即可.五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.考点:余角和补角.专题:计算题.分析: 利用题中“一个角的补角比这个角的余角的3倍大10°”作为相等关系列方程求解即可.解答: 解:设这个角是x ,则(180°﹣x )﹣3(90°﹣x )=10°, 解得x=50°.故答案为50°.点评: 主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.24.(3分)先化简,再求值:﹣(﹣a 2+2ab+b 2)+(﹣a 2﹣ab+b 2),其中a=,b=10.考点:整式的加减—化简求值.专题:计算题.分析: 原式利用去括号法则去括号后,合并同类项得到最简结果,将a 与b 的值代入计算即可求出值.解答: 解:原式=a 2﹣2ab ﹣b 2﹣a 2﹣ab+b 2=﹣3ab ,当a=﹣,b=10时,原式=﹣3×(﹣)×10=2.点评:此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.25.(3分)如图所示,C 、D 是线段AB 的三等分点,且AD=4,求AB 的长.考点:两点间的距离.分析: 根据已知得出AC=CD=BD ,求出BD ,代入AD+BD 求出即可.解答: 解:C 、D 是线段AB 的三等分点,AD=4,∵AC=CD=BD=AD=2,∴AB=AD+BD=4+2=6,即AB 的长是6.点评: 本题考查了线段的中点和求两点间的距离等知识点的应用.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm ,将此长方形的长减少2cm ,宽增加4cm ,就可成为一个正方形,那么原长方形的长和宽分别是多少?考点:一元一次方程的应用.分析: 设长方形的长是xcm ,根据正方形的边长相等即可列出方程求解.解解:设长方形的长是xcm ,则宽为(14﹣x )cm ,答: 根据题意得:x ﹣2=(14﹣x )+4,解得:x=10,14﹣x=14﹣10=4.答:长方形的长为10cm ,宽为4cm .点评:此题主要考查了一元一次方程的应用,得到长方形的宽是解决本题的突破点,根据正方形的边长相等得到等量关系是解决本题的关键.27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析: 本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解解:设严重缺水城市有x 座,答: 依题意得:(4x ﹣50)+x+2x=664.解得:x=102.答:严重缺水城市有102座.点评: 本题考查列方程解应用题的能力,解决问题的关键在于找到合适的等量关系,列出方程组求解.28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.考点:一元一次方程的应用.分析: 设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度素.解答: 解:设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176)x=80∴提速后的速度为:x+176=256答:列车提速后的速度为256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?考点:二元一次方程组的应用.分析: 本题的等量关系为:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元;根据这两个等量关系来列出方程组.解答:解:设小王该月发送网内短信x 条,网际短信y 条. 根据题意得 解这个方程组得. 答:小王该月发送网内短信70条,网际短信80条.点评: 解题关键是弄清题意,找到关键语,找出合适的等量关系:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元.然后列出方程组.30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m 3,按每立方米0.8元收费;如果超过60m 3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?考点:一元一次方程的应用.专题:应用题.分析: 先判断出4月份所用煤气一定超过60m 3,等量关系为:60×0.8+超过60米的立方数×1.2=0.88×所用的立方数,设4月份用了煤气x 立方,从而得出方程求解即可.解答: 解:由4月份煤气费平均每立方米0.88元,可得4月份用煤气一定超过60m 3,设4月份用了煤气x 立方,由题意得:60×0.8+(x ﹣60)×1.2=0.88×x ,解得:x=75,则所交电费=75×0.88=66元.答:4月份这位用户应交煤气费66元.点评: 本题考查用一元一次方程解决实际问题,判断出煤气量在60m 3以上是解决本题的突破点,得到煤气费的等量关系是解决本题的关键.七、解答题(6分)31.(6分)如图(1)所示,∠AOB 、∠COD 都是直角.(1)试猜想∠AOD 与∠COB 在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD 绕着点O 旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.考点:余角和补角.分析: (1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD 和∠COB 表示出∠BOD ,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.解答: 解:(1)∠AOD 与∠COB 互补.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD ﹣∠AOB=∠AOD ﹣90°,∠BOD=∠COD ﹣∠COB=90°﹣∠COB ,∴∠AOD ﹣90°=90°﹣∠COB ,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补;(2)成立.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补.点评: 本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD 是解题的关键.。
七年级数学上册期末考卷(含答案)
七年级数学上册期末考卷(含答案)一、选择题(每题4分,共40分)1. 下列数中,最小的无理数是()A. √2B. √3C. πD. √52. 已知a=3,b=2,则a+b的值是()A. 1B. 5C. 5D. 13. 下列各式中,正确的是()A. (x+y)² = x² + y²B. (x+y)² = x² + 2xy + y²C. (xy)² = x² y²D. (xy)² = x² 2xy y²4. 下列关于单项式的说法,错误的是()A. 单项式中的数字因数叫做单项式的系数B. 单项式中的所有字母的指数和叫做单项式的次数C. 单项式是数或字母的积组成的式子D. 单项式中不含加减号5. 下列各式中,多项式的是()A. 5x² + 3x 2B. √x + 1C. 2x³ 4x² + 5D. 1/a + 3a²6. 已知一个等差数列的首项为2,公差为3,第五项是()A. 14B. 16C. 18D. 207. 下列关于平行线的说法,正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 线段B. 等腰三角形C. 正方形D. 梯形9. 已知直角三角形的两条直角边分别为3和4,则斜边的长度是()A. 5B. 6C. 7D. 810. 下列关于概率的说法,错误的是()A. 概率是0到1之间的数B. 必然事件的概率为1C. 不可能事件的概率为0D. 随机事件的概率一定大于0二、填空题(每题4分,共40分)11. 已知|x|=3,则x的值为______。
12. 若3x6=0,则x的值为______。
13. 已知a²=9,则a的值为______。
14. 若(x2)(x+2)=0,则x的值为______。
2024年七年级上册数学期末测试试卷及答案
2024年七年级上册数学期末测试试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. -7答案:A2. 下列等式中,正确的是:A. √8 = 2√2B. √8 = √2C. √8 = 2√4D. √8 = √16答案:A3. 下列哪个数是七年级上册数学所学的立方根:A. ∛27B. √27C. 27^(1/2)D. 27^(1/3)答案:A4. 下列哪个数是七年级上册数学所学的平方根:A. √9B. ∛9C. 9^(1/2)D. 9^(1/3)答案:C5. 下列哪个数是有理数:A. √3B. πC. 3/2D. √-1答案:C6. 下列哪个数是无理数:A. √4B. 3/4C. √2D. 2√2答案:C7. 下列哪个数是整数:A. -3/4B. 2.5C. -2D. 3/2答案:C8. 下列哪个数是分数:A. -3B. 2C. -3/2D. 2√2答案:C9. 下列哪个数是正数:A. -3B. 0C. 3D. -3/2答案:C10. 下列哪个数是负数:A. 3B. 0C. -3D. -3/2答案:D二、填空题(每题4分,共40分)11. 2 × 2 × 2 = _______答案:812. 3 × 3 × 3 = _______答案:2713. 4 × 4 × 4 = _______答案:6414. 5 × 5 × 5 = _______答案:12515. 6 × 6 × 6 = _______答案:21616. 7 × 7 × 7 = _______答案:34317. 8 × 8 × 8 = _______答案:51218. 9 × 9 × 9 = _______答案:72919. 10 × 10 × 10 = _______答案:100020. 11 × 11 × 11 = _______ 答案:1331三、解答题(共20分)21. 计算下列各题:a. √9 + √16b. √25 - √64c. √81 + √121答案:a. 3 + 4 = 7b. 5 - 8 = -3c. 9 + 11 = 2022. 计算下列各题:a. √(49 - 16)b. √(36 + 49)c. √(16 - 9)答案:a. √33b. √85c. √723. 计算下列各题:a. √(121 - 64)b. √(49 + 64)c. √(16 + 25)答案:a. √57b. √113c. √4124. 判断下列各题:a. √25 + √16 = 5 + 4 = 9b. √81 - √64 = 9 - 8 = 1c. √100 - √100 = 10 - 10 = 0答案:a. 正确b. 错误c. 错误25. 计算下列各题:a. √(16 + 9)b. √(25 - 16)c. √(49 - 25)答案:a. √25 = 5b. √9 = 3c. √24 = 4√6以上是2024年七年级上册数学期末测试试卷及答案,希望对您有所帮助。
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
七年级数学上册期末测试卷(含答案)
七年级数学上册期末测试卷(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列各曲线中表示y是x的函数的是()A.B.C.D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.长方形如图折叠,D点折叠到的位置,已知∠FC=40°,则∠EFC=()A.120°B.110°C.105°D.115°5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.下列各组数中,两个数相等的是( )A .-2与2(-2)B .-2与-12C .-2与3-8D .|-2|与-27.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.3.如果a 的平方根是3±,则a =_________。
七年级数学上册期末考试试卷【含答案】
七年级数学上册期末考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是多少?A. 22厘米B. 34厘米C. 44厘米D. 54厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个正方形的对角线长度等于它的边长。
()3. 0.3333……是一个无限循环小数。
()4. 一个等边三角形的三个角都是60度。
()5. 一个数的立方根只有一个。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个正方形的周长是24厘米,那么它的边长是______厘米。
3. 5的平方是______,5的立方是______。
4. 如果一个数的平方是49,那么这个数可能是______或______。
5. 两个质数相乘得到的数一定是______。
四、简答题(每题2分,共10分)1. 解释什么是素数。
2. 简述平行四边形的性质。
3. 什么是算术平均数?如何计算?4. 请解释概率的基本概念。
5. 什么是勾股定理?请简要说明。
五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是10厘米,高是12厘米,求这个三角形的面积。
3. 一个数的平方是36,求这个数。
4. 计算下列分数的和:1/3 + 1/4 + 1/6。
七年级数学上册期末试卷及答案(多套题)
七 年 级 上 册 期 末 数 学 试 卷(1)一、精心选一选1、下列式子正确的是( D )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 2、多项式12++xy xy 是( D )A .二次二项式B .二次三项式C .三次二项式D .三次三项式3、桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( A )A .①②③④B .①③②④C .②④①③D .④③①②4、一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( A )5、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( C )A .3瓶B .4瓶C .5瓶D .6瓶 二、填空题6、52xy -的系数是 51- 。
7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第6次后剩下的绳子的长度是641米。
图3 O O O O A B C D8、如图点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 155 度。
-|c -b |化简9、有理数a ,b ,c 在数轴上的位置如图,式子|a |-|b|+|a+b|结果为___-b+c ____10、如图:A 地和B 地之间途经C 、D 、E 、F 四个火车站,且相邻两站之间的距离各不相同,则售票员应准备___30____种火车票.11、用小立方块搭一几何体,使得它的从正面看和从上面看 形状图如图所示,这样的几何体最少要____9__个立方块,最 多要____13___个立方块.12、已知A=2x 2+3xy -2x -1,B=-x 2+xy-1,若3A +6B 的值与x 的值无关,则y 的值___52__三、对号入座13、(1)把下列各整式填入相应圈里ab +c ,2m ,ax 2+c ,-ab 2c ,a, 0, -x 21,y +2.(1)单项式:2m ,-ab 2c ,a ,0,-x 21 多项式:ab +c ,ax 2+c ,y +2AOBC D 单项式多项式C 地在A 2×2, 3×2, 4×3, 5×4,……,(1) 同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。
七年级上册数学期末测试卷(含答案)
七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。
1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学七年级数学上册期末测试卷及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .124.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2065.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .46.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .37.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)38.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯9.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个10.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个11.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°12.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm13.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 14.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511 C .﹣1023 D .1025 15.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题16.已知x=5是方程ax ﹣8=20+a 的解,则a= ________ 17.把53°30′用度表示为_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.20.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.22.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.23.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 24.化简:2x+1﹣(x+1)=_____.25.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.26.计算:3+2×(﹣4)=_____.27.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.28.-2的相反数是__.29.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .30.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 33.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 34.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.35.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P从A点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B点后立即以相同的速度返回往A点运动,并持续在A,B两点间往返运动.在点P出发的同时,点Q从B点出发以每秒2个单位长度向左匀速运动,当点Q达到A点时,点P,Q停止运动.(1)填空:a=,b=;(2)求运动了多长时间后,点P,Q第一次相遇,以及相遇点所表示的数;(3)求当点P,Q停止运动时,点P所在的位置表示的数;(4)在整个运动过程中,点P和点Q一共相遇了几次.(直接写出答案)36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24+ BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.4.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.5.B解析:B 【解析】 【分析】点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】()32-=-8,613⎛⎫- ⎪⎝⎭=1719,25-=-25 ,0,21m +≥1 在原点右边的数有613⎛⎫- ⎪⎝⎭和 21m +≥1 故选B 【点睛】此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.6.C解析:C 【解析】 【分析】 根据AC 比BC 的14多5可分别求出AC 与BC 的长度,然后分别求出当P 与Q 重合时,此时t=30s ,当P 到达B 时,此时t=15s ,最后分情况讨论点P 与Q 的位置. 【详解】 解:设BC =x ,∴AC =14x +5 ∵AC +BC =AB∴x +14x +5=30, 解得:x =20,∴BC =20,AC =10, ∴BC =2AC ,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.7.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.8.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.9.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确 ④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a =⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键11.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC ⊥OD ,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.12.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.13.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.14.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.15.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6或6.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二、填空题16.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.17.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键20.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.21.30﹣【解析】试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】 试题分析:设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程:9(50﹣t ﹣x )+6t+3x=270,则x==30﹣, 故答案为:30﹣. 考点:列代数式 22.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面23.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.24.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.25.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.26.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14028.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.29.5【分析】 【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.解析:5 【解析】 【分析】 【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.30.25 【解析】 【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解. 【详解】 的补角为故答案为103;25. 【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25 【解析】 【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解. 【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25. 【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.33.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题. 34.(1)41°;(2)见解析. 【解析】 【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可. 【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化,如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+=1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α。