高三牛顿运动定律试题精选及答案
高考物理牛顿运动定律题20套(带答案)含解析
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高考物理牛顿运动定律题20套(带答案)及解析
高考物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++解得:F=14N所以物体B对地面的压力大小为14N5.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m 【解析】 【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。
已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。
牛顿运动定律--2023年高考真题和模拟题物理分项汇编(解析版)
专题03牛顿运动定律2023年高考真题1(2023全国甲卷)一小车沿直线运动,从t =0开始由静止匀加速至t =t 1时刻,此后做匀减速运动,到t =t 2时刻速度降为零在下列小车位移x 与时间t 的关系曲线中,可能正确的是()A. B.C. D.【答案】D【解析】x -t 图像的斜率表示速度,小车先做匀加速运动,因此速度变大即0-t 1图像斜率变大,t 1-t 2做匀减速运动则图像的斜率变小,在t 2时刻停止图像的斜率变为零。
故选D 。
2(2023全国甲卷)用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。
甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。
由图可知()A.m 甲<m 乙B.m 甲>m 乙C.μ甲<μ乙D.μ甲>μ乙【答案】BC【解析】根据牛顿第二定律有F -μmg =ma 整理后有F =ma +μmg则可知F -a 图像的斜率为m ,纵截距为μmg ,则由题图可看出m 甲>m 乙,μ甲m 甲g =μ乙m 乙g 则μ甲<μ乙故选BC 。
3(2023山东卷)质量为M 的玩具动力小车在水平面上运动时,牵引力F 和受到的阻力f 均为恒力,如图所示,小车用一根不可伸长的轻绳拉着质量为m 的物体由静止开始运动。
当小车拖动物体行驶的位移为S 1时,小车达到额定功率,轻绳从物体上脱落。
物体继续滑行一段时间后停下,其总位移为S 2。
物体与地面间的动摩擦因数不变,不计空气阻力。
小车的额定功率P 0为()A.2F 2(F -f )S 2-S 1 S 1(M +m )S 2-MS 1 B.2F 2(F -f )S 2-S 1 S 1(M +m )S 2-mS 1C.2F 2(F -f )S 2-S 1 S 2(M +m )S 2-MS 1D.2F 2(F -f )S 2-S 1 S 2(M +m )S 2+mS 1【答案】A【解析】设物体与地面间的动摩擦因数为μ,当小车拖动物体行驶的位移为S 1的过程中有F -f -μmg =(m +M )a v 2=2aS 1P 0=Fv轻绳从物体上脱落后a 2=μgv 2=2a 2(S 2-S 1)联立有P 0=2F 2(F -f )S 2-S 1 S 1(M +m )S 2-MS 1故选A 。
高考物理牛顿运动定律试题(有答案和解析)
高考物理牛顿运动定律试题(有答案和解析)一、高中物理精讲专题测试牛顿运动定律1.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′,对物块受力分析:1mg ma μ=对木板:2F mg Ma μ+=由运动公式:021v v a t =-''11v a t ''= 解得:113t s = 2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+=解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ=由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t s = 故经过时间12310.91t t t s +=+=≈ 物块滑落.2.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
某滑雪爱好者连滑雪板总质量为75kg (可视为质点)从赛道顶端静止开始沿直线下滑,到达斜面底端通过测速仪测得其速度为30m/s 。
然后在水平赛道上沿直线继续前进180m 静止。
假定滑雪者与斜面及水平赛道间动摩擦因数相同,滑雪者通过斜面与水平面连接处速度大小不变,重力加速度为g=10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)滑雪者与赛道间的动摩擦因数;(2)滑雪者在斜面赛道上受到的合外力;(3)滑雪者在斜面滑雪赛道上运动的时间及斜面赛道的长度【答案】(1)0.25(2)300N(3)7.5s,112.5m【解析】【分析】根据匀变速直线运动的速度位移公式求出匀减速直线运动的加速度大小,根据牛顿第二定律求出滑雪者与赛道间的动摩擦因数;根据滑雪者的受力求出在斜面滑道上所受的合外力;根据牛顿第二定律求出在斜面滑道上的加速度,结合速度时间公式求出运动的时间,根据速度位移公式求出斜面赛道的长度;解:(1)水平面匀减速v2=2a2s得a2=2.5m/s2由牛顿第二定律:μmg=ma2得:μ=0.25(2) 滑雪者在斜面赛道上受到的合外力F=mg sin37°-μmg cos37°=300N(3) 根据牛顿第二定律得在斜面滑道上的加速度由得:由v2=2as得3.素有“陆地冲浪”之称的滑板运动已深受广大青少年喜爱。
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高三牛顿运动定律试题及答案
高三牛顿运动定律试题精选及答案1 •如下图,在质量为心的无下底的木箱顶部用一轻弹簧悬挂质量为)的人B 两物体,箱子放 在水平地而上,平稳后剪断A. B 间的连线.A 将做简谐运动,当A 运动到最高点时,木箱对地而的压力 为(A)A. 川鹉B. (〃“一 m) gC. (m+ 沁 gD. (/no + 2m) g2•如下图,静止在光滑水平而上的物体A, —端靠着处于自然状态的弹簧•现对物体作用一水平恒力, 在禅簧被压缩到最短这一过程中,物体的速度和加速度变化的情形是(D )A. 速度增大,加速度增大B. 速度增大,加速度减小C ・速度先增大后减小,加速度先增大后减小 D.速度先增大后减小,加速度先减小后增大3•为了测得物块与斜面间的动摩擦因数,能够让一个质量为加的物块由静止开始沿斜面下滑,拍照此 下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下 图.闪光频率为每秒10次,依照照片测得物块相邻两位置间 AB=2.40cm, BC=7.30cm, CD= 12.20cm, DE=17.10cm.假设 〃二37。
,那么物块与斜而间的动摩擦因数为 _______ .(重 9. 8m/s 2, sin37°=0.6, cos37°=0. 8)答案:0. 125 (提示:由逐差法求得物块下滑的加速度为"二4.9加/€,由牛顿第二左律知</=?sin37° - “gcos37°,解得 P=0.125)4•如下图,一物体恰能在一个斜而体上沿斜而匀速下滑,设此过程中斜面受到水平地而的摩擦力为九6•如下图,质虽为加的物体放在倾角为"的光滑斜面上,随斜而体一起沿水平方向运动,要使物体相 关于斜而保持静止,斜而体的运动情形以及物体对斜而压力F 的大小是(C )A. 斜而体以某一加速度向右加速运动,F 小于mgB. 斜而体以某一加速度向右加速运动,F 不小于〃农假设沿斜而方向用力向下推此物体,使物体加速下滑,设此过程中斜而受到地而的摩擦力为更。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
2024届全国高考(统考版)物理复习历年真题好题专项(牛顿运动定律)练习(附答案)
2024届全国高考(统考版)物理复习历年真题好题专项(牛顿运动定律)练习做真题 明方向1.[2022ꞏ全国甲卷](多选)如图,质量相等的两滑块P 、Q 置于水平桌面上,二者用一轻弹簧水平连接,两滑块与桌面间的动摩擦因数均为μ.重力加速度大小为g .用水平向右的拉力F 拉动P ,使两滑块均做匀速运动;某时刻突然撤去该拉力,则从此刻开始到弹簧第一次恢复原长之前( )A .P 的加速度大小的最大值为2μgB .Q 的加速度大小的最大值为2μgC .P 的位移大小一定大于Q 的位移大小D .P 的速度大小均不大于同一时刻Q 的速度大小2.[2022ꞏ全国乙卷]如图,一不可伸长轻绳两端各连接一质量为m 的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L .一大小为F 的水平恒力作用在轻绳的中点,方向与两球连线垂直.当两球运动至二者相距35 L 时,它们加速度的大小均为( )A .5F 8mB .2F 5mC .3F 8mD .3F 10m3.[2022ꞏ湖南卷](多选)球形飞行器安装了可提供任意方向推力的矢量发动机,总质量为M .飞行器飞行时受到的空气阻力大小与其速率平方成正比(即F 阻=k v 2,k 为常量).当发动机关闭时,飞行器竖直下落,经过一段时间后,其匀速下落的速率为10 m/s ;当发动机以最大推力推动飞行器竖直向上运动,经过一段时间后,飞行器匀速向上的速率为5 m/s.重力加速度大小为g ,不考虑空气相对于地面的流动及飞行器质量的变化,下列说法正确的是( )A .发动机的最大推力为1.5 MgB .当飞行器以5 m/s 匀速水平飞行时,发动机推力的大小为174 Mg C.发动机以最大推力推动飞行器匀速水平飞行时,飞行器速率为53 m/s D .当飞行器以5 m/s 的速率飞行时,其加速度大小可以达到3 g4.[2021ꞏ全国甲卷]如图,将光滑长平板的下端置于铁架台水平底座上的挡板P处,上部架在横杆上.横杆的位置可在竖直杆上调节,使得平板与底座之间的夹角θ可变.将小物块由平板与竖直杆交点Q处静止释放,物块沿平板从Q点滑至P点所用的时间t与夹角θ的大小有关.若θ由30°逐渐增大至60°,物块的下滑时间t将()A.逐渐增大 B.逐渐减小C.先增大后减小D.先减小后增大5.[2023ꞏ湖南卷]如图,光滑水平地面上有一质量为2m的小车在水平推力F的作用下加速运动.车厢内有质量均为m的A、B两小球,两球用轻杆相连,A球靠在光滑左壁上,B 球处在车厢水平底面上,且与底面的动摩擦因数为μ,杆与竖直方向的夹角为θ,杆与车厢始终保持相对静止,假设最大静摩擦力等于滑动摩擦力.下列说法正确的是()A.若B球受到的摩擦力为零,则F=2mg tan θB.若推力F向左,且tan θ≤μ,则F的最大值为2mg tan θC.若推力F向左,且μ<tan θ≤2μ,则F的最大值为4mg(2μ-tan θ)D.若推力F向右,且tan θ>2μ,则F的范围为4mg(tan θ-2μ)≤F≤4mg(tan θ+2μ)专题15牛顿第一定律 牛顿第三定律1.(多选)关于牛顿第一定律的下列说法中正确的是()A.牛顿第一定律可用实验来验证B.不受外力作用时,物体运动状态保持不变是由于惯性C.物体受外力作用运动状态发生变化时没有惯性D.由牛顿第一定律可知,力是改变物体运动状态的原因2.春秋时期齐国人的著作《考工记》中有“马力既竭,辀(zhōu)犹能一取焉”,意思是马拉车的时候,虽然马对车不再施力了,但车还能继续向前运动一段距离.这一现象说明了()A.车的运动不需要力来维持B.物体受到的重力是由地球对物体的引力产生的C.地面对物体的支持力和物体对地面的压力是一对相互作用力D.弹力存在于相互接触的物体之间3.关于牛顿第一定律和惯性,下述说法中正确的是()A.竖直向上抛出去的物体还能够继续上升,是因为受到向上的力B.合力为零的物体保持静止或匀速直线运动,说明牛顿第一定律是牛顿第二定律的特例C.根据牛顿第一定律,物体受力的方向与运动的方向可以相同,也可以不相同D.运动的汽车,速度越大,就越难停下来,说明汽车的速度越大,它的惯性也越大4.关于下列四幅图叙述正确的是()A.甲图中,公路上对各类汽车都有限速,是因为汽车速度越大惯性越大B.乙图中,神舟十三飞船返回地球时打开降落伞减速下降,伞绳对返回舱的作用力大于返回舱对伞绳的作用力C.丙图伽利略通过“斜面实验”来研究落体运动规律,是为了“冲淡”重力,便于测量运动时间D.丁图是伽利略利用“实验+逻辑推理”的思想,来验证力是维持物体运动原因的实验装置5.如图所示,在花样滑冰比赛中的男运动员托举着女运动员一起滑行.对于此情景,下列说法正确的是()A.男运动员受到的重力和冰面对他的支持力是一对平衡力B.男运动员对女运动员的支持力大于女运动员受到的重力C.男运动员对冰面压力大小与冰面对他支持力大小在任何时候都相等D.女运动员对男运动员的压力与冰面对男运动员的支持力是一对作用力和反作用力6.[2023ꞏ广东省质检]如图是我国第一辆火星车,它被命名为“祝融号”.祝融号质量约240 kg,在地球表面重力约2 400 N,高1.85 m,设计寿命约92天.下列说法正确的是()A.N是国际单位制中的基本单位B.m、kg是国际单位制中的基本单位C.祝融号在火星表面的惯性与地球表面不同D.祝融号着落火星时对火星的压力小于火星对祝融号的支持力专题16牛顿第二定律的理解1.[2023ꞏ全国甲卷](多选)用水平拉力使质量分别为m甲、m乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙.甲、乙两物体运动后,所受拉力F 与其加速度a的关系图线如图所示.由图可知()A.m甲<m乙B.m甲>m乙C.μ甲<μ乙D.μ甲>μ乙2.如图所示,质量m=10 kg的物体在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20 N的作用,g取10 m/s2,则物体产生的加速度是()A.0 B.4 m/s2,水平向右C.2 m/s2,水平向左D.2 m/s2,水平向右3.如图,沿东西方向(以水平向右为东)直线行驶的列车顶部用细线悬挂一小球A,质量为m的物块B始终相对列车静止在桌面上.某时刻观察到细线偏离竖直方向θ角,且A相对列车静止,重力加速度为g,则此刻()A.列车可能向东减速运动B.列车可能向西加速运动C.B受摩擦力大小为mg tan θ,方向向西D.B受摩擦力大小为mg tan θ,方向向东4.如图所示,当小车向右加速运动时,物块M相对车厢静止于竖直车厢壁上,当车的加速度增大时,则()A .物块M 受摩擦力增大B .物块M 对车厢壁的压力增大C .物块M 所受合外力大小不变D .物块M 沿车厢向上运动5.[2023ꞏ江苏省常州市质量调研]如图所示,质量为 M ,中空为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m 的小铁球,现用一水平向右的推力 F 推动凹槽,小铁球与光滑凹槽相对静止时,凹槽圆心和小铁球的连线与竖直方向成α=53°.则下列说法正确的是( )A .小铁球受到的合外力方向水平向左B .系统的加速度为3g4C .凹槽对小铁球的支持力为5mg3 D .推力4Mg3 6.[2023ꞏ四川省联考]如图所示,一倾角为37°的光滑斜面体放在水平面上,用固定在斜面上的竖直挡板A 与斜面夹住一个光滑小球.若给斜面体一个水平向右的拉力,使小球和斜面体保持相对静止地沿水平面做匀变速直线运动,取sin 37°=0.6,cos 37°=0.8,重力加速度大小g =10 m/s 2,则当小球对挡板的压力恰好与小球受到的重力大小相等时,小球的加速度大小为( )A .5 m/s 2B .4 m/s 2C .2.5 m/s 2D .1.5 m/s 27.在光滑水平面上放一质量为M 的物体A ,用轻绳通过定滑轮与质量为M 的B 相连,如图甲所示,其它条件不变去掉B 换上拉力F ,且F =Mg .如图乙,设甲、乙两图中A 的加速度分别为a 1、a 2,则( )A .a 1=2a 2B .a 1=a 2C .a 1=a 22 D .无法确定专题17 用牛顿第二定律解决瞬时问题1.[2023ꞏ重庆市检测](多选)如图所示,三个完全相同的小球甲、乙、丙,甲、乙两球用轻绳连接,乙、丙两球用轻弹簧连接,甲球用轻绳与天花板连接,甲、乙、丙三球位于同一竖直线上且均处于静止状态,重力加速度为g ,弹簧始终在弹性限度内,将天花板与甲球间轻绳剪断瞬间,三个小球的加速度大小为( )A .a 甲=gB .a 甲=1.5gC .a 乙=2gD .a 丙=0 2.[2023ꞏ浙江省湖州市联考]如图所示,质量分别为2m 、m 的物块A 和B 通过一轻弹簧连接,并放置于倾角为θ的光滑固定斜面上,用一轻绳一端连接B ,另一端固定在墙上,绳与斜面平行,物块A 和B 静止.突然剪断轻绳的瞬间,设A 、B 的加速度大小分别为a A 和a B (弹簧在弹性限度内,重力加速度为g ),则( )A .a A =0,aB =1.5g sin θ B .a A =0,a B =g sin θC .a A =0,a B =3g sin θD .a A =a B =g sin θ 3.如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀加速运动的电梯内,细线中的拉力为F ,此时突然剪断细线,在线断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( )A .2F 3 ,2F 3m +gB .F 3 ,2F3m +g C .2F 3 ,F 3m +g D .F 3 ,F3m +g4.(多选)如图所示,物体a 、b 用一根不可伸长的轻细绳相连,再用一根轻弹簧和a 相连,弹簧上端固定在天花板上,已知物体a 、b 的质量相等,重力加速度为g .当在P 点剪断绳子的瞬间( )A.物体a 的加速度大小为零B .物体a 的加速度与物体b 的加速度大小相同C .物体b 的加速度大小为零D .物体b 的加速度大小为g 5.如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M 的铁块;右端悬挂有两质量均为m 的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg ,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A .14 gB .13 gC .23 g D .g 6.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +MM gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +MM g 7.[2023ꞏ“皖豫名校联盟体”考试]如图所示,质量为m 的小球在轻弹簧和水平轻绳作用下处于静止状态,弹簧与竖直方向夹角为θ.设重力加速度为g ,剪断轻绳的瞬间,小球加速度大小和方向分别为( )A .g ,沿切线方向B .g sin θ,沿切线方向C .g cos θ,沿水平方向D .g tan θ,沿水平方向专题18动力学两类基本问题1.[2023ꞏ山东省联考]新疆长绒棉因质量美誉世界.长绒棉从犁地、播种、植保到采收,已基本实现全自动化.如图为无人机为棉花喷洒农药.无人机悬停在某一高度,自静止开始沿水平方向做匀加速运动,2.8 s达到作业速度,开始沿水平方向匀速作业,已知作业前无人机和农药总质量为25 kg,无人机作业速度为7 m/s,重力加速度为10 m/s2.则在加速阶段空气对无人机的作用力约为()A.250 N B.258 NC.313 N D.358 N2.[2023ꞏ辽宁省联考]在地面将一小球竖直向上抛出,经时间t0到达最高点,然后又落回原处,若空气阻力大小恒定,则如下图所示的图象能正确反映小球的速度v、加速度a、位移x、速率u随时间变化关系的是(竖直向上为正方向)()3.[2023ꞏ安徽省阶段考]如图,倾角为θ的斜面体固定在水平地面上,一物块以一定的初速度从斜面底端a点沿斜面上滑,到达最高点b点后又沿斜面下滑,c是ab的中点,已知物块从a上滑至b所用时间和从b到c所用时间相等,则物块与斜面间的动摩擦因数为()A.tan θB.12tan θC.13tan θD.14tan θ4.[2023ꞏ北京市期末]一雨滴从空中由静止开始沿竖直方向落下,若雨滴下落过程中所受重力保持不变,且空气对雨滴阻力随其下落速度的增大而增大,则题图所示的图象中能正确反映雨滴整个下落过程运动情况的是()5.[2023ꞏ山东省威海市期末](多选)如图所示,在竖直圆周上有两个光滑斜面AB和CD,A、D分别在圆周上的最高点和最低点.B、C点均在圆周上,且所在高度相同.一个可以看作质点的物块分别从A、C两点由静止沿斜面滑到底端,沿两个斜面下滑时的加速度大小分别为a1、a2,滑到底端的速度大小分别为v1、v2,所用时间分别为t1、t2,下列说法正确的是() A.a1<a2B.v1>v2C.t1=t2D.t1>t26.[2022ꞏ浙江卷1月]第24届冬奥会在我国举办.钢架雪车比赛的一段赛道如图1所示,长12 m水平直道AB与长20 m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°.运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8 m/s,紧接着快速俯卧到车上沿BC匀加速下滑(图2所示),到C点共用时5.0 s.若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110 kg,sin 15°=0.26,求雪车(包括运动员)(1)在直道AB上的加速度大小;(2)过C点的速度大小;(3)在斜道BC上运动时受到的阻力大小.专题19超重和失重1.[2023ꞏ上海市虹口区诊断]某同学站在电梯内的台秤上,发现台秤的读数比静止时少了5千克.则电梯()A.正在向上运动B.正在向下运动C.一定向下加速运动D.可能向上减速运动2.[2023ꞏ河南省质检](多选)2021年8月8日东京奥运会落下帷幕,我国运动健儿奋力拼搏,最终以38枚金牌位列金牌榜第二位.下列关于各种项目中运动员在运动过程中(不计空气阻力)的状态描述说法正确的是()A.跳高运动员在空中,上升和下落过程中都处于失重状态B.蹦床运动员从空中落到蹦床上的过程中惯性越来越大C.举重运动员在举杠铃过头停在最高点时,杠铃处于平衡状态D.游泳运动员仰卧在水面静止不动时处于失重状态3.[2023ꞏ华东师范大学附属中学期末]某次救灾学习中,救援直升机悬停在空中,机上工作人员将装有救灾物资的箱子投出,已知箱子下落的初速度为零,下落过程中所受空气阻力不计.下落过程中,箱子始终保持投放时的状态,以下说法正确的是()A.物资处于超重状态B.物资仅受重力作用C.物资受箱子的支持力逐渐减小D.由静止开始,箱子在持续相同时间内的位移比为1∶2∶3……4.[2023ꞏ广东汕尾市质监](多选)如图所示,蹦极是常见的一项具有挑战性的运动.参加体验的人腰间绑着一条长长的弹性绳,当人从台上跳下后弹性绳逐渐被拉长到最长又向上弹回的过程中,下列说法正确的是()A.人刚跳下时,人做匀加速运动,处于失重状态B.当弹性绳被拉直时,人开始做匀减速运动C.当弹性绳被拉到最长时,人的速度为零,处于超重状态D.人往回弹的过程中,人先做匀加速运动,再做匀减速运动5.[2023ꞏ四川省联考]如图所示,在置于水平地面上的盛水容器中,用一端固定于容器底部的细线拉住一个塑料球,使之静止在水中,此时容器对地面的压力大小为F.某时刻细线突然断开,球上浮(未浮出水面,球上浮过程中受到的水的阻力始终不变),下列说法正确的是() A.球静止时,在竖直方向上受到5个力的作用B.球上浮时,球处于失重状态C.球上浮过程中,球的加速度越来越小D.球上浮过程中,容器对地面的压力小于F6.[2023ꞏ广东省茂名市联考]如图为某运动员做蹦床运动时,利用传感器测得蹦床弹力随时间的变化图.假设运动员仅在竖直方向运动,且不计空气阻力,g取10 m/s2,依据图象给出的物理信息,可得()A.运动员上升的最高高度为5 mB.运动员的加速度最大为50 m/s2C.8.7 s至9.5 s内,运动员先处于失重状态再处于超重状态D.运动员与蹦床相接触的过程中,运动员受到蹦床的弹力是由于运动员发生弹性形变而产生的7.[2023ꞏ天津市期末]如图甲所示,质量为m=60 kg的同学,双手抓住单杠做引体向上.他的重心的速率随时间变化的图象如图乙所示,重力加速度g取10 m/s2,由图象可知()A.t=0.5 s时,他的加速度约为3 m/s2B.t=0.4 s时,他正处于超重状态C.t=1.1 s时,他受到单杠的作用力大小约为618 ND.t=1.5 s时,他正处于超重状态专题20传送带模型1.如图所示,传送带的水平部分长为L,传动速率为v,在其左端无初速度放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是()A.Lv+v2μg B.LvC. 2Lμg D.2Lv2.[2023ꞏ广东省肇庆市质检](多选)如图所示,一水平传送带沿顺时针方向匀速转动,在传送带左端A处无初速度地轻放一小物块,则关于小物块从A端运动到B端过程中的速度v 随时间t的变化图象,下列选项中可能正确的是()3.[2023ꞏ河南省联考](多选)如图甲所示,倾斜的传送带以恒定速率v1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v2从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t图象如图乙所示,物块到达一定高度时速度为零,sin 37°=0.6,cos 37 °=0.8,g =10 m/s2,则()A.传送带的速度为4 m/sB.物块上升的竖直高度为0.96 mC.物块与传送带间的动摩擦因数为0.5D.物块所受摩擦力方向一直与物块运动方向相反4.[2023ꞏ广东省质检]如图所示,传送带长6 m,与水平方向的夹角θ=37°,以5 m/s的恒定速度向上运动.一个质量为2 kg的物块(可视为质点),沿平行于传送带方向以10 m/s的速度滑上传送带,已知物块与传送带之间的动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g =10 m/s2.求:(1)物块刚滑上传送带时的加速度大小;(2)物块到达传送带顶端时的速度大小.专题21 滑块-木板模型1.[2023ꞏ张家口市期末]如图所示,质量为3 kg 的长木板B 静置于光滑水平面上,其上表面右端放置一个质量为2 kg 的物块A ,物块A 与长木板B 之间的动摩擦因数为0.5,设最大静摩擦力等于滑动摩擦力,重力加速度取10 m/s 2.现用水平向右、大小为20 N 的拉力F 拉长木板B ,则( )A .物体A 受到摩擦力的大小为8 NB .物体A 受到摩擦力的大小为10 NC .物体A 受到摩擦力的大小为15 ND .物体A 受到摩擦力的大小为20 N2.[2023ꞏ百校联考]如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是( )A .若货车向前加速时,木箱对车厢的摩擦力方向向左B .为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s 2C .若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D .若货车的加速度为5 m/s 2时,木箱受到的摩擦力为静摩擦力 3.[2023ꞏ河南省联考](多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140 .小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 4.[2023ꞏ湖南省益阳市考试]如图所示,物块B放在木板A上,木板A的质量m A=1 kg,物块B的质量m B=4 kg,不计B的大小,木板A足够长.开始时A、B均静止.现用恒定拉力F=28 N作用在物块B上,t1=2 s后撤去拉力F.已知A与B之间的动摩擦因数μ1=0.2,A 与地面之间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)拉力刚开始作用时,A、B的加速度a A1、a B1的大小;(2)t=3.2 s时,A、B的速度大小.专题22动力学中的临界和极值问题1.[2023ꞏ河南省联考](多选)研究“蹦极”运动时,在运动员身上系好弹性绳并安装传感器,可测得运动员竖直下落的距离及其对应的速度大小.根据传感器收集到的数据,得到如图所示的“速度—位移”图象.若空气阻力和弹性绳的重力可以忽略,根据图象信息,下列说法正确的有()A.弹性绳原长小于15 mB.当运动员下降10 m时,处于超重状态C.当运动员下降15 m时,绳的弹力最大D.当运动员下降20 m时,其加速度方向竖直向上2.[2023ꞏ广东省深圳市联考](多选)如图所示,质量为m=1 kg的滑块和质量为M=2 kg的木板叠放在一起,滑块与木板之间的动摩擦因数为μ1=0.1,木板与地面之间的动摩擦因数为μ2=0.2,某时刻木板与滑块恰好以相同的速度向右运动,此时给木板施加向右的恒力F,若要求木板与滑块在以后的运动中不产生相对滑动,F的值可能为(g取10 m/s2)()A.0 N B.4 N C.6 N D.10 N3.[2023ꞏ河南省质检]如图所示,三个质量相等的物块A、B、C组合在一起,A带有定滑轮放在光滑的水平面上,跨过定滑轮的轻质细线连接B、C,A与B之间的动摩擦因数为0.7,滑轮与细线、轮轴之间以及A、C之间的摩擦和定滑轮的质量忽略不计,最大静摩擦力等于滑动摩擦力,水平推力F作用在A上,为了使三个物块相对静止,则F的最大值与最小值之比为()A.3∶1 B.17∶3 C.16∶3 D.6∶14.如图所示,一只杯子固定在水平桌面上,将一块薄纸板盖在杯口上并在纸板上放一枚鸡蛋,现用水平向右的拉力将纸板快速抽出,鸡蛋(水平移动距离很小,几乎看不到)落入杯中,这就是惯性演示实验.已知鸡蛋(可视为质点)中心离纸板左端的距离为d,鸡蛋和纸板的质量分别为m和2m,所有接触面的动摩擦因数均为μ,重力加速度为g,若鸡蛋移动的距离不超过d10就能保证实验成功,则所需拉力的最小值为()A.3μmg B.6μmg C.12μmg D.26μmg5.[2023ꞏ辽宁省葫芦岛市联考](多选)如图所示,一劲度系数为100 N/m的轻质弹簧,上端固定,下端连着一质量为0.1 kg的物块A,A放在质量为0.2 kg的托盘B上.初始时系统在竖直向上的力F作用下静止,此时弹簧被压缩了1 cm.现改变力F的大小,使托盘B以2 m/s2的加速度匀加速下降.取重力加速度大小g=10 m/s2,不计空气阻力,弹簧始终在弹性限度内,下列说法正确的是()A.物块A刚向下运动的瞬间,弹簧的弹力大小为1 NB.物块A与托盘B刚要分离时,弹簧的弹力大小为1 NC.从物块A开始运动到与托盘B分离的时间为25×10-2 sD.从物块A开始运动到与托盘B分离的时间为65×10-2 s6.[2023ꞏ山东省济宁市邹城市期中](多选)如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,重力加速度取g=10 m/s2.根据图象可求出()A.物体的初速度是6 m/sB.物体与斜面间的动摩擦因数μ为0.75C.当斜面倾角θ=45°时,物体在斜面上能达到的位移最小D.物体在斜面上能达到的位移x的最小值是1.44 m专题23实验:探究加速度与力、质量的关系1.[2021ꞏ全国甲卷]为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示.该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图象,获得5个连续相等时间间隔(每个时间间隔ΔT=0.20 s)内小铜块沿斜面下滑的距离s i(i=1,2,3,4,5),如下表所示.s1s2s3s4s55.87 cm7.58 cm9.31 cm11.02 cm12.74 cm由表中数据可得,小铜块沿斜面下滑的加速度大小为________ m/s2,小铜块与瓷砖表面间的动摩擦因数为________.(结果均保留2位有效数字,重力加速度大小取9.80 m/s2) 2.[2021ꞏ湖南卷]某实验小组利用图(a)所示装置探究加速度与物体所受合外力的关系.主要实验步骤如下:(1)用游标卡尺测量垫块厚度h,示数如图(b)所示,h=________ cm;(2)接通气泵,将滑块轻放在气垫导轨上,调节导轨至水平;(3)在右支点下放一垫块,改变气垫导轨的倾斜角度;(4)在气垫导轨合适位置释放滑块,记录垫块个数n和滑块对应的加速度a;(5)在右支点下增加垫块个数(垫块完全相同),重复步骤(4),记录数据如下表:n 12345 6a/(mꞏs-2)0.0870.1800.2600.4250.519 根据表中数据在图(c)上描点,绘制图线.。
《第4章 牛顿运动定律》试卷及答案_高中物理必修第一册_沪教版_2024-2025学年
《第4章牛顿运动定律》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一个物体在光滑水平面上受到恒定外力的作用而加速运动,如果该物体的质量增加一倍,同时作用力也增加一倍,那么物体的加速度会如何变化?•A) 加速度不变•B) 加速度减小一半•C) 加速度增大一倍•D) 加速度增大两倍2、假设有一辆静止的小车,在水平方向上施加了一个恒定的拉力,使小车开始加速前进。
若忽略空气阻力和其他摩擦力的影响,下列哪一项描述是正确的?•A) 小车的速度与时间成正比•B) 小车的速度与时间的平方成正比•C) 小车的加速度随时间逐渐减少•D) 小车的位移与时间成正比3、一个物体在水平面上受到一个恒定的推力作用,同时受到一个与运动方向相反的摩擦力。
如果推力大于摩擦力,下列说法正确的是:A、物体将做匀速直线运动B、物体的速度将逐渐减小C、物体的速度将逐渐增大D、物体的加速度将逐渐减小4、一个物体从静止开始沿斜面向上滑动,斜面的倾角为θ。
下列说法正确的是:A、物体受到的重力分量向下,摩擦力方向向上,物体的加速度沿斜面向下B、物体受到的重力分量向下,摩擦力方向向下,物体的加速度沿斜面向上C、物体受到的重力分量向下,摩擦力方向向上,物体的加速度沿斜面向下D、物体受到的重力分量向下,摩擦力方向向下,物体的加速度沿斜面向上5、一个物体在水平面上受到两个力的作用,一个力是水平向右的推力F,另一个力是水平向左的摩擦力f。
如果物体保持静止,则以下说法正确的是:A、推力F必须大于摩擦力fB、推力F必须小于摩擦力fC、推力F和摩擦力f大小相等D、推力F和摩擦力f的合力为零6、一个物体从静止开始沿着光滑的斜面下滑,以下说法正确的是:A、物体的速度随时间均匀增加B、物体的加速度随时间均匀增加C、物体的动能随时间均匀增加D、物体的势能随时间均匀减少7、一物体在水平面上受到一水平推力F的作用,同时受到一摩擦力f的阻碍,物体沿水平面做匀速直线运动。
高三物理牛顿运动定律试题答案及解析
高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s=39m所以小车在加速运动过程中位移的大小为内由动能定理:,解得x23m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.如图所示,倾角为a的光滑斜面下端固定一绝缘轻弹簧,M点固定一个质量为m、带电量为-q的小球Q,整个装置处在电场强度大小为E、方向沿斜面向下的匀强电场中。
现把一个带电量为+q的小球P从N点由静止释放,释放后P沿着斜面向下运动,N点与弹簧的上端和M的距离,P、Q以及弹簧的轴线ab与斜面平行,两小球均可视为质点和点电荷,弹簧的劲度系数均为so,静电力常量为k。
则为kA.小球P返回时,可能撞到小球QB.小球P在N点的加速度大小为C.小球P沿着斜面向下运动过程中,其电势能可能增大D.当弹簧的压缩量为时,小球P的速度最大【答案】BC【解析】返回N点时,由于重力做功为零,匀强电场的电场力做功为零,电荷Q的电场对P做功为零,则合力做功为零,回到N点的速度为零.所以小球不可能撞到小球Q,故A错误;对N点受力分析有:,可知B正确;小球P沿着斜面向下运动过程中,匀强电场和点电荷的电场可能对其做正功,也可能做负功,其电势能可能增大也可能减小,C正确;当小球所受合力为零时,小球P的速度最大,此时,弹簧的压缩量小于, D错误。
高考物理牛顿运动定律题20套(带答案)及解析
高考物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。
t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。
已知圆轨道的半径R=0.5 m。
(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。
如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。
【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C点落到A点物块从A到C,由动能定律可得:解得:2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N.(g取10 m/s2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度h;(2)当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t1.【答案】(1)75m(2)40m/s (3)55s【解析】【分析】【详解】(1)由牛顿第二定律 F﹣mg﹣f=ma代入数据解得a=6m/s2上升高度代入数据解得 h=75m.(2)下落过程中 mg﹣f=ma1代入数据解得落地时速度 v2=2a1H,代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F﹣mg+f=ma2代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.3.质量9kg M =、长1m L =的木板在动摩擦因数10.1μ=的水平地面上向右滑行,当速度02m/s v =时,在木板的右端轻放一质量1kg m =的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取210m/s g =,求:(1)从木块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数2μ. 【答案】(1)1s (2)0.08 【解析】 【分析】 【详解】(1)设木板在时间t 内的位移为x 1;铁块的加速度大小为a 2,时间t 内的位移为x 2 则有210112x v t a t =-22212x a t =12x L x =+又012v a t a t -=代入数据得t =1s(2)根据牛顿第二定律,有121()M m g mg Ma μμ++=22mg ma μ=解得20.08μ=4.在水平力F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为6m ,随即撤掉F ,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求: (1)物块运动的最大速度; (2)F 的大小;(3)撤去F 后,物块克服摩擦力做的功 【答案】(1)6m/s (2)3.2N (3)7.2J 【解析】 【分析】(1)物块做匀加速直线运动,运动2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求F 的大小. (3)撤去F 后,根据动能定理求物块克服摩擦力做的功. 【详解】(1)物块运动2s 时速度最大.由运动学公式有:x= 2v t 可得物块运动的最大速度为:2266/2x v m s t ⨯=== (2)物块匀加速直线运动的加速度为:a=62vt==3m/s 2. 设物块所受的支持力为N ,摩擦力为f ,根据牛顿第二定律得:F-f=ma N-mg=0,又 f=μN 联立解得:F=3.2N(3)撤去F 后,根据动能定理得:-W f =0-12mv 2 可得物块克服摩擦力做的功为:W f =7.2J 【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去F 前后摩擦力的大小是变化的,但动摩擦因数不变.5.如图所示,在足够大的光滑水平桌面上,有一个质量为10-2kg 的小球,静止在该水平桌面内建立的直角坐标系xOy 的坐标原点O .现突然沿x 轴正方向对小球施加大小为2×10-2N 的外力F 0,使小球从静止开始运动,在第1s 末所加外力F 0大小不变,方向突然变为沿y 轴正方向,在第2s 后,所加外力又变为另一个不同的恒力F .求:(1)在第1末,小球的速率; (2)在第2s 末,小球的位移;(3)要使小球在第3s 末的速度变为零所加的恒力F(保留两位有效数字)【答案】(1)2m/s (2 (3)2.8×10-2N 【解析】 【分析】 【详解】(1)根据牛顿第二定律F 0=ma 在第1s 末,根据速度时间关系v 1=at 解得:v 1=2m/s ;(2)在第1s 末,根据位移时间关系x 1=212at 在第2s 内,小球从x 轴正方向开始做类平抛运动: 在x 方向:x 2=v 1t 在y 方向:2212y at =位移:联立解得,设位移与X 轴正方向的夹角为θ, (3)在第2s 末,沿x 轴正方向速度仍为v 1=2m/s在y 方向分速度为v 2=at=2m/s ,此时速度与x 轴正方向的夹角为45° 所加恒力一定与速度方向相反,小球沿x 轴方向加速度1x v a t= 沿y 轴方向加速度2y v a t=小球的加速度a =根据牛顿第二定律F=ma 联立解得F=2.8×10-2N 【点睛】(1)根据牛顿第二定律和速度时间关系联立求解;(2)第2s 内,小球从x 轴正方向开始做类平抛运动,分别求出x 方向和y 方向的位移,根据勾股定理求解小球的位移;(3)分别根据x 方向和y 方向求出小球的加速度,根据勾股定理求解小球总的加速度,根据牛顿第二定律求小球受到的力.6.草逐渐成为我们浙江一项新兴娱乐活动。
物理牛顿运动定律题20套(带答案)
物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
《第四章 牛顿运动定律》试卷及答案_高中物理必修第一册_教科版_2024-2025学年
《第四章牛顿运动定律》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、1、一物体从静止开始,在水平面上受到一恒力作用,以下说法正确的是:A、物体的加速度会随着时间的增加而减小B、物体的速度会随着时间的增加而减小C、物体的位移会随着时间的增加而增大D、物体的位移会随着时间的增加而减小2、2、一个物体在水平面上受到两个力的作用,一个向左,一个向右,大小相等,方向相反,那么:A、物体一定处于静止状态B、物体的加速度一定为零C、物体的合力为零,但可能存在加速度D、物体的速度一定为零3、一个物体在水平地面上受到一个恒力F的作用,该物体沿直线做加速运动。
以下说法正确的是()A、物体的加速度与力F成正比,与物体质量成反比B、物体的加速度与力F成正比,与物体质量无关C、物体的加速度与物体质量成正比,与力F成反比D、物体的加速度与物体质量成反比,与力F成正比4、一个物体在光滑的水平面上,受到一个方向与物体运动方向成30°的恒力F的作用。
以下说法错误的是()A、物体在水平方向上的加速度与力F成正比,与物体质量成反比B、物体在垂直方向上的加速度为0,因为没有垂直方向上的力作用C、物体在斜方向上的合加速度小于30°方向上的分力产生的加速度D、物体在斜方向上的合加速度等于30°方向上的分力产生的加速度5、一个物体在光滑水平面上做匀速直线运动,下列说法正确的是:A、物体的加速度为零B、物体受到的合外力为零C、物体受到的摩擦力为零D、物体的速度为零6、一辆汽车以恒定功率启动,下列说法正确的是:A、汽车的速度越大,其加速度越大B、汽车的速度越大,其加速度越小C、汽车的速度越大,其功率越小D、汽车的功率与速度无关7、一个质量为2kg的物体,在光滑水平面上受到大小为8N的恒力作用,由静止开始运动。
根据牛顿第二定律,求该物体加速度的大小是多少?•A) 1m/s²•B) 2m/s²•C) 4m/s²•D) 8m/s²二、多项选择题(本大题有3小题,每小题6分,共18分)1、关于牛顿第一定律,以下说法正确的是:A、物体不受外力作用时,将保持静止状态或匀速直线运动状态。
【高考物理必刷题】牛顿运动定律(后附答案解析)
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
2024高考物理牛顿运动定理综合练习题及答案
2024高考物理牛顿运动定理综合练习题及答案一、选择题1. 牛顿第一定律适用的是()A. 运动状态改变B. 速度改变C. 方向改变D. 惯性运动2. 牛顿第二定律的数学表达式是()A. F = maB. W = mgC. P = mvD. F = mv3. 牛顿第二定律表明,物体的加速度与()成正比,与质量成反比。
A. 力B. 速度C. 位移D. 能量4. 一个质量为2 kg的物体受到的力是10 N,则它的加速度为()A. 2 m/s^2B. 5 m/s^2C. 10 m/s^2D. 20 m/s^25. 一个质量为5 kg的物体受到的力是20 N,则它的加速度为()A. 2 m/s^2B. 4 m/s^2C. 5 m/s^2D. 10 m/s^2二、填空题1. 牛顿第三定律指出,任何两个相互作用的物体之间都有相等大小、方向相反的()。
2. 抛体运动是一种()的运动。
3. 一个物体沿着直线运动,它的速度大小不变,但方向改变,这是一种()运动。
4. 力是引起物体发生()运动或改变运动状态的原因。
5. 物体的质量是物体所具有的性质,不随()而改变。
三、计算题1. 一个质量为3 kg的物体受到的力是12 N,求它的加速度。
答: 加速度 a = F / m = 12 N / 3 kg = 4 m/s^22. 一个质量为5 kg的物体受到的力是20 N,求它的加速度。
答: 加速度 a = F / m = 20 N / 5 kg = 4 m/s^23. 一个物体质量为10 kg,在受到100 N的力作用下,求它的加速度。
答: 加速度 a = F / m = 100 N / 10 kg = 10 m/s^24. 一个物体在10 N的力下产生2 m/s^2的加速度,求物体的质量。
答: 质量 m = F / a = 10 N / 2 m/s^2 = 5 kg5. 一个物体在15 N的力下产生3 m/s^2的加速度,求物体的质量。
高中物理牛顿运动定律练习题(含解析)
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律题20套(带答案)及解析.docx
高中物理牛顿运动定律题20 套( 带答案 ) 及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体 B 和质量为m=0.2kg 的物体 C,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体 C 竖直向下缓慢压下一段距离后释放,物体 C 就上下做简谐运动,且当物体 C 运动到最高点时,物体 B 刚好对地面的压力为 0.已知重力加速度大小为g=10m/s2.试求:①物体 C 做简谐运动的振幅;②当物体 C 运动到最低点时,物体 C 的加速度大小和此时物体 B 对地面的压力大小.【答案】① 0.07m ②35m/s 214N【解析】【详解】①物体 C 放上之后静止时:设弹簧的压缩量为x0.对物体 C,有: mg kx0解得: x0=0.02m设当物体 C 从静止向下压缩x 后释放,物体 C 就以原来的静止位置为平衡位置上下做简谐运动,振幅 A=x当物体 C 运动到最高点时,对物体B,有:Mg k( A x0)解得: A=0.07m②当物体 C 运动到最低点时,设地面对物体 B 的支持力大小为F,物体 C 的加速度大小为a.x0 )mg ma对物体,有: k ( AC解得: a=35m/s 2对物体 B,有:F Mg k( A x0 )解得: F=14N所以物体 B 对地面的压力大小为14N2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为 s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为 m=5kg 的行李箱无初速度地放上传送带 A 端后,传送到 B 端,重力加速度 g 取 10m/ 2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从 A 端传送到 B 端所用时间t ;(3)整个过程行李对传送带的摩擦力做功W。
高考物理牛顿运动定律的应用题20套(带答案)含解析
高考物理牛顿运动定律的应用题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为µ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律得: 1sin cos mg mg ma θμθ+=,解得2110/a m s =设小物块沿沿斜面上滑距离为x 1,则211020a x v -=-,解得15x m =(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:2sin cos mg mg ma θμθ-=,解得: 222/a m s =设小物块下滑至斜面底端时的速度为v 1,则21212v a x =解得: 125/v m s =设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23µmg ma =,解得: 234/a m s =设物块在传送带向左滑动的最大距离为L ,则23120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则222ax v =,解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“牛顿运动定律”练习题1.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A )A .m 0gB .(m 0 - m )gC .(m 0 + m )gD .(m 0 + 2m )g2.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是(D )A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大3.为了测得物块与斜面间的动摩擦因数,可以让一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置间的距离分别为AB =2.40cm ,BC =7.30cm ,CD =12.20cm ,DE =17.10cm .若此斜面的倾角θ=370,则物块与斜面间的动摩擦因数为 .(重力加速度g 取9.8m /s 2,sin 370=0.6,cos 370=0.8)答案:0.125 (提示:由逐差法求得物块下滑的加速度为a =4.9m /s 2,由牛顿第二定律知a =g sin 370–μg cos 370,解得μ=0.125)4.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,设此过程中斜面受到水平地面的摩擦力为f 1.f 2。
则(D )A .f 1不为零且方向向右,f 2不为零且方向向右B .f 1为零,f 2不为零且方向向左C .f 1为零,f 2不为零且方向向右D .f 1为零,f 2为零5.如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是(A )6.如图所示,质量为m 的物体放在倾角为α的光滑斜面上,随斜面体一起沿水平方向运动,要使物体相对于斜面保持静止,斜面体的运动情况以及物体对斜面压力F 的大小是(C )A .斜面体以某一加速度向右加速运动,F 小于mgB .斜面体以某一加速度向右加速运动,F 不小于mg m B A m左 右A B AB O F O F O F O FA B C D mαC .斜面体以某一加速度向左加速运动,F 大于mgD .斜面体以某一加速度向左加速运动,F 不大于mg7.如图,质量都是m 的物体A 、B 用轻质弹簧相连,静置于水平地面上,此时弹簧压缩了Δl .如果再给A 一个竖直向下的力,使弹簧再压缩Δl ,形变始终在弹性限度内,稳定后,突然撤去竖直向下的力,在A 物体向上运动的过程中,下列说法中:①B 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;②B 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大;③A 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;④A 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大.其中正确的是(A ) A .只有①③正确 B .只有①④正确C .只有②③正确D .只有②④正确8.有一种大型游戏器械,它是一个圆筒型大型容器,筒壁竖直,游客进入容器后靠筒壁站立,当筒壁开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为(C )A .游客处于超重状态B .游客处于失重状态C .游客受到的摩擦力等于重力D .筒壁对游客的支持力等于重力9.质量为m =20kg 的物体,在恒定的水平外力F 的作用下,沿水平面做直线运动.0~2.0s 内F 与运动方向相反,2.0~4.0s 内F 与运动方向相同,物体的速度—时间图象如图所示,已知g 取10m /s 2.求物体与水平面间的动摩擦因数. 解:由图象可知:0~2.0s 内物体做匀减速直线运动,加速度大小为a 1=5m /s 2,由牛顿第二定律得:mf F a +=1 (4分) 2~4s 内物体做匀加速直线运动,加速度大小为a 2=1m /s 2,由牛顿第二定律得:mf F a -=2 又f =μmg由以上各式解得:μ=0.210.我国铁路上火车经过多次提速,火车的运行速度较大,而车轮与铁轨间的动摩擦因数又不大,所以飞驰的火车在发生险情紧急刹车后,到完全停下的制动距离是很大的.据实际测定,在某一直线路段,某列火车车速为86.4km /h 时,制动距离为960m .(设火车刹车时受到的阻力不变)(1)求紧急刹车时火车的加速度大小.(2)在同一路段,该列火车的行车速度提高到108km /h时,制动距离变为多少?解:(1)设列车在紧急刹车过程中做匀减速直线运动,初速度为v 1=86.4km /h =24m /s ,末速度v =0,位移s =960m ,紧急刹车时加速度为a .由速度——位移公式得 -1212as v =代入数据得 a =-0.3m /s 2所以火车加速度大小为0.3m /s 2.(2)火车初速度 v 2=108km /h =30m /s-2222as v =代入数据得制动距离 s =1.5×103m11.为了测定小木板和斜面间的动摩擦因数,某同学设计了如下的实验.在小木板上固定一个弹簧测力计(质量不计),弹簧测力计下端吊一个光滑小球,将木板连同小球一起放在斜-2面上,如图所示.用手固定住木板时,弹簧测力计的示数为F 1,放手后木板沿斜面下滑,稳定时弹簧测力计的示数为F 2,测得斜面倾角为θ,由测得的数据可求出木板与斜面间的动摩擦因数是多少?解:用手固定住木板时,对小球有 F 1=mgsin θ木板沿斜面下滑时,对小球有 mgsin θ-F 2=ma木板与小球一起下滑有共同的加速度,对整体有(M +m )gsin θ-F f =(M +m )aF f =μ(M +m )gcos θ 联立①②③④式得:θμtan 12F F = 12.如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两端皆有一与传送带等高的光滑水平面,一物体以恒定的速度v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是(CD )A .物体从右端滑到左端所须的时间一定大于物体从左端滑到右端的时间B .若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C .若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D .若v 2<v 1,物体从右端滑上传送带又回到右端.在此过程中物体先做减速运动,再做加速运动13.四个质量、形状相同的斜面体放在粗糙的水平面上,另有四个质量相同的小物体放在斜面顶端,由于小物体与斜面间的摩擦力不同,第一个物体匀加速下滑,第二个物体匀速下滑,第三个物体匀减速下滑,第四个物体静止在斜面上,如图所示,四个斜面均保持不动,下滑过程中斜面对地面压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是(C )A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 414.如图所示,一弹簧的下端固定在地面上,一质量为0.05kg 的木块B 固定在弹簧的上端,一质量为0.05kg 的木块A 置于木块B 上,A 、B 两木块静止时,弹簧的压缩量为2cm ;再在木块A 上施一向下的力F ,当木块A 下移4cm 时,木块A 和B 静止,弹簧仍在弹性限度内,g 取10m/s 2.撤去力F 的瞬间,关于B 对A 的作用力的大小,下列说法正确的是(C )A .2.5NB .0.5NC .1.5ND .1N15.举重运动是力量和技巧充分结合的体育项目.就“抓举”而言,其技术动作可分为预备、提杠铃、发力、下蹲支撑、起立、放下杠铃等六个步骤,如图所示表示了其中的几个状态.在“发力”阶段,运动员对杠铃施加恒力作用,使杠铃竖直向上加速运动;然后运动员停止发力,杠铃继续向上运动,当运动员处于“下蹲支撑”处时,杠铃的速度恰好为零.从运动员开始“发力”到“下蹲支撑”处的整个过程历时0.8s ,杠铃升高0.6m ,该杠铃的质量为150kg .求运动员发力时,对杠铃的作用力大小.(g 取10m /s 2)解:设杠铃在题述过程中的最大速度为v m ,则有t v h m 21=,解得v m =1.5m /s 杠铃匀减速运动的时间为:右 v 1 v 2 左 v 2 v v v AB 1发力 2下蹲支撑 3起立s gv t m 15.0==' 杠铃匀加速运动的加速度为:2/3.2s m t t v a m ='-= 根据牛顿第二定律有:F - mg = ma解得F =1845N16.如图所示,质量为m 的小球用水平弹簧系住,并用倾角为300的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(C )A .0B .大小为g ,方向竖直向下C .大小为g 332,方向垂直木板向下 D .大小为g 33,方向水平向右 17.如图所示,质量相同的木块M 、N 用轻弹簧连结并置于光滑水平面上,开始弹簧处于自然伸长状态,木块M 、N 静止.现用水平恒力F 推木块M ,用a M 、a N 分别表示木块M 、N 瞬时加速度的大小,用v M 、v N 分别表示木块M 、N 瞬时速度,则弹簧第一次被压缩到最短的过程中(A )A .M 、N 加速度相同时,速度v M >v NB .M 、N 加速度相同时,速度v M =v NC .M 、N 速度相同时,加速度a M >a ND .M 、N 速度相同时,加速度a M =a N18.将金属块用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板安有压力传感器,箱可以沿竖直轨道运动.当箱以a =2.0m /s 2的加速度做竖直向上的匀减速运动时,上顶板的传感器显示的压力为6.0N ,下顶板的传感器显示的压力为10.0N ,g 取10m /s 2.(1)若上顶板的传感器的示数是下顶板的传感器示数的一半,试判断箱的运动情况;(2)要使上顶板传感器的示数为0,箱沿竖直方向的运动可能是怎样的?解:设金属块的质量为m ,根据牛顿第二定律有:mg +F 上-F 下=ma解得m =0.5kg(1)由于上挡板仍有压力,说明弹簧的长度没有变化,因此弹簧的弹力仍为10.0N ,,可见上顶板的压力为5N ,设此时加速度为a 1,根据牛顿第二定律有121ma F F mg =-+下下 解得 a 1=0,即此时箱静止或做匀速直线运动.(2)要使上挡板没有压力,弹簧的长度只能等于或小于目前的长度,即下顶板的压力只能等于或大于10.0N ,设此时金属块的加速度为a 2,应满足:ma 2≥10.0N-mg解得a 2≥10m /s 2,即只要箱的加速度向上、等于或大于10m /s 2(可以向上做加速运动,也可以向下做减速运动),上顶板传感器的示数均为零.19.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图所示.已知盘与桌布间的动摩擦因数为 μ1,盘与桌面间的动摩擦因数为 μ2.现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)解:对盘在桌布上有 μ1mg = ma 1 ①在桌面上有μ2mg = ma 2 ②υ12 =2a 1s 1 ③ υ12 =2a 2s 2 ④盘没有从桌面上掉下的条件是s 2≤─12l - s 1 ⑤ 对桌布 s = ─ 12 at 2 ⑥ 对盘 s 1 = ─ 12a 1t 2 ⑦ 而 s = ─ 12l + s 1 ⑧ 由以上各式解得a ≥( μ1 + 2 μ2) μ1g / μ2 ⑨ 20.如图,一个盛水的容器底部有一小孔.静止时用手指堵住小孔不让它漏水,假设容在下述几种运动过程中始终保持平动,且忽略空气阻力,则 (D )A .容器自由下落时,小孔向下漏水B .将容器竖直向上抛出,容器向上运动时,小孔向下漏水;容器向下运动时,小孔不向下漏水C .将容器水平抛出,容器在运动中小孔向下漏水D .将容器斜向上抛出,容器在运动中小孔不向下漏水21.如图所示,质量为M 的木板上放着一个质量为m 的木块,μ1,木板与水平地面间的动摩擦因数为 μ2,,加在木板上的力 F 为多大时,才能将木板从木块下抽出?(F >( μ1+ μ2)(M +m )g ) 22.如图所示,A 、B 的质量分别为m A =0.2kg,m B =0.4kg ,盘C 的 质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态.当用火柴烧断O 处的细线瞬间,木块A 的加速度a A = 0 ,木块B 对盘C 的压力N BC = 1.2 N .(取g =10m/s 2)23.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板。