数值分析,计算方法试题库及答案
(完整word版)数值分析(计算方法)期末试卷3及参考答案
![(完整word版)数值分析(计算方法)期末试卷3及参考答案](https://img.taocdn.com/s3/m/879ff6476ad97f192279168884868762caaebba2.png)
[][][]0010012001,,()()n n f x x x x x x -+--参考答案一. 填空(每空3分,共30分)1. 截断误差2. )2(--x x ,2)1(-x x , 10 3. 14.)(2)(21k k k k k k x f x x f x x x '---=+ 5. 6,5,26,9二. 计算1. 构造重节点的差商表:所以,要求的Newton 插值为:3()5(1)2(1)(2)(1)(2)(3)N x x x x x x x =--+--+---3243x x =-+插值余项是:2()()(1)(2)3!f R x x x ξ'''=--或:()[,1,2,3,4](1)(2)(3)(4)R x f x x x x x =----2.(1)解:()1f x =时,左10()1f x dx ==⎰,右01A A =+,左=右得:011A A +=()f x x =时,左101()2f x dx ==⎰,右01B A =+,左=右得:0112B A += 2()f x x =时,左101()3f x dx ==⎰,右1A =,左=右得:113A =联立上述三个方程,解得:001211,,363A B A ===3()f x x =时,左101()4f x dx ==⎰,右113A ==,左≠右 所以,该求积公式的代数精度是2(2)解:过点0,1构造()f x 的Hermite 插值2()H x ,因为该求积公式代数精度为2,所以有:'212021200010(0)(0)(0)(0)(1()))(0H A H B H f A f B f H x dx A A ++++==⎰其求积余项为:1'1000()[(0)(1)(0)]()f x dx f A f f B f R A -++=⎰112201()()!))((13f H x dx x x dx f x dx η'''--==⎰⎰⎰ 120()(1)3!f x x dx ζ'''=-⎰ ()72f ζ'''=-所以,172k =-3.解:改进的Euler 公式是:1111(,)[(,)(,)]2n n n n n n n n n n y y hf x y hy y f x y f x y ++++=+⎧⎪⎨=++⎪⎩具体到本题中,求解的公式是:11110.2(32) 1.40.60.1[3232](0)1n n n n n n n n n n n n y y x y y x y y x y x y y ++++=++=+⎧⎪=++++⎨⎪=⎩代入求解得:1 1.4y =,1 1.54y =222.276, 2.4832y y ==4.解:设3()25,f x x x =+-则2()32,f x x '=+ 牛顿迭代公式为:1()()k k k k f x x x f x +=-'322532k k k k x x x x +-=-+ 322532k k x x +=+将0 1.5x =代入上式,得1 1.34286x =,2 1.37012x =,3 1.32920x =,4 1.32827x =,5 1.32826x =4540.0000110x x --=<所以,方程的近似根5 1.32826x =5.解,Jacobi 迭代公式是:11231211131521333324k k k k k k k x x x x x x x ++++⎧=--⎪⎪⎪=-⎨⎪⎪=-⎪⎩Gauss-Seidel 迭代公式是:112311211131521333324k k k k k k k x x x x x x x +++++⎧=--⎪⎪⎪=-⎨⎪⎪=-⎪⎩(2) 设其系数矩阵是A ,将A 分解为:A D L U =--,其中300020001D ⎛⎫ ⎪= ⎪ ⎪⎝⎭,000021200,000100000L U --⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭Jacobi 迭代矩阵是:11030211()0020********J B D L U -⎛⎫--⎛⎫ ⎪ ⎪ ⎪=+=-⎪ ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭21033100100--⎛⎫⎪ ⎪=- ⎪- ⎪⎝⎭Gauss-Seidel 迭代矩阵是:11300021()220000101000J B D L U ----⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭20002112300006206000--⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭021********--⎛⎫⎪= ⎪ ⎪⎝⎭二. 证明证明:00x >且11()2k k kax x x +=+0k x ⇒> 所以有:111()222k k k k ka a x x x a x x +=+≥=即:数列k x 有下界;2111()()22k k k k k k kx a x x x x x x +=+≤+=所以,迭代序列k x 是单调递减的,由单调递减且有下界的数列极限存在可知序列k x 极限存在。
(完整版)数值计算方法试题及答案
![(完整版)数值计算方法试题及答案](https://img.taocdn.com/s3/m/2a458378ba0d4a7303763a3f.png)
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值分析试卷及答案
![数值分析试卷及答案](https://img.taocdn.com/s3/m/777809d4162ded630b1c59eef8c75fbfc77d94ae.png)
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
(完整版)数值分析整理版试题及答案,推荐文档
![(完整版)数值分析整理版试题及答案,推荐文档](https://img.taocdn.com/s3/m/c9d115b44431b90d6d85c774.png)
9
1
xdx T4
h[ 2
f
1
3
2 k 1
f
xk
f
9]
2[ 1 2 3 5 7 9] 2
17.2277
(2)用 n 4 的复合辛普森公式
由于 h 2 , f x
x
,
xk
1
2k k
1, 2,3,
x
k
1
2
2k k
0,1, 2,3,所以,有
2
3
9
1
xdx S4
h[ 6
f
1
若 span1, x,则0 (x) 1 ,1(x) x ,这样,有
2
1
0 ,0 1dx 1
0
1,1
1 0
x2dx
1 3
0
,1
1,0
1
0
xdx
1 2
1
f ,0 exdx 1.7183
0
1
f ,1 xexdx 1
0
所以,法方程为
1
1
1
2 1
a0
a1
1.7183 1
1 0
1
23
2 1
a0
a1
6 1
12
3
再回代解该方程,得到
a1
4
,
a0
11 6
故,所求最佳平方逼近多项式为
S1*
(
x)
11 6
4x
例 3、 设 f (x) ex , x [0,1] ,试求 f (x) 在[0, 1]上关于 (x) 1 , span1, x的最
佳平方逼近多项式。 解:
1
4
x1
1 5
数值计算方法试题及答案
![数值计算方法试题及答案](https://img.taocdn.com/s3/m/c58cb83027d3240c8547ef4a.png)
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
数值分析计算方法试题集及答案
![数值分析计算方法试题集及答案](https://img.taocdn.com/s3/m/e142ddf2daef5ef7bb0d3c17.png)
数值分析复习试题第一章 绪论 一. 填空题 1.*x为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。
3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有6 位和7 位;又取 1.73≈-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为0.0055 。
5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为0.01 。
6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为0.0000204 .7、递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取0 1.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 . 8、精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3位和 4 位有效数字。
9、若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5。
10、 设x*的相对误差为2%,求(x*)n的相对误差0.02n11、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()2334610111y x x x =++---- 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。
数值分析期末考卷
![数值分析期末考卷](https://img.taocdn.com/s3/m/50306443974bcf84b9d528ea81c758f5f61f2989.png)
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
数值分析(计算方法)期末试卷及参考答案
![数值分析(计算方法)期末试卷及参考答案](https://img.taocdn.com/s3/m/52d3d90baef8941ea66e05c2.png)
江西理工大学 大 学二 计算-- -------- ---- ---- ----号 --学线 ------2013 至 2014学年第 一 学期试卷试卷 课程数值剖析年级、专业︵B题号一二三四五六七 八九十总分︶得分第1. 给定数据表:( 15 分)x i 1 2 f ( x i )2 3f ' (x i )------ ----------- 名- --姓封 -- -------- -------- -----------密------------- --- 级---班- -- 、 - -- 业- --专--一 填空 (每空 3 分,共 30 分)1. 在一些数值计算中,对数据只好取有限位表示,如时所产生的偏差称为 。
2. 设 f ( x)x 7 x 6 1 , f [30 ,31 ]f [3 0 ,31, ,37], f [3 0 ,31, ,38 ]3. 5 个节点的牛顿 -柯特斯公式代数精度是。
4. 求方程 x2cos x 根的 Newton 迭代格式为5. 设(1, 3,0,2) ,则1,2 12;设 A5 ,则 A41页 2 1.414 ,这 ︵共3页 , ︶ 。
江 。
西理,工 大学。
大 学 教 务处(1) 结构 Hermit 插值多项式 H 2 ( x) ,并计算 f (1.5) 。
(2) 写出其插值余项,并证明之。
- ---------------------- 号- ---- 学--------线-------------------------名- 2. 已知方程x2 ln x 4 0 ,取 x0 1.5 ,用牛顿迭代法求解该方程的根,要求 x k 1 x k 1试10 3时停止迭代。
(10分)卷︵B︶第2页︵共4.用Euler方法求解初值问题y'x yy(0) 0---封姓- ------------------------密------------- 级---- 班--- 、- -- 业-- 专-1 33. 确立求积公式 f ( x)dx Af (0) Bf ( x1 ) Cf (1)0页︶中的待定参数A, B,C , x1,使其代数精度尽可能高,并指出其代数精度。
数值分析题库
![数值分析题库](https://img.taocdn.com/s3/m/0058be9a02d276a200292e82.png)
一. 单项选择题(每小题2分,共10分)1. 在下列四个数中,有一个数具有4位有效数字,且其绝对误差限为 51021-⨯,则该数是( ) A 0.001523 B 0.15230 C 0.01523 D 1.52300 2. 设方阵A 可逆,且其n 个特征值满足:n λλλ>≥> (21),则1-A 的主特征值是( )A11λ B nλ1 C1λ或n λ D 11λ或nλ13. 设有迭代公式→→+→+=fxB x k k )()1(。
若||B|| > 1,则该迭代公式( )A 必收敛B 必发散C 可能收敛也可能发散4. 常微分方程的数值方法,求出的结果是( )A 解函数B 近似解函数C 解函数值D 近似解函数值 5. 反幂法中构造向量序列时,要用到解线性方程组的( ) A 追赶法 B LU 分解法C 雅可比迭代法D 高斯—塞德尔迭代法二. 填空题(每小题4分,共20分)1. 设有方程组⎪⎩⎪⎨⎧=+-=+-=+02132432132132x x x x x x x x ,则可构造高斯—塞德尔迭代公式为⎪⎩⎪⎨⎧2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111112101A ,则=∞A3. 设1)0(,2'2=+=y y x y ,则相应的显尤拉公式为=+1n y4. 设1)(+=ax x f ,2)(x x g =。
若要使)(x f 与)(x g 在[0,1]上正交,则a =5. 设T x )1,2,2(--=→,若有平面旋转阵P ,使P →x 的第3个分量为0,则P =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 三. 计算题(每小题10分,共50分)1. 求27的近似值。
若要求相对误差小于0.1%,问近似值应取几位有效数字?2. 设42)(x x x f -=,若在[-1,0]上构造其二次最佳均方逼近多项式,请写出相应的法方程。
3. 设有方程组⎪⎩⎪⎨⎧=++=++=-+1221122321321321x x x x x x x x x ,考察用雅可比迭代解此方程组的收敛性。
数值计算(数值分析)试题及答案
![数值计算(数值分析)试题及答案](https://img.taocdn.com/s3/m/cac62fba453610661fd9f47c.png)
武汉理工大学研究生课程考试标准答案用纸课程名称:数值计算(A ) 任课教师 :一. 简答题,请简要写出答题过程(每小题5分,共30分) 1.将227和355113作为 3.14159265358979π=L 的近似值,它们各有几位有效数字, 绝对误差和相对误差分别是多少3分)2分)2.已知()8532f x x x =+-,求0183,3,,3f ⎡⎤⎣⎦L ,0193,3,,3f ⎡⎤⎣⎦L .(5分)3.确定求积公式10120()(0)(1)(0)f x dx A f A f A f '≈++⎰中的待定系数,使其代数精度尽量高,并指明该求积公式所具有的代数精度。
解:要使其代数精度尽可能的高,只需令()1,,,m f x x x =L L 使积分公式对尽可能大的正整数m 准确成立。
由于有三个待定系数,可以满足三个方程,即2m =。
由()1f x =数值积分准确成立得:011A A += 由()f x x =数值积分准确成立得:121/2A A += 由2()f x x =数值积分准确成立得:11/3A =解得1201/3,1/6,2/3.A A A === (3分)此时,取3()f x x =积分准确值为1/4,而数值积分为11/31/4,A =≠所以该求积公式的最高代数精度为2次。
(2分)4.求矩阵101010202A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱半径。
解 ()()101011322I A λλλλλλλ--=-=---矩阵A 的特征值为1230,1,3λλλ=== 所以谱半径(){}max 0,1,33A ρ== (5分)5. 设10099,9998A ⎛⎫= ⎪⎝⎭计算A 的条件数()(),2,p cond A P =∞.解:**19899-98999910099-100A A A A --⎛⎫⎛⎫=⇒== ⎪ ⎪-⎝⎭⎝⎭矩阵A 的较大特征值为,较小的特征值为,则1222()198.00505035/0.0050503539206cond A A A -=⨯==(2分)1()199********cond A A A -∞∞∞=⨯=⨯= (3分)22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---(5分)并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++ (5分)2.已知()()()12,11,21f f f -===,求()f x 的Lagrange 插值多项式。
数值分析计算方法试题集及答案
![数值分析计算方法试题集及答案](https://img.taocdn.com/s3/m/f77c8338d5bbfd0a785673b0.png)
数值分析复习试题第一章 绪论 一. 填空题 1.*x 为精确值x 的近似值;()**x f y =为一元函数()x f y =1的近似值;()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-:***r x xe x -=()()()*'1**y f x x εε≈⋅ ()()()()'***1**r r x f x y x f x εε≈⋅()()()()()**,**,*2**f x y f x y y x y x yεεε∂∂≈⋅+⋅∂∂()()()()()****,***,**222r f x y e x f x y e y y x y y y ε∂∂≈⋅+⋅∂∂ 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差.3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6位和 7 1.73≈(三位有效数字)-211.73 10 2≤⨯。
4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 .5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0。
01 。
6、 已知近似值 2.4560A x=是由真值T x 经四舍五入得到,则相对误差限为 0。
0000204 。
7、 递推公式,⎧⎪⎨⎪⎩0n n-1y =y =10y -1,n =1,2,如果取01.41y ≈作计算,则计算到10y 时,误差为8110 2⨯;这个计算公式数值稳定不稳定 不稳定 。
8、 精确值 14159265.3*=π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。
9、 若*2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10—5。
数值分析考试
![数值分析考试](https://img.taocdn.com/s3/m/422a75b0988fcc22bcd126fff705cc1755275f33.png)
数值分析(100分试题) 第 1 页 共 3 页一、、填空题(本大题共5小题,每小题4分,共20分)1、设*0.034x 为经过四舍五入后得到的近似数,则数*x 的有效数字位数是 。
2、设节点,0,1,2,3,,i x i n = ,(),0,1,2,,i l x i n = 是关于上述节点的Lagrange 插值基函数,则对于0,1,2,,k n = ,0()n k i i i x l x ==∑ 。
3、已知矩阵411141114A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 求||||A ∞= ;2()cond A = 。
4、给定方程22cos x x =-,求该方程根的Newton 迭代格式是 。
5、 步长为h 时,求常微分方程初值问题⎩⎨⎧=≤≤=-1)0(,10,0'3y x xy y 的改进的Euler 公式是 。
二、(10分)求一个3次多项式)(x p ,使其满足4)2('',3)2(,2)1(',1)1(====p p p p .三、(10分)给定线性方程组12310112013a x a a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦其中a 为常数.写出求解上述线性方程组的Jacobi 迭代格式,并分析当a 取何值时Jacobi 迭代法收敛。
四、(10分)用列主元Gauss 消去法解线性方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡81213612002120321203214321x x x x 五、(10分)求3()f x x = 在区间[1,1]- 上关于()1x ρ= 的最佳平方逼近2次多项式。
六、(10分) 分析方程01224=---x x x 存在几个实根,并用迭代法求出其中一个实根,精确到3位有效数字。
七、(10分)已知求积公式 )53(95)0(98)53(95)(11f f f dx x f ++-≈⎰- 为Gauss 公式,试给出形如)()()()(221100x f A x f A x f A dx x f ba++≈⎰的求积公式,使其代数精度达到5.八、(10分)用初等反射矩阵将111211245A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦分解为QR 的形式,其中Q 为正交矩阵,R 为上三角矩阵。
《数值计算方法》试题集及答案(1-6)-2..
![《数值计算方法》试题集及答案(1-6)-2..](https://img.taocdn.com/s3/m/b26e685058fafab069dc02ab.png)
《计算方法》期中复习试题一、填空题:1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。
答案:2.367,0.252、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+5、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );6、计算方法主要研究( 截断 )误差和( 舍入 )误差;7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
《数值计算方法》试题集及答案
![《数值计算方法》试题集及答案](https://img.taocdn.com/s3/m/585c8d7a482fb4daa58d4b5a.png)
《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。
答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。
答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。
12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。
13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。
数值分析试题及答案
![数值分析试题及答案](https://img.taocdn.com/s3/m/7658ef4fcec789eb172ded630b1c59eef8c79aef.png)
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
数值分析练习题附答案
![数值分析练习题附答案](https://img.taocdn.com/s3/m/d8d7a8a0162ded630b1c59eef8c75fbfc77d940a.png)
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
数值分析试题库与答案解析
![数值分析试题库与答案解析](https://img.taocdn.com/s3/m/9481c03f581b6bd97f19eaa7.png)
A1 f (1)的求积公式,并求出
3.用 Newton 法求方程 x ln x 2 在区间 ( 2, ) 内的根 , 要求 xk xk 1 xk
4.用最小二乘法求形如 y a bx 2 的经验公式拟合以下数据:
10 8 .
xi
19
25
30
38
yi
19.0
32.3
49.0
73.3
5.用矩阵的直接三角分解法解方程组
, l 32 2
3
3
解方程组
1
y1
11
y2
5
y3
3 21
10
4
16 得 y1 10, y2 6, y3
,
3
30
再解方程组
5 1 1 3 x1
1 2 x2 1 x3
d1 1
10
d2 1
6 得 x1 1, x2
d3 1 4
3
1, x3 2 .
1 4 解 令 Y ,则 Y a bx 容易得出正规方程组
y
7. xk 1 xk xk f (xk ) ; 8. x j ; 9. 1 f (xk)
(B) 1;
10. 1 x3
x2
1 x,
f (4) ( )( x 1)x( x 1)(x 2) / 24
6
6
( 1,2)
二、综合题
1.差商表:
1 15
20
1 15
15
20
7
1 15
22
1
42
8
2 57
30
72
2 57
由于 ( x) [ x f ( x)] 1 f ( x) ,所以 | ( x) | |1 f ( x) | 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、设(2)0,(0)2,(2)8f f f -===,求 )(x p 使 )()(i i x f x p =,)2,1,0(=i ;又设 M x f ≤''')( ,则估计余项 )()()(x p x f x r -= 的大小 。
(15分)三、设(0)1,(0.5)5,(1)6,(1.5)3,(2)2f f f f f =====,()k f M ≤(2,3,4)k =,(1)计算⎰20)(dx x f ,(2)估计截断误差的大小(12分)寂涯网络 2008~2009 学年第 1学期 《计算方法》课程试卷A 第 2 页 共 4 页四、设方程012523=-+x x 在 [2,1]内有实根α,试写出迭代公式,,2,1,0)(1 ==+k x x k k ϕ 使 {}α→k x ,并说明迭代公式的收敛性。
(10分)五、设有线性方程组b Ax =,其中 ⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=582,3015515103531b A(1)求A LU =分解; (2) 求方程组的解 (3) 判断矩阵A 的正定性(14分)寂涯网络 2008~~2009 学年第 1学期 《计算方法》课程试卷A 第 3 页 共 4 页六、设有线性方程组b Ax =,其中 144212441A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试讨论Jacobi 迭代法和Gauss-Seidel 迭代法的收敛性。
(14分)七、设()i j n n A a ⨯=是n 阶实对称正定矩阵,A 经过一次高斯消元计算变为 ⎥⎦⎤⎢⎣⎡211A O T a ,其中T 为行向量,O 是零列向量,试证明2A 是对称正定矩阵(8分)寂涯网络 2008~2009 学年第 1学期 《计算方法》课程试卷A 第 4 页 共 4 页2008 ~ 2009 学年第 1学期 《 计算方法 》课程考试试卷(B )开课二级学院: 理学院 ,考试时间: 2008 年_12__月_31_日 时 考试形式:闭卷√□、开卷□,允许带 计算器 入场考生姓名: 学号: 专业: 班级:一、填空(每空3分,共27分) 1,牛顿—柯特斯求积公式的系数=)3(1C ______________________ 2, 设x的相对误差为ε,则x 的相对误差为___________ 3, 设 *4.5585x =是经四舍五入得到的近似值,则≤-x x *___________ 设(2,2,8)x =-,则=1x ___________,=∞x ___________ ,对实验数据),,2,1(),(n i y x i i =拟建立模型1a bx y =+,则,a b 满足的正规 方程组为 ______________________________ 若b a ,满足的正规方程组为:211242111n ni i i i n n n i i i i i i i na x b y x a x b x y =====⎧+=⎪⎪⎨⎪+=⎪⎩∑∑∑∑∑x y 与之间的关系式为______________________7,若1λ是1-A 的按模最大的特征值,则A 的按模最小的特征值为___________ 8,对幂法迭代公式)()1(k k Ax x=+当k 充分大时有常数q p ,使0)()1()2(≈++++k k k qx px x ,则A 的按模最大的特征值 =2,1λ________________寂涯网络 2008~~2009 学年第 1学期 《计算方法》课程试卷B 第 1 页 共 4 页二、设(1)1,(0)2,(1)6f f f -===,求 )(x p 使 )2,1,0()()(==i x f x p i i ;又设 M x f ≤''')( ,则估计余项 )()()(x p x f x r -= 的大小 。
(15分)三、设2)1(,9)5.0(,6)0(,4)5.0(,1)1(====-=-f f f f f ,(4)f M ≤,则用复化simpson 公式计算⎰-11)(dx x f ,并估计整体截断误差(12分)寂涯网络 2008~2009 学年第 1学期 《计算方法》课程试卷B 第 2 页 共 4 页设有线性方程组b Ax =,其中1240269,149203A b ⎡⎤⎛⎫⎪⎢⎥== ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭1)求A LU =分解; (2) 求方程组的解 (3) 判断矩阵A 的正定性 (14分) 设有线性方程组b Ax =,其中 124112111A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试讨论Jacobi 迭代法和Gauss-Seidel 迭代法的收敛性。
(14分)寂涯网络 2008~~2009 学年第 1学期 《计算方法》课程试卷B 第 3 页 共 4 页六、设方程324100x x +-= 在 [2,1]内有实根α,试写出迭代公式,,2,1,0)(1 ==+k x x k k ϕ 使 {}α→k x 。
(10分)七、设A 是非奇异矩阵,矩阵序列{}k X 满足)2(1k k k AX I X X -=+,若1)(0<-AX I ρ,证明: 1lim -∞→=A X k k (8分)寂涯网络 2008~2009 学年第 1学期 《计算方法》课程试卷B 第 4 页 共 4 页200 8 ~ 200 9 学年第 1 学期 《 计算方法 》课程 试卷(A )参考答案及评分标准开课二级学院: 理学院 ,学生班级:07数学,07信算1,2 教师: 何满喜一、填空(共27分,每空3分)1, 3 2,41104-⨯ 3, 11 6 4, I T ≥ 5,13- 6,211242111n ni ii i n n ni i i i i i i na x b y x a x b x y=====⎧+=⎪⎪⎨⎪+=⎪⎩∑∑∑∑∑ 7,1a bx y =+ 8,s 二(共15分)、由公式得0010012012(3)()()[,]()[,,]()()311(2)(2)22622()()(2)(2)33!(2)(2)366p x f x f x x x x f x x x x x x x x x x x x f r x x x x M M x x x η'=+-+--'=+++=++'=+-'≤+-≤=三(共12分)、根据给定数据点的个数应该用复化simpson 公式计算由公式得⎰20)(dx x f ≈4))2()1(2))5.1()5.0((4)0((3'++++ f f f f f h=476 21=h 2' )(2880),()4(414ηf h a b s f R --= 3'h h MM 2,14402880021==-≤3' 若用其它公式计算正确,且误差比以上的误差大时只给过程分数8分,扣除方法分数4分。
四、(10分)把方程012523=-+x x 等价变为以下方程:512+=x x 2'《 计算方法》课程试卷A 参考答案及评分标准 第 1 页 共 3 页,512)(+=x x ϕ取 2' ,)5(1212)(3+-='x x ϕ则有 2'有因此对21<<x ,1616122)51(1212)5(1212)(33<<=+≤+='x x ϕ 2' ,)(1是收敛的式所以由定理可知迭代公k k x x ϕ=+即迭代公式512)(1+==+k k k x x x ϕ 收敛于方程在区间]2,1[内根α上。
2'五、(14分)因为 13521352[,]31015831025153055055A b ⎛⎫⎡⎤ ⎪⎢⎥=⇒ ⎪⎢⎥⎪⎢⎥⎣⎦⎝⎭5'(1)A =LU=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛500010531105013001 3' (2) 方程组的解为;⎪⎩⎪⎨⎧-===121321x x x 3' (3) 由于A=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛500010531105013001=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100010531511105013001 所以矩阵A 是对称正定的 3'六(14分)、11044()202,440B D D A --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦2'031==-∴λλB I 2'所以 10)(1<=B ρ ,由定理可知简单(Jacobi )迭代法收敛。
3'12100044044()2100020810,244100001624B I L U ---⎛⎫⎡⎤⎛⎫⎪ ⎪⎢⎥'=-=--=- ⎪⎪⎢⎥ ⎪ ⎪⎢⎥--⎝⎭⎣⎦⎝⎭22(3232)0I B λλλλ∴-=-+= 2'所以2()161B ρ=+>,由定理可知Seidel 迭代法不收敛。
3'《 计算方法》课程试卷A 参考答案及评分标准 第 2 页 共 3 页七(8分)、证:2A 的元素为 )1(11111111)1(i j i j i j j i j i j i a a a a a a a a a a =-=-=,因此2A 为对称矩阵。
2'记⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==1001001,11211111 n i i m m L a a m ,则 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=211211110000A O O a A a AL L tt 2' 对任意n-1维非零向量0x ,作tt x x ),0(0=,记x L y t1=,则0,0>∴≠Ay y y t,2'而0,0),0()()(020020021101111>∴=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛===x A x x A x xA O O a x x AL L x x L A x L Ay y t t tt t t t t t t ,从而2A 为正定矩阵。
2'《 计算方法》课程试卷A 参考答案及评分标准 第 3 页 共 3 页课程编号:12000044 北京理工大学2010-2011学年第一学期2009级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题 (2 0×2′)1. 设x =0.231是精确值x *=0.229的近似值,则x 有 位有效数字。
2. 设⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A ,‖A ‖∞=_______,‖X ‖∞=_______,‖AX ‖∞≤____ ___ (注意:不计算‖AX ‖∞的值) 。