遥感平台及运行特点(2)

合集下载

遥感平台

遥感平台

上的投影差h
40
地形起伏引起的像点位移
3
重复周期:卫星从某地上空开始运行,经过若干时间的运行 降交点时刻:卫星经过降交点时的地方太阳时的平均值 扫描宽度:传感器所观测的地面带的横向宽度 16
3.1 遥感平台 3、航天遥感平台
遥感卫星的轨道类型
地球同步轨道(Geosynchronous satellite orbit )
地球静止轨道(geostationary satellite orbit) 能够长时间观测特定地区,卫星高度高,能将大范围的区域 同时收入视野,应用于气象和通讯领域
4
3.1 遥感平台 3、航天遥感平台
遥感卫星的姿态与轨道参数 姿态描述: 1. 三轴倾斜:
滚动:横向摇摆;俯仰:纵向摇摆;偏航:偏移运行轨道
2. 振动:非系统性的不稳定振动 影响数据质量,使用数据前需进行几何纠正
5
3.1 遥感平台 3、航天遥感平台
卫星空间轨道及其运行特征
(一)开普勒定律 卫星在空间运行,遵循天体运动的开普勒三定 律。 一、开普勒第一定律 星体绕地球(或者太阳)运动的轨道是一个椭 圆,地球(太阳)位于椭圆的一个焦点上。 轨道离地最近的点称近地点,反之为远地点。
3.2 摄影成像 1、摄影机
1)分幅式摄影机
20
视场角
常角(50o-70o); 宽角(70o~105o); 特宽角 105o-135o) 像幅 有18*18cm2与23 *23cm2两种。 焦距 长焦距(>200mm); 中焦距(100~200mm) 短焦距(<100mm)
21
3.2 摄影成像 1、摄影机
引起像点位移的因素:
•像片倾斜
•地面点相对于基准面的高差 •物理因素(摄影材料变形、物镜畸变、大气折光、地球曲率等)

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析遥感原理与应用习题第一章遥感物理基础一、名词解释1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。

2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。

3电磁波:电磁波(又称电磁辐射)就是由同相震荡且互相横向的电场与磁场在空间中以波的形式移动,其传播方向旋转轴电场与磁场形成的平面,有效率的传达能量和动量。

电磁辐射可以按照频率分类,从高频率至高频率,包含存有无线电波、微波、红外线、红外线、紫外光、4电磁波五音:把各种电磁波按照波长或频率的大小依次排序,就构成了电磁波五音5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。

7绝对温度:热力学温度,又叫做热力学温标,符号t,单位k(开尔文,缩写上开)8色温:在实际测量物体的光谱电磁辐射通量密度曲线时,常常用一个最吻合灰体电磁辐射曲线的黑体电磁辐射曲线做为参考这时的黑体电磁辐射温度就叫做色温。

9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。

10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。

11光谱反射率:物体的散射电磁辐射通量与入射光电磁辐射通量之比。

12波粒二象性:电磁波具备波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。

问答题1黑体电磁辐射遵从哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度w随温度t的增加而迅速增加。

(2绝对黑体表面上,单位面积升空的总辐射能与绝对温度的四次方成正比。

(3黑体的绝对温度增高时,它的电磁辐射峰值向短波方向移动。

(4不好的辐射体一定就是不好的吸收体。

(5在微波段黑体的微波辐射亮度与温度的一次方成正比。

2电磁波五音由哪些相同特性的电磁波段共同组成?遥感技术中所用的电磁波段主要存有哪些?a.包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b.微波、红外波、可见光3物体的电磁辐射通量密度与短萼有关?常温下黑体的电磁辐射峰值波长就是多少?(1与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。

第2章遥感平台及运行特点

第2章遥感平台及运行特点
• • • • • • • 卫星速度 卫星运行周期 卫星高度 同一天相邻轨道间在赤道处的距离 每天卫星绕地圈数 重复周期 轨道特征
8
轨道特征1:太阳/地球同步轨道
遥感卫星一般有两种绕地球飞行方式:
地球同步卫星:定点观测 太阳同步卫星:定期观测(圆形)
地球同步卫星
太阳同步卫星
9
地球同步卫星

地球同步卫星:卫星的公转角速度和地球自转 角速度相等。 运动周期为23小时56分04秒,相对地球静止, 可以观测地球表面三分之一的固定区域,在地 球赤道上空约36000km,又称为静止卫星,或 地球静止卫星。
14
轨道特征3:可重复轨道
• 卫星每绕地面一圈,卫星进动修正后,地球赤道由西往东 旋转了约2866km,即第二条运行轨迹相对前一条运行轨迹 在地面上西移2866km。 • 一天24小时绕地13.944圈,第14圈时已进入第二天,称为 第二天第一条轨道,这一条轨道与前一天第一条轨道之间 差0.056圈,在地面上赤道处为159km。
17
Landsat系列

1972年7月23日美国发射了第一颗气象卫星TIROS-1,后 来又发射了Nimbus(雨云号),在此基础上设计了第一 颗地球资源技术卫星(ERTS-1),后改名为Landsat-1。 从1972年至今美国共发射了7颗Landsat系列卫星,已连 续观测地球达30年。最后一颗卫星Landsat-7于1999年4月 15日发射,预计寿命为5年,后续卫星Landsat-8不再单独 发射。 遥感技术发展的里程碑
重复周期=18天 每天绕地圈数=13.944
偏移系数=-1
15
2.3 陆地卫星及轨道特征
用于陆地资源和环境探测的卫星称为陆地卫星。

第3章遥感平台及运行特点

第3章遥感平台及运行特点

第3章遥感平台及运行特点遥感平台是指利用遥感技术和相关技术手段,对地球表面进行观测、监测和分析的综合性平台。

具体而言,遥感平台包括卫星遥感平台、航空遥感平台和地面遥感平台,它们分别利用卫星、航空器和地面设备采集数据,通过信号处理、数据传输和数据处理等环节,提供地球环境、资源和灾害等方面的信息。

遥感平台的运行特点主要有以下几个方面:1.大范围:遥感平台通过卫星或航空器等方式,可以对较大范围的地区进行观测和监测。

相比于传统的地面观测手段,遥感平台具有广覆盖、高时效性的特点,可以全面了解地球表面的变化和动态。

2.高分辨率:遥感平台可以获取高分辨率的数据,提供更详细、更精确的地理信息。

高分辨率的数据有助于对地表特征进行详细分析,例如城市建设、森林覆盖、湖泊水体等,在城市规划、资源管理和环境监测等方面起到重要作用。

3.多源数据:遥感平台可以整合多种数据源,包括多个卫星、航空器以及地面设备获取的数据。

通过综合利用不同数据源的信息,可以提高数据的可靠性和综合分析的精度,为各领域的决策提供更全面、更准确的依据。

4.实时监测:遥感平台可以进行实时监测和远程操作,及时掌握地表变化情况。

例如,对于灾害监测和应急救援,遥感平台可以实时获取信息,为灾害预警和救援提供支持。

5.长时间连续观测:遥感平台可以连续观测地球表面的变化,获取长时间序列的数据。

通过对长时间序列数据的分析,可以揭示地表变化的规律和趋势,提供更深入的研究和分析。

6.大数据处理:遥感平台生成的数据量庞大,需要借助强大的计算能力和数据处理技术进行数据挖掘和信息提取。

通过大数据处理技术,可以对海量数据进行高效的分析和管理,挖掘有价值的信息。

总之,遥感平台在地球观测和资源管理等领域具有重要的应用价值。

随着技术的不断发展,遥感平台的观测能力和数据质量将进一步提升,为人类认识地球和解决地球问题提供更加可靠的数据支持。

2wq遥感平台及运行特点

2wq遥感平台及运行特点
ห้องสมุดไป่ตู้

3、中巴卫星(中国资源一号卫星系列)
1999年发射,比TM的空间分辨率高,比SPOT的波段多.
4、QuickBird卫星
QuickBird卫星于2001年 分辨率 : 0.61 米全色 10月由美国DigitalGlobe 2.44 米多光谱 公司发射,具有最高的地 快鸟卫星电磁波谱设置: 理定位精度. 蓝光波段(450-520nm); 绿光波段(520-600nm); 红光波段(630-690nm); 近红外波段(760-900nm)
光照角保持不变,就必须对卫星轨道加以修正。 使卫星在同一地方时间通过地面上。 优点: 有利于卫星在相近的光照条件下对地面进行观测。 有利于卫星在固定的时间飞临接收站上空,并使 卫星上的太阳电池得到稳定的太阳高度。
4)、可重复轨道:
优点:有利于地面或自然现象的变化作动态监测。
美国陆地卫星4、5号 (LANDSAT 4、5) 除MSS传感器外,搭载了主题成像传感器(TM) Landsat-7 传感器为ETM传感器,不必依靠中继卫星传送数据,可以把数据 存储在星上,然后利用天线直接发送给地面站。
Landsat1-3系列 1)卫星轨道平均高度H设计在915公里,偏心率 为0.0006 轨道近圆形 优点:图像比例尺一致 卫星匀速,避免扫描行之间不衔接 2)轨道倾角在99.125度 近极地轨道 优点:有利于增大卫星对地面总的观测范围。
3)、与太阳同步轨道 卫星轨道面与太阳地球连线之间在黄道面内的夹 角,不随地球绕太阳公转而改变
光电倍增管 电子倍增管
胶片 磁带
收集器:收集地物辐射的能量,透镜、反射镜、天 线。 探测器:收集的辐射能转换成化学能和电能。胶卷、 光电器件、热电器件 处理器:对收集的信号进行处理,光电倍增管、电 子倍增管 输出器:输出获得的数据。胶片、磁带

遥感平台及与运行特点

遥感平台及与运行特点
能够长时间观测特定地区,卫星高度高,能将大范围的区域同时收入视野,应用于气象和通讯领域
人们通常简称的同步轨道卫星一般指的是静止卫星。
太阳同步轨道(Sun-synchronous orbit或Heliosynchronous orbit)
指的就是卫星的轨道平面和太阳始终保持相对固定的取向,轨道的倾角(轨道平面与赤道平面的夹角)接近90度,卫星要在两极附近通过,因此又称之为近极地太阳同步卫星轨道。 为使轨道平面始终与太阳保持固定的取向,因此轨道平面每天平均向地球公转方向(自西向东)转动0.9856度(即360度/年) 在这种轨道上的卫星以固定的地方时观测地球大气,有较固定的光照条件。对获取可用的资料、资料的接收、轨道的计算等都十分方便。
空中侦察、各种调查
100~2,000m
各种调查、摄影测量
800m以下
各种调查
无线遥控飞机
500m以下
各种调查、摄影测量
飞机、直升机
牵引飞机
50~500m
各种调查、摄影测量
牵引滑翔机
10~40m
遗址调查
5~50m
近距离摄影测量
人造地球卫星——目前运用最广的遥感平台 低高度、短寿命卫星:150~350km,不到一年 中高度、长寿命卫星:350~1800km,3~5年 高高度、长寿命卫星:约为36000km
用于陆地资源和环境探测的卫星称为陆地卫星,依不同的指标和方法,陆地卫星有多种分类方法,按综合分类为陆地卫星(Landsat)类、高分辨陆地卫星、高光谱卫星和合成孔径雷达等四类。
美国陆地卫星系列 Landsat
法国资源卫星系列 SPOT
印度资源卫星系列 IRS等
中国资源一号卫星——中巴地球资源卫星(CBERS)

R第3章1:卫星遥感平台及运行特点1

R第3章1:卫星遥感平台及运行特点1

第二节 卫星轨道参数
1、升交点赤经Ω
卫星轨道的升交点向径与春分点向径之间的夹角。
升交点:卫星由南向 北运行时,与 地球赤道面的 交点 降交点 :卫星由北向 南运行时,与 地球赤道面的 交点
1.升交点赤经Ω
卫星轨道的升交点向径与春分点向径之间的夹角。
2、近地点角距ω
指升交点向径与卫星轨道近地点向径之间的夹角 。
3、轨道倾角i
指卫星轨道面与地球赤道面之间的夹角。即从升交 点一侧的轨道面至赤道面 。
3、轨道倾角i决定了轨道面与赤道面的关系。
赤轨卫星:i=00,轨道面与赤道面重合 顺轨卫星: 00 i 900,卫星运行方向与地球自 转方向一致
极轨卫星:i=900,轨道面与 地轴重合
逆轨卫星:900 i 1800 , 卫星运行方向与地球自转方 向相反。 轨道倾角i也确定了卫星对 地球观测范围。
开普勒常数 运行周期T
T2 R H

3
C
地球半径
卫星高地面的 平均高度
3
T C (R H )
开普勒常数
卫星高地面的 平均高度 地球半径
地球同步卫星(静止卫星):T=24时,与地球自转周期 相同的卫星,它位于地球上空35860km处。卫星公转的角 速度和地球的自转角速度相等,相对于地球似乎固定于 高空某一点。
卫星运行周期t卫星从升交点或降交点通过时刻到下一个升交点或降交点通过时刻间的平均时间开普勒常数地球半径卫星高地面的平均高度开普勒常数地球半径卫星高地面的平均高度运行周期t开普勒第三定律
第三章 卫星遥感平台及运行特点
本章主要内容
遥感平台的概述 卫星轨道参数 气象卫星系列 陆地卫星系列
海洋卫星系列
2.卫星速度 当轨道为园形时,平均速度:

遥感平台及运行特点

遥感平台及运行特点
• 用GPS测定卫星坐标
2.2.3 卫星姿态角
• 遥感影像的几何变形和几何校正 • 定义卫星质心为坐标原点,沿轨道前进的切线方向为x轴,
垂直轨道面的方向为y轴,垂直xy平面的为z轴,则卫星的 姿态有三种情况:绕x轴旋转的姿态角,称之为滚动;绕y 轴旋转的姿态角,称俯仰;绕z轴旋转的姿态角,称航偏。
• 一天24小时绕地13.944圈,第14圈时已进入第二天,称为第二天第 一条轨道,这一条轨道与前一天第一条轨道之间差0.056圈,在地面 上赤道处为159km。
重复周期=18天 每天绕地圈数=13.944 偏移系数=-1
Landsat 4/5
• 1982年美国在Landsat 1-3的基础上,改进设计了Landsat-4卫星, 并发射成功。1984年又发射了Landsat-5卫星,与Landsat-4完全一 样。
2.3.1 陆地卫星系列
• Landsat系列(美国) • SPOT系列(法国) • IRS系列(印度) • ALOS(日本) • CBERS系列(中国) • FORMOSAT系列(中国台湾)
Landsat系列
• 1972年7月23日美国发射了第一颗气象卫星 TIROS-1,后来又发射了Nimbus(雨云号),在 此基础上设计了第一颗地球资源技术卫星 (ERTS-1),后改名为Landsat-1。
• 遥感技术发展的里程碑
Landsat系列卫星发射时间表
Landsat 1—3
• 轨道特点
– 近圆形轨道 – 近极地轨道 – 与太阳同步轨道 – 可重复轨道
• 传感器
– 反束光导管摄像机(RBV) – 多光谱扫描仪(MSS 4bands) – 宽带视频记录机(WBVTR) – 数据收集系统(DCS) – 空间分辨率80米

3遥感平台及运行特点

3遥感平台及运行特点

52
♦ 小卫星
是指目前设计质量小于500kg的小型近地轨道卫星。 重量轻,体积小。 研制周期短,成本低。 发射灵活,启用速度快,抗毁性强。 技术性能高。
53
33
中巴资源卫星的轨道参数

轨道高度为778km 运行周期也减为100.26min 重复周期为26天 轨道倾角98.5度
34
CCD相机有兰、绿、红、近红外和全色等五个 光谱段,采用推扫式成像技术获取地球图像信息。 它只在白天工作,并有侧视功能(±32°)。 红外扫描仪有可见光、短波红外和热红外共四 个谱段,采用双向扫描技术获取地球图像信息,它 可昼夜成像。 宽视场相机具有红光和近红外谱段,由于扫描 辐宽达890千米,因而五天内可对地球覆盖一遍。
29
SPOT系列卫星具有立体观测能力
遥感重复成像时间的间隔。
30
☺ IRS(印度)
印度在1979年6月和1981年11月发射的 Bhaskara1和Bhaskara2两颗实验性卫星的基 础上,制订了IRS系列计划,并于1988年3月 发射了第一颗。
31
☺ 中巴资源卫星
1986年国务院批准航天工业部《关于加速 发展航天技术报告》确定了研制资源一号卫星 的任务。 1988年中国和巴西两国政府联合议定书批 准,在中国资源一号原方案基础上,由中、巴 两国共同投资,联合研制中巴地球资源卫星 (代号CBERS)。并规定CBERS投入运行后, 由两国共同使用。
♣ 光照均匀 ♣ 太阳电池
16
1 陆地卫星的轨道特征
(4)可重复轨道
有利于对地面地物或自然现象的变化作动态监测。
17
2 陆地卫星的分类
♦ ♦ ♦ ♦
陆地卫星类 高分辨率陆地卫星 高光谱卫星 合成孔径雷达

遥感原理与方法——第二章遥感平台及运行特点

遥感原理与方法——第二章遥感平台及运行特点

1 km
视场 120 km
60 km
2 250 km
3中巴卫星(中国资源一号卫星系列)
1999年发射,比TM的空间分辨率高,比 SPOT的波段多.
运行特点:见书42页
4 高分辨率的卫星:ikonos,Quick Brid 5 高光谱类卫星:Eo-1 5 雷达:Radarsat,ERS 6 商业小卫星:重量轻,成本低,体积小,
Spot 2,1990年1月发射,至今还在运行。
Spot 3,1993年9月发射,运行4年后在1997年11 月由于事故停止运行。
Spot 4,1998年3月发射,卫星作了一些改进。
Spot 5,2002年其5月发射,其性能作了重大改进。
Spot轨道有如下特点 近极地与太阳同步卫星: 轨道近极地有利于增大 卫星 对地面总的观测范围。
波段号 波段 频谱范围μ 分辨率m
B1 B2 B3 B4 B5 B6 B7
Blue-Green 0.45 0.52 30
Green
0.52 - 0.60 30
Red
0.63 - 0.69 30
Near IR 0.76 - 0.90 30
SWIR
1.55 – 1.75 30
LWIR
10.40 – 12.5 120
SWIR
2.08 - 2.35 30
2.spot
Spot对地观测卫星系统是由法国空间研究 中心发展的,参与的国家还有比利时和瑞 典。系统包含了卫星、对卫星控制和编程 的地面设施、图像制作处理和分发的机构 等。
Spot系统迄今为止已发射了五颗卫星
Spot1,1986年2月发射,目前仍在运行,但从 2002年5月停止接受其影像。
① 半长轴 a :即卫星离地面的最大高度 , 它用来确定卫星轨道的大小; ② 偏心率 e :决定卫星轨道的形状; ③ 轨道面倾角 i :地球赤道平面与卫星轨道平面间的夹角; ④ 升交点赤经 W :卫星轨道与地球赤道面有两个交点,卫星由南向北飞行

遥感平台的种类与卫星轨道参数

遥感平台的种类与卫星轨道参数

2 卫星轨道参数与轨道特点
轨道周期 T、覆盖周期(重访周期) 周期:卫星在轨道上绕地球一周所需的时间;覆盖周期:卫星从某点
开始,经过一段时间飞行后,又回到该点用的时间。
覆盖周期(重访周期)
2 卫星轨道参数与轨道特点
赤道轨道: i=0°轨道平面与赤道平 面重合 地球静止轨道: i=0°且卫星运行 方向与地球自转方向一 致,运行周期相等
2 卫星轨道参数与轨道特点
卫星速度、星下点速度、卫星平均高度 根据开普勒第三定律:
V
GM RH
VN
R RH
V
T2 H 3 R
C
2 卫星轨道参数与轨道特点
同一天相邻轨道间在赤道的距离
L
2
Ra
T 24 * 60
每天卫星绕地球的圈数
例如:Landsat-1 L=2873.95km,再减去 卫星每天修正Ω=0.9863°(即进动角, 为满足与太阳同步而作的修正),则 L=2865.918km。
航天平台
在超出大气的地球 附近空间或太阳系各行 星间飞行的飞行器
高度:数百、数千、 数万公里
人造地球卫星、探空 火箭、宇宙飞船、航天飞 机、太空站等
Байду номын сангаас
第3章 遥感平台及运行特点
第2节卫星轨道参数与轨道特点
2 卫星轨道参数与轨道特点
春分点:黄道面与赤道面在天球 上的交点
升交点:卫星由南向北运行时与 赤道面的交点
降交点:卫星由北向南运行时与 赤道面的交点
近地点:卫星轨道离地球最近的 点
远地点:卫星轨道离地球最远的 点
2 卫星轨道参数与轨道特点
卫星轨道参数:
卫星在空间的位置和形状
是由6个轨道参数来决定的。 它们是:

卫星坐标、姿态的测量和解算(二)

卫星坐标、姿态的测量和解算(二)

卫星姿态角
滚动------绕x轴(沿飞行方向)旋转的姿态角 俯仰------绕y轴旋转的姿态角 航偏------绕z轴旋转的姿态角
1、红处姿态测量仪测定姿态角的方法 利用地球与太空温差达287K这一特点,以一定的角
频率Байду номын сангаас周期地对太空和地球作圆锥扫描,根据热辐射 能的相位变化来测定姿态角。
一台仪器只能测定一个姿态角
第3章 遥感平台及运行特点
第3节卫星坐标、姿态的测量与解算-2
2、用全球定位系统(GPS)测定卫星坐标
3 卫星坐标、姿态的测量与解算
卫星的姿态 通常用 X(前进的切线方向)、 Y(垂直与轨道面方向、 Z(垂直与XY面)三 轴定向表示:绕X轴称 滚动;绕Y轴称俯仰; 绕Z轴称航偏。
测量的方法有: 1、红外姿态测量仪 2、恒星相机测定法 3、3个GPS方法
Landsat1上的AMS,测定姿态角的精度为±0.07°航偏 用陀螺仪测定 精度:地面辐射的稳定性和地球非球形校正的精度

遥感卫星及其运行特点_图文

遥感卫星及其运行特点_图文

Goals
Help to improve knowledge and management of our planet
Objectives Principal missions Launchers
Explore Earth's resources; detect and forecast phenomena involving climatology and oceanography; monitor human activities and natural phenomena
期等于地球在惯性空间中的自转周期, 且方向 也与之一致。
• 按照轨道倾角的不同, • 地球同步轨道分为
– 极地轨道 – 倾斜轨道 – 静止轨道
• 太阳同步轨道 ( sun synchronous orbit )
20世纪60年代
1970 —1977 年 1978 年—
美国的泰诺斯 ( TIROS) 、
波段6、7、8:78米 波段9:156米 无 8.80°
ZY-1 02C
GF-1卫星轨道和姿态控制参数
参数
指标
轨道类型
太阳同步回归轨道
轨道高度
645km(标称值)
倾角
98.0506°
降交点地方时
10:30 AM
侧摆能力(滚动)
±25°,机动25°的时间≦200s,具 有应急侧摆(滚动)±35°的能力
31 457 10:30AM±30min 7.535 6.838
卫星辐亮度产品
植被指数产品 去相关拉伸产品
地表反射率产品 土海地洋覆油盖污地与染表土监温地测度变产产化品品产品
冰雪覆盖监测产品
卫星海洋探测的历史早于海洋卫星的历史!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳光照角
2.2 卫星轨道参数与轨道特点
卫星速度、星下点速度、卫星平均高度 根据开普勒第三定律:
V
GM RH
VN
R RH
V
T2 H 3 R
C
2.2 卫星轨道参数与轨道特点
同一天相邻轨道间在赤道的距离
L
2Ra
T 24*60
例如:Landsat-1 L=2873.95km,再减去 卫星每天修正Ω=0.9863°(即进动角, 为满足与太阳同步而作的修正),则 L=2865.918km。
2.2 卫星轨道参数与轨道特点
遥感中常用卫星轨道参数: 轨道周期、覆盖周期(重访周期) 赤道轨道、地球静止轨道 倾斜轨道 星下点、星下点轨迹 卫星速度、星下点速度、卫星平均高度 同一天相邻轨道间在赤道的距离 每天卫星绕地球的圈数
2.2 卫星轨道参数与轨道特点
轨道周期 t、覆盖周期(重访周期) 周期:卫星在轨道上绕地球一周所需的时间;覆盖周期:卫
星从某点开始,经过一段时间飞行后,又回到该点用的时 间。
覆盖周期(重访周期)
2.2 卫星轨道参数与轨道特点
赤道轨道: i=0°轨道平面与赤道平 面重合 地球静止轨道: i=0°且卫星运行 方向与地球自转方向一 致,运行周期相等
2.2 卫星轨道参数与轨道特点
倾斜轨道: 顺行轨道--0°<i<90°卫星运行方向与地球自转方向一致--可覆
第2章 遥感平台及运行特点
1、遥感平台的种类 2、卫星轨道参数及轨道特点 3、卫星坐标、姿态的测量与解算 4、几种主要的卫星及轨道参数
2.1 遥感平台的种类
遥感平台--放置遥感器的运载工具。
按高度:地面 航空 航天 在不同高度进行多平台遥感,可获得不同比例尺、分
辨率和地面覆盖面积的遥感图像。 地面平台
1、近极地轨道 卫星轨道平面与地球赤道平 面的夹角近90度。 轨道倾角越大,覆盖地球表 面的面积越大。
2.2 卫星轨道参数与轨道特点
轨道特点 i
2、卫星轨道近圆形 地球资源卫星的偏心率很小, 例如:LANDSAT3的偏心率 为0.00006.因此轨道为近圆 形。作用是:获取图像有相 近的比例尺;成像扫描仪具 有固定的扫描频率。
X在赤道面内
(2) 卫星在大地地心直角坐标系中的坐标
大地地心直角坐标 轴与地心直角坐标X轴之间移 位一个时角
(3) 卫星的地理坐标
式中:B—纬度; L—经度; N—卯酉圈半径; HD—卫星大地高程
编 制 成卫 星 星 历 表
输入卫星的时刻参数t 查卫 星 星 历 表
地理坐标 XYZ
用全球定位系统(GPS)测定卫星坐标
下获取高质量影像和多时 相影像色调对比
2.2 卫星轨道参数与轨道特点
卫星轨道如何与太阳同步?
2.2 卫星轨道参数与轨道特点
轨道特点 4、可重复观测
地球资源卫星的按一定的周 期运行,一个重复周期对地 球扫描一次;然后,接着进 行下一个重复周期。。。。 实现可重复观测。
2.3 卫星坐标、姿态的测量与解算
2.3 卫星坐标、姿态的测量与解算
卫星的姿态 通常用 X(前进的切线方向)、 Y(垂直与轨道面方向、 Z(垂直与XY面)三 轴定向表示:绕X轴称 滚动;绕Y轴称俯仰; 绕Z轴称航偏。
升交点:卫星由南向北运行时与 赤道面的交点
降交点:卫星由北向南运行时与
赤道面的交点
降交 点
近地点:卫星轨道离地球最近的 点
远地点:卫星轨道离地球最远的 点
升交 点
近地点高 度 905Km
远地点高度 918Km
太阳光照 角
2.2 卫星轨道参数与轨道特点
卫星轨道参数:
卫星在空间的位置和形状
是由6个轨道参数来决定的。 它们是:
每天卫星绕地球的圈数
n 24*60 T
2.2 卫星轨道参数与轨道特点
对用于地球资源和环境遥感的航天平台要做到: ⑴.对全球表面进行周期性成像覆盖; ⑵.保证在卫星通过北半球中纬度地区时有最Байду номын сангаас光照条件; ⑶.同一地点、不同日期的成像地方时间、太阳光照角基本一
致。
2.2 卫星轨道参数与轨道特点
轨道特点 i
1、升交点赤经Ω:
春分点R逆时针方
向到升交点K的弧长
A
2、近地点角距ω:
R
从升交点K沿轨道到
近地点A的角距
2.2 卫星轨道参数与轨道特点
3、过近地点时刻 t: 卫星S与近地点A间的角距,也 可用卫星真近点角v表示
4、长半轴 a: 轨道椭圆的长半径 5、 偏心率 e: 轨道椭圆的偏心率 6、倾 角 i: 轨道平面与赤道平面的夹角
卫星坐标的解算: 为了测定卫星的 坐标,我们在知 道6个卫星轨道 参数的基础上, 还要准确测定卫 星在某点的时间。
方法有; 1、利用星历参数解算 2、用GPS测定
卫星坐标的测定和解算
1 星历表法解算卫星坐标
条件:六个卫星轨道参数和卫星在该瞬间的精确时间t
(1)卫星在地心直角坐标系中的 坐标
V为卫星的真近点角
盖最高南北纬度为i
逆行轨道--90°<i<180°卫星运行方向与地球自转方向相反 --可覆盖最高南北纬度 为 180°-i
倾斜轨道
2.2 卫星轨道参数与轨道特点
星下点:
卫星质心与地心连线同地球表面的交点
星下点轨迹(地面轨迹):
星下点在卫星运行过程中在
地面的轨迹
降交点
升交点
近地点高度 905Km
远地点高度 918Km
X”在轨道面内
E为偏近点角,其与卫星运行t的关系为: E-esinE=n(t-T)
坐标系X″Y″Z″绕Z″轴旋转ω X′Y′Z′ X′=r cosV cosω + sinV sinω Y′=-r cosV sinω + sinV cosω Z′=0
X’在轨道面和赤道面内
• 坐标系X′Y′Z′绕X′轴旋转i角,绕Z轴旋转Ω角至 XYZ坐标系
2.2 卫星轨道参数与轨道特点
轨道特点 3、与太阳同步轨道:
指卫星轨道平面与太阳光之间 的夹角(太阳光照角)始终 保持一致的轨道。在一年中 进动360°,即卫星轨道面相对 于地球的角进动与地球绕太 阳公转的角速度相等。
2.2 卫星轨道参数与轨道特点
太阳同步轨道 作用(1)可使卫星通过同一
纬度的平均地方时不变 (2)有利于在最佳光照条件
高度<300m 波谱测试 试验研究用地物细节图像
航空平台
高度 100~30000m 飞机 飞艇 气球等
航天平台
在超出大气的地球 附近空间或太阳系各行 星间飞行的飞行器
高度:数百、数千、 数万公里
人造地球卫星、探空 火箭、宇宙飞船、航天飞 机、太空站等
2.2 卫星轨道参数与轨道特点
春分点:黄道面与赤道面在天球 上的交点
相关文档
最新文档