软磁材料性能优秀课件

合集下载

软磁材料及应用MarchPPT课件

软磁材料及应用MarchPPT课件

' Bm cos( ),'' Bm sin( )
0Hm
0Hm
tan tane tanh tanc
2 t an i
ef
aBm c
涡流损耗
磁滞损耗
第22页/共127页
剩余损耗
Legg公式
二.磁损耗分类:
非共振区(损耗较小): 1>.涡流损耗; 2>.磁滞损耗; 3>.剩余损耗;
共振区(损耗较大): 4>.尺寸损耗; 5>.畴壁损耗; 6>.自然共振
µi = µi 转+ µi位
对于一般烧结铁氧体: 1. 如内部气孔较多,密度低,壁移难, µi转为主; 2. 如晶粒大,气孔少,密度高,以壁移为主. 磁化的难易程度决定于磁化动力(MsH)与阻滞之比,比值高则易磁化;反之难磁
化.
第8页/共127页
理论上提高磁导率的条件:
1.必要条件:
1>.Ms要高( Ms2 );
③ 加入TiO2, 即使 Fe2+ 限制在 Ti4+ 附近, 防止 Fe2+=Fe3+ +e导电机构形成;
④ 烧结后热处理使晶粒表面吸氧: Fe2+ Fe3+ (3000C以上)
第26页/共127页
(二)、 磁滞损耗
磁滞损耗:是指软磁材料在交变场中存在不可逆磁化而形成磁滞回线,所引起材 料损耗,大小正比于回线面积. 原因: 不可逆的壁移,使B落后于H.
第14页/共127页
摘自当代磁学p82
二、影响磁谱的因素
一、尺寸因素
尺寸共振:电磁波在介质内的波长小于真空中的波长
c 0 f
c是真空中的光速,f是频率。 对Mn-Zn铁氧体 ≈103,≈5×104,若f=1.5MHz,求得波长为2.8厘米,当与磁场垂直方向的磁芯尺 寸与半波长(1.4cm)整数倍相近时,将有驻波发生,电磁波将在样品中发生共 振。采用减小尺寸或叠片方式,可以避免尺寸共振。

磁性功能材料培训课件

磁性功能材料培训课件

(二)电工钢(Fe-Si合金)
Fe-Si合金主要指低C(C≤0.015%,最好是≤0.005%与低 Si(Si+Al≤1%) 和Si含量在0.5%-6.5%范围内的Fe-Si软 磁合金。
(C<0.02%,Si: 1.5%~4.5%的合金)
Fe-Si相图
Si在Fe的溶解度为15%,存在、、(FeSi)、 (Fe5Si3)相。只有是铁磁性的。 BCC结构,<001>方向易磁化方向,<111>难磁化 方向
第二章 磁性功能材料
第二节 软磁材料
2.1 概述 2.2 电工纯铁和电工钢 2.3 Fe-Ni合金 2.4 Fe-Al系和Fe-Co系软磁合金 2.5 铁氧体软磁材料 2. (一)发展历史 (二)定义,基本要求 (三)分类 2.2 电工纯铁和电工钢 2.3 Fe-Ni合金 2.4 Fe-Al系和Fe-Co系软磁合金 2.5 铁氧体软磁材料 2.6 非晶,纳米晶软磁材料
0.20
Al
0.55 0.20~0.5
5
磁性等级
普通 高级 特级 超级
牌号
DT3、DT4、DT5、DT6、DT8 DT3A、DT4A、DT5A、DT6A、DT8A
DT4E DT4C、DT6C
表2-4 国产电工纯铁的磁性(YB200-75)
Hc/ A·m-1 不大于
96 72 48 32
μm 不小于
再结晶退火
用途:直流电机和电磁铁铁芯,继电器铁芯,永久磁 路中的导磁体和磁屏蔽,电话中磁屏蔽,电机中用以 导引直流磁通的磁极等。
直流电机铁 芯
2.1 概述 2.2 电工纯铁和电工钢 (一)电工纯铁 (二)电工钢 2.3 Fe-Ni合金 2.4 Fe-Al系和Fe-Co系软磁合金 2.5 铁氧体软磁材料 2.6 非晶,纳米晶软磁材料

软磁材料性能PPT课件

软磁材料性能PPT课件
Mf198A K2008 TSF-5080 CF138 PL-9 2HM5
35G
PC50 DMR50
DMR5 5
7H10/7H20
B40
BH5
N49
3F35
3F3
SBIM
F47
5MBiblioteka 75G55G21
2、高导铁氧体
①主要用于局域网隔离变压器、差模滤波器 宽带变压器、低功率驱动变压器等。
②发展方向:高μi、宽频、宽温、低THD ③高导铁氧体的几个主要指标
100KHz
P (mw/cm3 ) cv
101
50mT
100 0
25mT
20
40
60
80
100
120
140
Temperature(℃ )
13
功耗与温度关系图(DMR24)
500
400
f=500KHz/ B=50mT
Power Loss Pv(mw/cm3 )
300
200
100
0
0
20
40
60
80
100
Pc = K fm Bn = f∮BdH+Cef2B2/ρ+Pr f=10-100k m=1.3 典型值n=2.5 f>100K m继续增 降低磁芯损耗:减Hc增ρ,减少晶粒尺寸 当磁芯发热时磁芯能否正常工作,又引入一个物理量——居里温度。 功率铁氧体要求高的Tc,
9
综上所述,对功率材料的要求为:
5
四、常用软磁铁氧体材料
Mg-Zn材料、Ni-Zn材料
Mn-Zn材料 Mn-Zn材料又分为:
功率铁氧体:DMR30、DMR40、DMR44、DMR50、 DMR90 ;

磁性材料pptppt课件

磁性材料pptppt课件
常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。
可编辑课件
8
铁粉芯
铁粉芯是磁性材料四氧化三铁的通俗说法,主要应用于电器回 路中解决电磁兼容性(EMC)问题。即用来消除电器回路中由于各 种不同原因产生的杂波,辐射。
如下图是由铁粉芯制成的磁环,当一定波段的杂波通过磁环时, 磁环的电磁特性导致这一波段的电流被转化为磁力以及部分热量从 而被消耗掉。来达到降低杂波的目的。
坡莫合金
互感器
互感器又称为仪用变压器, 是电流互感器和电压互感器的 统称。其功能主要是将高电压 或大电流按比例变换成标准低 电压(100V)或标准小电流 (5A或1A,均指额定值),以 便实现测量仪表、保护设备及 自动控制设备的标准化、小型 化。
可编辑课件
11
展望未来
磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进 而发展,例如光电子技术促进了光磁材料和磁光材料的研制。
稀土永磁铁面向汽车应用
(3)铁氧体硬磁材料:这是以Fe2O3为主要组元 的复合氧化物强磁材料(狭义)和磁有序材料如 反铁磁材料(广义)。其特点是电阻率高,特别 有利于在高频和微波应用。如钡铁氧体
(BaFe12O19)和锶铁氧体(SrFe12O19)等都有很 多应用。
磁阀
可编辑课件
6
四.发展现状与展望未来
高磁通密度和低磁芯损耗的特性,使铁硅铝磁芯非常适用 于功率因数校正电路,以及单向驱动的应用,如回扫变压器, 脉冲变压器。
铁硅铝粉芯磁环
可编辑课件
10
坡莫合金粉芯 坡莫合金指铁镍合金,坡莫合金的最大
特点是具有很高的弱磁场导磁率。它们的饱 和磁感应强度一般在0.6--1.0T之间。
用于制作音频变压器、互感器、磁放大 器、磁调制器、扼流器、音频磁头等。

《软磁材料》课件

《软磁材料》课件

2
物理气相沉积法的优点是制备的软磁材料具有高 纯度、高致密性和高附着力。
3
物理气相沉积法的缺点是工艺复杂、成本高,且 制备的软磁材料厚度和成分受反应条件影响较大 。
04 软磁材料的性能优化
合金元素对软磁性能的影响
钴元素
提高材料的硬度和 耐腐蚀性,有助于 提高磁滞损失。
硅元素
有助于提高材料的 磁导率和降低矫顽 力。
全球软磁材料市场主要由几家大型企业主导, 如TDK、FERROXCUBE、 VACUUMSCHMELZE等。
这些企业通过技术创新和规模效应,占据了较 大的市场份额。
中国企业在全球软磁材料市场中的地位逐渐提 升,但与国际领先企业相比仍有一定的差距。
未来发展趋势与技术前沿
01
未来几年,随着新能源汽车、 风电、智能电网等领域的快速 发展,对高性能软磁材料的需 求将不断增加。
软磁材料的分类
1 2 3
金属软磁材料
如纯铁、低碳钢、硅钢等,具有较高的磁导率和 较低的矫顽力,广泛应用于电力工业和电子工业 。
铁氧体软磁材料
一种非金属磁性材料,由铁、锰、锌等元素氧化 物组成,具有较高的磁导率和较低的损耗,常用 于高频变压器和电感器。
软磁复合材料
由两种或多种材料组成,如铁芯和绕组组成的变 压器和电机,具有优异的磁性能和机械性能,广 泛应用于电力和电子设备。
《软磁材料》课件
目 录
• 软磁材料概述 • 软磁材料的物理性质 • 软磁材料的制备工艺 • 软磁材料的性能优化 • 软磁材料的市场与发展趋势
01 软磁材料概述
定义与特性
软磁材料定义
软磁材料是一种具有低矫顽力和高磁 导率的磁性材料,易于磁化,也易于 退磁。

非晶、纳米晶软磁合金磁芯介绍PPT课件

非晶、纳米晶软磁合金磁芯介绍PPT课件
应用范围 体积小,可以广泛应用于高频开关电源和其它电子设 备中降低开关管的尖峰,抑制输出高次纹波幅值。具 有发热小(损耗小)、占用空间小的优点,常用于套 在晶体管管脚上使用。
EMI滤波器
EMI滤波的原理: 市电进入电源后,首先经过是最前级的EMI滤 波电路部份,EMI滤波的主要作用是滤除外界 电网的高频脉冲对电源的干扰,同时还有减少 开关电源本身对外界的电磁干扰。
保护用电流互感器磁芯
漏(触)电保护器用零序电流互感器铁芯,采 用Fe-Ni基非晶态合金、超微晶(纳米晶)软 磁合金制成。根据不同的技术要求,分别用于 家用、工业用及要求高灵敏度的漏(触)电保 护器等。
性能特点
性能特点
保护用电流互感器主要与继电装置配合,在 线路发生短路过载等故障时,向继电装置提 供信号切断故障电路 ,以保护用电流互感器, 以保护供电系统的安全。保护用微型电流互 感器的工作条件与测量用互感器完全不同, 保护用互感器只是在比正常电流大几倍几十 倍的电流时才开始有效的工作。保护用互感 器主要要求:1、绝缘可靠,2、足够大的准 确限值系数,3、足够的热稳定性和动稳定性。
什么叫磁放大器?
工作原理
如图铁心A和B的结构尺寸及材料均相同,每个铁心上绕有直流
绕组和交流绕组,两直流绕组和两交流绕组的匝数相同。两直流 绕组反接串联后接至直流控制电源。两铁心中的交流磁通Φ~方 向相同,而直流磁通Φ=方向则相反。两直流绕组反接串联的目 的是为了抵消两铁心中的交流磁通在直流绕组上感应的交变电动 势。当直流绕组中输入的直流控制电流为零时,两铁心中均无直 流励磁,两交流绕组的电感最大,电抗值也最大,此时交流负载电 流为最小。当输入直流控制电流时,铁心中的直流磁通增加,磁 通密度相应增加,两交流绕组的电感减小,输出交流负载电流增 大。

(材料物理课件)Chap7.3-7.4磁性材料

(材料物理课件)Chap7.3-7.4磁性材料
害。因此软磁材料生产要注意成品退火以消除应力;使用中也要予以注 意。
* 垂直于磁场方向(横向退火) 磁滞回线接近直线----恒导磁。
65Ni-Fe合金经不同热处理后的磁滞回线 (a)1000℃退火,快冷;(b)1000℃缓冷; (c)从1000℃在纵向磁场中冷却;(d)从 1000℃横向磁场中冷却。
材料科学与工程学院 School of Materials Science and Engineering
7.3.1.4 影响软磁材料性能的冶金和物理因素 Ms、Tc、HK(各向异性场)等参数是结构不敏感参量,属内禀特性;磁导率、 HC、损耗、剩磁比等参数是结构敏感参量,其性能与杂质含量、应力、晶体 取向、晶粒大小、晶体缺陷、各向异性等参数有关,是由制备条件和工艺决 定的,为非内禀特性。
1)杂质 一般情况下,杂质对软磁性是有害的,特别是形成间隙固溶体的杂质(C、N、 O、H等),因为晶格畸变造成的应力是畴壁移动的阻力。如果不固溶而形成 化合物夹杂则更有害,使Hc提高,磁导率下降。若是代位固溶杂质(Mn、Cu、 Si等)影响较小。
2)合金元素 合金化是发展磁性合金的必由之路,因为纯金属显然不能满足磁性材料的各 种特性要求。对于软磁合金来说,加入的合金元素应能满足以下条件之一。
(1)提高电阻率,减小涡流效应。例如在纯Fe中加入3%Si,提高了电阻率,发 展成为硅钢片;在79%Ni-Fe合金中加入4-5%Mo发展成为钼坡莫合金。 (2)提高饱和磁感应强度。对于Ni基合金,加入Fe或Co可以提高Bs值;对于 Fe基合金,能提高其磁感的元素仅有Co,加入35%Co可使其Bs值从纯Fe的 2.15T增加到2.4T以上,这是目前Bs值最高的合金。 (3)提高磁导率,降低矫顽力。要求加入的合金元素应能使合金的磁晶各向异 性常数和磁致伸缩系数下降,最好能使两者或其中之一趋近于零。选择Fe-Ni、 Fe-Si等系列的基本考虑即如此。

软磁材料介绍 ppt课件

软磁材料介绍 ppt课件
*影响软磁材料稳定工作的因素: 低温、潮湿、电磁场、机械负荷、电离辐射等
2023/9/2
2.2 提高起始磁导率的途径
必要条件:提高MS并降低K1、S的值
充分条件:降低杂质浓度,提高密度,增大晶粒尺寸, 结构均匀化,消除内应力和气孔的影响。
1、提高MS
i
MS2
*选择合适的配方可提高材料的MS值,但往往变动不大。
2023/9/2
2.3 金属软磁材料 2.3.1 电工纯铁
*纯度在99.8%以上的铁,不含任何故意添加的合金化元素。
*制备方法:平炉冶炼时,首先用氧化渣除去碳、硅、 锰等元素,再用还原渣除去磷和硫,并在出钢时在钢包 中添加脱氧剂获得。经过退火热处理 i(300~500), max(6000~12000), HC(39.8~95.5)
*选择配方时更要考虑K1、S对i的作用。
*例:CoFe2O4、Fe3O4的MS虽然较高,但其K1和S值太大,
因而不宜作为配方的基本成分。
2023/9/2
2、降低K1和S *提高i 的最有效方法从配方和工艺上使K1 0、S 0
*选择适当合金成分和热处理条件可以控制K1和S在较低值
*例:Fe-Ni合金质量分数Ni81%时,S0;Ni76%时,
二、制备与应用
非晶态:结晶化前的中间状态,亚稳态。冷却速度足够快且 冷至足够低的温度,以致原子来不及形核结晶便凝固下来。
2023/9/2
制备方法:
1、气相沉积法 晶态材料原子(离解)气相(无规沉积)到低温冷却基体上
形成非晶态
此类技术主要有:真空蒸发、溅射、辉光放电、化学沉积等
2023/9/2
2、液相急冷法(大多采用此法) 熔融合金(用加压惰性气体)液态合金从石英喷嘴中喷出 形成均匀的熔融金属细流连续喷射到高速旋转的冷却辊表 面液态合金以106~108K/S高速冷却形成非晶态

磁性材料应用PPT课件

磁性材料应用PPT课件

磁性材料应用
金属磁粉芯的应用
从严格意义上讲,金属磁粉芯只能用作电感产 品的制造。
磁性材料应用
铁粉芯:
1P主要用作制造差模滤波器 3P主要用作制造差模滤波器,也可以用在对损耗要求
不高的场合制造扼流圈 4P主要用作制造频率相对较低(<50kHz)的扼流圈
(如UPS输出扼流圈) 一般而言,作为功率扼流圈,铁粉芯主要用于50kHz
以下的频段,高出此频段损耗太大(正如硅钢片用在 1kHz以上频段)。必须注意,在上述金属磁粉芯中, 只有铁粉芯具有相对较大的磁致伸缩因子,所以在应 用到含有音频功率信号的场合经常会听到噪声。铁粉 芯在军工领域应用很少。
磁性材料应用
羰基铁:
基于其宽频带(500MHz以内)、高Q(指在弱 信号下损耗很小)、高可靠性,主要用于高频 电感、调芯电感等小电感的制作。
500kHz以下具有很高的阻抗,1MHz以上 阻抗会下降;差模滤波器(有气隙使用) 尽管偏磁性优于铁氧体,但由于非晶微 晶材料本身频谱的特点,在较高频率下 会比铁氧体差。 3) 脉冲变压器、传感器 利用某些非晶微晶(如Co基非晶)高矩 磁比的特性。
磁性材料应用
Ni-Zn铁氧体
适用不同的工作频率,Ni-Zn材料的μi在5-1300之 间。和国内同行相比,我公司Ni-Zn材料品种最为 齐全,性能优越。针对用户不同的要求,我们研 制出适宜于各个频段的弱信号滤波材料及大信号 的功率材料,对于弱信号滤波材料,我们的主要 特点是温度系数明显低于国内同行,Q值较高, 对于功率材料,我们的主要特点是损耗低,适用 频带宽。
磁性材料应用
设计变压器的几个注意事项: 1)根据频率、功率选择适当的磁芯,选择适当的ΔB。 2)满窗口。指在确保安全指标的情况下,尽量占满绕

第三章(磁性材料)ppt课件

第三章(磁性材料)ppt课件

磁感应强度 /T,不小于 B10 B25 B50 1.71 B100 1.80
不大于 96 72 48 32
1.40 1.50 1.62
B5、B10、B25、B50和B100分别表示H 为500、1000、2500、5000和10000A/m时
的磁感应强度值。
第三章 磁性材料-§3.1 软磁材料
2、影响电工用纯铁性能的因素及改善性能的方法
第三章 磁性材料-§3.1 软磁材料
电工用纯铁的磁性
磁性 等级 普级 高级 特级 超级 牌号 DT3, DT4, DT5, DT6 DT3A, DT4A, DT5A, DT6A DT4E, DT6E DT4C, DT6C Hc /A· m1
m /10-3H· m-1
不小于 7.50 8.75 11.30 15.00 B5
第三章 磁性材料-§3.1 软磁材料
二、软磁材料的基本性能要求
贮能高:要求单位体积贮存的磁能量高。
磁性参量的要求:高的Bs或Br。 灵敏度高:要求在弱磁场中对信号有高灵敏性。
B Br Bs
磁性参量的要求:高的i和m。
效率高:要求在磁场中工作时具有低的磁滞损耗 和涡流损耗。
-Hc O
磁各向异性减小
磁致伸缩效应降低 脆性增大,加工性能差
综合考虑: Si% ≤ 4%
第三章 磁性材料-§3.1 软磁材料
3、高斯织构硅钢片
结构特点:
易磁化方向[100]与轧制方向平行 55 [110] 难磁化方向[111]与轧制方向成55角 横向 中等磁化方向[110]与轧制方向成90角 高斯织构硅钢片具有磁各向异性,沿[100](轧制方向)磁性能最佳。
第三章(磁性材 料)
第三章 磁性材料

《软磁材料》PPT课件

《软磁材料》PPT课件
Appl Phys, 1988,64 : 6044. ● 金属功能材料, 2000, 7(2): 38. ● Ruthner M J, ICF-7 (1996).
精选ppt
28
LOGO
精选ppt
29
● 开关的优点还有:高的di/ dt ,在半导体开关系统中, 完全导通后,可以对负载安全地施加更高的di/ dt。 而利用可饱和电抗器的二极管反向截止时间,使系 统进行复位,这是它的又一个优点。
精选ppt
22
图2 软磁材料加工厂
精选ppt
23
软磁材料的发展历程及现状
➢ 20世纪30年代以前,金属软磁材料一统天下。
精选ppt
4
软磁材料与硬磁材料的区别
软磁材料易磁化也易退磁,具有较小的 矫顽力。 硬磁材料的剩余磁化强度和矫顽力均 很大在磁化后不易退磁而能长期保 留磁性。
精选ppt
5
软磁材料的种类
➢ 金属软磁材料 ➢ 非晶软磁材料和纳米晶软磁材料 ➢ 其他软磁材料
精选ppt
6
金属软磁材料
● 金属软磁材料,主要以铁芯形式用在变压 器、电磁铁、电动机、发电机和继电器等 电工和电子设备中。传统的金属软磁材料 有电工纯Fe、Fe-Ni、Fe-Si、Fe-Al、FeCo和Fe-Si-Al等金属系列
精选ppt
25
软磁材料的发展趋势
➢ 电子信息产业的高速发展,对高频电感元 件(如高频变压器、小型电感器等)也提出 了各种新的要求,随之也要求改进和提高 作为电感元件的主要组成部分——铁氧体 磁芯的性能。因此,对软磁铁氧体材料及 磁芯元件也提出了更高的材料标准和要求, 如元器件的小型化、片式化、高频化、高 性能、低损耗等。
精选ppt

磁性功能材料培训课件(ppt 57页)

磁性功能材料培训课件(ppt 57页)

0.55
1000℃退火+ 合适冷却速

第2种 (PC-S )
超高磁导率材 料(环形铁芯 ,变换器等)
600 000 0.63 0.16
0.6
1300℃退火+ 合适冷却速

第3种 (PC-T)
高磁导率材料 ,具有优良的 信号保真性(
磁头等)
第1种 (PD-1)
高电阻率,高 磁导率材料( 变换器等)
20 000 1.5 1.6
再结晶退火
用途:直流电机和电磁铁铁芯,继电器铁芯,永久磁 路中的导磁体和磁屏蔽,电话中磁屏蔽,电机中用以 导引直流磁通的磁极等。
直流电机铁 芯
2.1 概述 2.2 电工纯铁和电工钢 (一)电工纯铁 (二)电工钢 2.3 Fe-Ni合金 2.4 Fe-Al系和Fe-Co系软磁合金 2.5 铁氧体软磁材料 2.6 非晶,纳米晶软磁材料
(一)电工纯铁
指纯度在99.8%以上的铁,且不含有任何故意添加的合金 化元素。
最早,最常用 资源丰富、价格低廉,具有良好的可加工 性。
牌号
DT1 DT2 DT3 DT4
名称
沸腾纯铁 高纯度沸腾纯铁
镇静纯铁 无时效镇静纯铁
表2-3 国产纯铁的化学成分(质量分数)(%)
C 0.04 0.025 0.04
(wt%70~80%
之外,还含 Mo坡莫合金 Fe-79Ni-4Mn
有其他一些
特殊成分
超坡莫合金 Fe-79Ni-5Mo
坡莫合金 PD(wt%:3 36坡莫合金 5~40%)
Fe-36Ni
坡莫合金PE (wt%
45%~55%)
Permenom 5000Z
Deltamax
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烧结设备简单
Ni-Zn 电阻率高、晶粒小 一般1M-100M 高
烧结设备简单
Mn-Zn 电阻率低、μi高 一般<1MHZ

需气氛窑烧结
6
五、 Mn-Zn 铁氧体材料
Mn-Zn铁氧体按使用场合分两类:
功率铁氧体:传输较大功率和储能场合,工作在瑞利区以外,要求 PC 低Bs高、Tc高 高导铁氧体:为电子线路提供阻抗匹配耦合等,工作在弱场下 (瑞利 区之内),要求μi高
1.3
Hc(θe)
0.05~0.5 0.003~3
0.003~3
tgδ/μi (×10-6)
10K
100K
1M
ρ(Ω·cm)
5 10 25 10~108
8 80 4000 10-5
25 30 100 10~104
1.4×10-4 1.3×10-4
3
三、软磁铁氧体材料的优缺点
1 、优点 :
①高电阻率10~108Ω·cm,而金属磁只有10-5左右 tanδe∝f,高频下铁氧体有优势。
9
综上所述,对功率材料的要求为:
大的Bs
防饱和
f增大时有小的PL 防发热
高的Tc
防过热矢效
对磁导率μi要求不太高
10
④功率铁氧体材料主要性能指标简述
A:功耗( power loss) 意义: 磁心从交变电磁场中吸收的转变为热能的部分能量。 功耗与使用关系: 功耗越大变压器转换率越低,变压器发热
越严重。
③开关电源变压器对功率铁氧体材料的要求 变压器可传输功率为:
Pth = c f Bmax Ae Wd Pth——传输功率 C——与开关电源电路工作型式有关系数, Bmax——最大允许磁通 Ae——磁路有效截面积 Wd——绕组设计参数 即 Pth ∝ f Bmax Ae
8
上式说明:
a 工作频率f越大, Pth 越大 b 饱和磁通密度越高,Pth 越大 c Ae越大(磁芯体积越大),Pth 越大 d 在Pth 一定情况下减少电源体积(减少 Ae)必须增大f或Bmax
102
Frequency(KHz)
100℃ 25℃
103
12
功耗与温度磁通密度关系图( DMR24)
103
200mT
) 102
3
m w/c P(mcv
101
100mT 50mT
100KHz
100 0
25mT
20
40
60
80
100
120
140
Temperature( ℃ )
13
功耗与温度关系图(DMR24)
影响饱和磁通密度的因素:
磁心密度:密度越大、饱和磁通密度越大 温度: 温度越高、饱和磁通密度越低 配方
Ni-Zn、Mg-Zn
体、Ba铁氧体
2
二、软磁铁氧体材料与其它软磁合金及金属粉芯材料参数比较
材料 性能
μi
铁氧体 5~20K
合金 金属粉芯 5~300K 5~450
非晶 3~150K
纳米晶 >100K
Tc(℃)
100~500 500 500~750 210~485 570
Bs(T)
0.3~0.5 0.8~2.4 1~1.2 0.55~1
铁氧体软磁材料的性能和应用
1
一、常用磁性材料的分类
分类 金属磁性材料
软磁Hc≤10A/cm
永磁Hc≥100A/cm
纯Fe Si-Fe Fe-Ni合金 Fe-Si-Al合金 非晶 纳米晶
Al-Ni-Co系 Sm-Co系 Nd-Fe-B系
非金属磁性材料
软磁铁氧体: Mn-Zn 、 永磁铁氧体: Sr铁氧
5
四、常用软磁铁氧体材料
Mg-Zn 材料、Ni-Zn 材料 Mn-Zn 材料 Mn-Zn 材料又分为:
功率铁氧体: DMR30 、DMR40、DMR44、DMR50 、DMR90 ; 高导铁氧体: R4K、R5K、R7K、R10K、R12K
各铁氧体的特点比较
材料
性能
使用频率 材料成本 工艺特点
Mg-Zn 电阻率高、Bs低 一般<25MHZ 低
90年代中第四代
DMR50
TDK PC50 PHILIPS 3F4 适于500K以上
7
②发展方向
向超低功耗方向发展,已系列化,如 TDK PC40 44 45 46 47 Pc95 继续向高频化方向发展,可用1M的PC50 可用4M的PHILIPS 3F5 向低功耗、高 Bs、高 Tc综合性能方向发展:如 TDKPc90
500
400
)
3
m w/c 300 Pv(m Loss 200 wer Po 100
f=500KHz/ B=50mT
0
0
20
40
60
80
100
120
Temperature( ℃ )
14
B :饱和磁通密度(Bs)
意义:磁通密度达到的最高值。 饱和磁通密度与使用的关系:
磁心饱和磁通密度越高、变压器可传输功率越大
1、功率铁氧体材料
主要用于高频小型化开关电源、电视机显示器的回扫变压器等。
①发展过程
70年代第一代
中国2KD
TDK H35 PHILIPS 3C85 适于20KHZ
80年代初第二代 (DMR30)2KBD TDK PC30 EPCOS N27
适于100K以下
80年代后期第三代 (DMR40)2KB1 TDK PC40 PHILIPS 3C90 适于250K以下
影响功耗的因素: a、频率:频率越高功耗越高 b、磁通密度:磁通密度越大功耗越高 c、温度:功率铁氧体在某一温度具有最低的功耗
这一点一般定为变压器的工作温度点
11
功耗与频率关系图: (DMR24)
104
103
)
3
m
102
w/c
Pcv(m 101
100
200mT 100mT 50mT 25mT
10-1 101
即f×B为表征材料的性能因子 但B是由材料成份决定不可无限提高(Mn-Zn 约0.5T),而f提高后会 引磁芯起发热,制约着Pth 的提高,故引入参数Pc
Pc = K fm Bn = f∮BdH+Cef2B2/ρ+Pr f=10-100k m=1.3 典型值n=2.5 f>100K m继续增 降低磁芯损耗:减 Hc增ρ,减少晶粒尺寸 当磁芯发热时磁芯能否正常工作,又引入一个物理量 ——居里温度。 功率铁氧体要求高的Tc,
②高频磁导率比金属磁性材料高,损耗低。 ③工作频率宽。 ④磁芯易获得相应形状:
①低Bs,单位体积储能少。 ②导热差 ③抗拉强度小、脆、难加工,但金属易加工而需轧片或
细粉。 ④未加工部位的尺寸有2%公差。
以上优缺点决定了金属磁性材料用于较高磁通密度 的低频直流,强电大功率场所,如电力工业、输电变 压器,电机等;铁氧体主要用于高频、脉冲弱磁场下。
相关文档
最新文档