全等三角形学习资料

合集下载

初中数学全等三角形

初中数学全等三角形

初中数学全等三角形
目录
1. 几何基础知识
1.1 点、线、面的概念
1.2 角的概念
1.3 直线、射线、线段的区别
2. 三角形的性质
2.1 三角形的定义
2.2 三角形的内角和为180°
2.3 等边三角形、等腰三角形、直角三角形的特点
3. 三角形的分类
3.1 依据边长分类
3.2 依据角度分类
4. 三角形的全等性质
4.1 全等三角形的定义
4.2 全等三角形的性质
4.3 证明全等三角形的方法
5. 三角形全等定理
5.1 SSS全等定理
5.2 SAS全等定理
5.3 ASA全等定理
6. 全等三角形的应用
6.1 利用全等三角形证明几何定理
6.2 利用全等三角形解决实际问题
7. 总结与拓展
7.1 总结全等三角形的重要性
7.2 拓展全等三角形的相关知识
以上是目录,接下来将根据目录内容展开写作。

全等三角形的基本模型复习(正式经典)PPT课件

全等三角形的基本模型复习(正式经典)PPT课件

2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】

第12章《全等三角形》章节复习资料【1】一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【1】【2】【3】4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.686.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【4】【5】【6】7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【7】【8】【9】10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.【10】【11】【12】13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.【13】【14】【16】17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=度.【17】【18】【19】【20】三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.26.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.第12章《全等三角形》章节复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.2.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠BCB′=∠ACA′,又∠ACA′=30°,∴∠BCB′=30°,3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.4.如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.5.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是()A.50 B.62 C.65 D.68【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△EDF=S△MDG=×11=5.5.故选B.7.如图,已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF=()A.120°B.135°C.115°D.125°【解答】解:∵△ABC≌△ADE,∠CAD=10°,∠EAB=120°,∴∠EAD=∠CAB=(∠EAB﹣∠CAD)=55°,∵∠FAB=∠CAD+∠CAB,∴∠FAB=65°,∵∠AFB+∠FAB+∠B=180°,∴∠AFB=180°﹣65°﹣25°=90°,∵∠GFD=∠AFB,∴∠GFD=90°,∵∠EGF=∠D+∠GFD,∴∠EGF=90°+25°=115°.故选C.8.如图所示,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.正确的是()A.①和②B.②和③C.①和③D.全对【解答】解:连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.故选A.9.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.10.如图,AB,CD相交于点E,且AB=CD,试添加一个条件使得△ADE≌△CBE.现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB.其中符合要求有()A.2个B.3个C.4个D.5个【解答】解:延长DA、BC使它们相交于点F.∵∠DAB=∠BCD,∠AED=∠BEC,∴∠B=∠D,又∵∠F=∠F,AB=CD,∴△FAB≌△FCD∴AF=FC,FD=FB,∴AD=BC∴△ADE≌△CBE①对同理可得②对∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE(SAS)③对同理可得④对连接BD,∵AD=CB,AB=CD,BD=BD,∴△ADB≌△CBD,∴∠A=∠C,∴△ADE≌△CBE,故⑤正确,故选D.二.填空题(共10小题)11.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB 等(只要符合要求即可),使△AEH≌△CEB.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.12.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.13.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB=132°.【解答】解:∵∠ACB=∠ECD=90°,∴∠BCD=∠ACE,在△BDC和△AEC中,,∴△BDC≌△AEC(SAS),∴∠DBC=∠EAC,∵∠EBD=∠DBC+∠EBC=42°,∴∠EAC+∠EBC=42°,∴∠ABE+∠EAB=90°﹣42°=48°,∴∠AEB=180°﹣(∠ABE+∠EAB)=180°﹣48°=132°.14.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.15.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.16.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.如图,∠ACB=90°,AC=BC,AD⊥CE于D,BE⊥CD于E,AD=2.4cm,DE=1.7cm,则BE的长度为0.7cm.【解答】解:∵AD⊥CE于D,BE⊥CD于E,∴∠E=∠ADC=90°∵AC=CB,∠ACB=90,∴∠BCE+∠ACD=90°,∠ACD+∠DAC=90°,∴∠BCE=∠ACD,∴△BCE≌△CAD,∴AD=CE=2.4,BE=CD,∴CD=CE﹣DE=2.4﹣1.7=0.7,∴BE=CD=0.7cm.故答案为0.7cm.18.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为1或4s.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.19.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.20.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=20度.【解答】解:∵∠AME=∠CMD=70°∴在△AEM中∠1=180﹣90﹣70=20°∵△ABE≌△ACF,∴∠EAB=∠FAC,即∠1+∠CAB=∠2+∠CAB,∴∠2=∠1=20°.故填20.三.解答题(共8小题)21.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.【解答】证明:∵∠BAE=∠BCE=90°,∴∠B+∠AEC=180°,而∠DEC+∠AEC=180°,∴∠B=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS).22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.23.如图,已知BD⊥DE,CE⊥DE,垂足分别是D、E,AB=AC,∠BAC=90°,试探索DE、BD、CE长度之间的关系,并说明你的结论的正确性.【解答】结论:DE=BD+CE.证明:如右图,∵∠BAC=90°,∴∠EAC+∠DAB=90°,∵BD⊥DE,CE⊥DE,∴∠DAB+∠DBA=90°,∠D=∠E=90°,∴∠EAC=∠DBA,在△ABD和△CAE中,∵,∴△ABD≌△CAE,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD.24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.【解答】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF;∵DE⊥AB于E,DF⊥AC于F.∴在Rt△DBE和Rt△DCF中∴Rt△DBE≌Rt△DCF(HL);∴EB=FC.25.如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【解答】猜想:DE+BF=EF.证明:延长CF,作∠4=∠1,如图:∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF=∠FAE,在△AGB和△AED中,,∴△AGB≌△AED(ASA),∴AG=AE,BG=DE,在△AGF和△AEF中,,∴△AGF≌△AEF(SAS),∴GF=EF,∴DE+BF=EF.证毕.26.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.注意:第(2)、(3)小题你选答的是第2小题.【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.27.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是CD=BE;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.【解答】解:(1)①结论:CD=BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴CD=BE.②结论:AD=BE+DE.理由:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵CE=CD+DE=BE+DE,∴AD=BE+DE.(2)②中的结论不成立.结论:DE=AD+BE.理由:∵AD⊥CM,BE⊥CM,∴∠ACB=∠BEC=∠ADC=90°,∴∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠B,在△ACD和△CBE中,,∴△ACD≌△CBE,∴AD=CE,CD=BE,∵DE=CD+CE=BE+AD,∴DE=AD+BE.28.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A﹣C﹣B路径向终点运动,终点为B点;点Q从B点出发沿B﹣C﹣A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.【解答】解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有四种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;③P在BC上,Q在AC时,此时不存在;理由是:8÷3×1<6,Q到AC上时,P应也在AC上;④当Q到A点(和A重合),P在BC上时,∵CQ=CP,CQ=AC=6,CP=t﹣6,∴t﹣6=6∴t=12∵t<14∴t=12符合题意答:点P运动1或3.5或12秒时,△PEC与△QFC全等.。

全等三角形的讲义整理讲义

全等三角形的讲义整理讲义

全等三角形专题一 全等三角形的性质【知识点1】能够完全重合的两个三角形叫做全等三角形。

(两个三角形全等是指两个三角形的大小和形状完全一样,与他们的位置没有关系。

)【知识点2】两个三角形重合在一起,重合的顶点叫做对应顶点;重合的边叫做 对应边;重合的角叫做对应角。

【例题1】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。

(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。

【练习1】 如图,图中有两对三角形全等,填空: (1)△BOD ≌ ; (2)△ACD ≌ .【知识点3】 全等三角形的对应边相等,对应角相等。

(由定义还可知道,全等三角形的周长相等,面积相等,对应边上的中线和高相DABCOE ABCD等,对应角的角平分线相等)【例题2】 (海南省中考卷第5题) 已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50°【例题3】(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【练习2】 如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( )A 20° B.30° C .35° D .40°【练习3】如图,△ABD 绕着点B 沿顺时针方向旋转90°到△EBC , 且∠ABD=90°。

时利用边边边判定三角形全等-2023年学习资料

时利用边边边判定三角形全等-2023年学习资料

证明:-D是BC中点,-准备条件-BD =DC.-A-指明范围-在△ABD与△ACD中,-AB=AC已知齐根据-BD=CD已证-AD=AD(公共边-写出结论-.'.△ABD≌△ACDSSS.-2∠BAD=∠CA .-由1得△ABD2△ACD,-.∠BAD=∠CAD.-全等三角形对应角相等
针对训练-如图,C是BF的中点,AB=DC,AC=DF.-试说明:△ABC≌△DCF.-解:.C是BF中点 -.'.BC=CF.-在△ABC和△DCF中,-AB=DC,已知-AC=DF,已知-BC=CF,它证-△D FSSS.
比一比,-熊加首自均多-你能举出一些现实生活中的应用了三角形-稳定性的例子吗?
时利用边边边判定三角形全等
文明兴狐入人参与-兴城文明人人受益-图目E-■1
CHILEE-e时利用边边边判定三角形全等
当堂练习-1.填空题:-1如图,AB=CD,AC=BD,△ABC和△DCB-是否全等?试说明理由.-解:△ BC≌△DCB.-理由如下:-AB=CD.-→-∧ABC≌-BC=-SSS-2如图,D、F是线段BC上的两 ,-E-AB=CE,AF=DE,要使△ABF≌△ECD-还需要条件BF=CD或BD=FC.
导入新课-知识回顾-1.什么叫全等三角形?-能够重合的两个三角形叫全等三角形.-2.全等三角形有什么性质? 全等三角形的对应边相等,对应角相等.-3.已知△ABC≌△DEF,找出其中相等的边与角.-①AB=DE-② C=EF-③-CA-FD-④∠A=∠D-⑤-∠B=∠E-⑥∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角-形全等.-想一想:-如果只满足这些条件中的一部分,那么能保证 △ABC≌△DEF吗?
知识要点-边边边”判定方法-◆文字语言:三边对应相等的两个三角形全等-简写为“边边边”或“SSS”-◆几何 言:-在△ABC和△DEF中,-AB=DE,-BC=EF,-CA-FD,-,'.△ABC≌△DEFSSS.

全等三角形复习资料(搜集整理版)

全等三角形复习资料(搜集整理版)

特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。

第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。

轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。

全等三角形的基础和经典例题含有答案

全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

人教版八年级上册第十二章全等三角形知识点复习

人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

三角形全等判定复习课件

三角形全等判定复习课件

三角形全等判定复习课件一、教学内容本课件主要依据教材第十章“三角形全等判定”进行复习。

详细内容包括:SSS(SideSideSide)全等定理、SAS(SideAngleSide)全等定理、ASA(AngleSideAngle)全等定理、AAS(AngleAngleSide)全等定理以及直角三角形的判定方法HL(HypotenuseLeg)。

二、教学目标1. 熟练掌握三角形全等的四个判定方法,并能灵活运用。

2. 能够运用三角形全等判定解决实际问题,提高解决问题的能力。

3. 培养学生的空间想象能力和逻辑推理能力。

三、教学难点与重点重点:三角形全等的判定方法及运用。

难点:如何在实际问题中灵活运用三角形全等判定。

四、教具与学具准备1. 课件PPT2. 直尺、圆规、量角器3. 练习题五、教学过程1. 导入:通过展示实际生活中的全等三角形现象,激发学生兴趣,引入课题。

2. 讲解:复习三角形全等的判定方法,结合实例进行讲解。

a. SSS全等定理:三边对应相等的两个三角形全等。

b. SAS全等定理:两边和夹角对应相等的两个三角形全等。

c. ASA全等定理:两角和一边对应相等的两个三角形全等。

d. AAS全等定理:两角和一边对应相等的两个三角形全等。

e. HL全等定理:斜边和一直角边对应相等的两个直角三角形全等。

3. 例题讲解:讲解典型例题,引导学生运用全等判定方法解决问题。

4. 随堂练习:布置练习题,学生独立完成,教师进行讲解。

六、板书设计1. 三角形全等的判定方法:SSS、SAS、ASA、AAS、HL2. 典型例题及解题步骤3. 练习题及答案七、作业设计1. 作业题目:a. 已知三角形ABC中,AB=AC,BC=8cm,角A=60°,求三角形ABC的面积。

b. 在直角坐标系中,已知点A(2,3),B(4,0),C(0,1),判断三角形ABC是否为直角三角形。

2. 答案:a. 面积=16√3cm²b. 是直角三角形八、课后反思及拓展延伸1. 反思:本节课学生对三角形全等判定方法的掌握程度,以及对实际问题的解决能力。

知识点解读快速判定三角形全等

知识点解读快速判定三角形全等

知识点解读:快速判定三角形全等基础知识一. 教学内容:三角形全等的判定1. 三角形全等的判定;2. 直角三角形全等的判定;3. 学习掌握综合证明的格式、步骤。

二. 知识要点:1. 三角形全等的判定AB CDE F(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

表示方法:如图所示,在△ABC和△DEF中,AB DE AC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEF(SSS)。

(2)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。

表示方法:如图所示,在△ABC和△DEF中,B E BC EFC F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA)。

(3)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。

表示方法:如图所示,在△ABC和△DEF中,A DB E BC EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(AAS)。

(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。

表示方法:如图所示,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)。

(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

表示方法:如图所示,在R t△ABC和R t△DEF中,∵AB=DE,BC=EF,∴R t△ABC≌R t△DEF(HL)。

A B CD E F注意:①三角形全等的判定方法中有一个必要条件是:有一组对应边相等。

②两边及其中一边的对角对应相等的情况,可以画图实验,如下图,在△ABC 和△ABD中,AB=AB,AC=AD,∠B=∠B,显然它们不全等。

③三个角对应相等的两个三角形不一定全等,如两个大小一样的等边三角形。

2. 全等三角形的基本图形在平面几何中,有很多问题都可以借助于三角形全等来解决,比如线段的相等、角的相等、平行、垂直关系等。

数学中全等三角知识点

数学中全等三角知识点

数学中全等三角知识点一、知识概述《全等三角形知识点》①基本定义:全等三角形呢,就是形状和大小完全一样的两个三角形。

直白点说,就好像是同一个三角形的双胞胎,一个三角形能完全放在另一个三角形上面,不多一点也不少一点。

所有的边长度都一样,所有的角角度也都一样。

②重要程度:在数学学科里头,全等三角形可是相当重要的概念。

它是学习很多几何知识的基础,比如我们后面学的相似三角形就能通过全等三角形的概念去类比理解。

可以说它是构建几何知识大厦的一块“大砖头”呢。

③前置知识:要搞懂全等三角形,那得先对三角形的基本概念如边、角有认识,还有对三角形的基本分类比如等腰三角形、直角三角形这些的概念也要知道些。

④应用价值:在实际生活中很有用。

就拿建筑来讲,要保证建筑结构稳定对称,有时候就要用到全等三角形的知识,确保各个结构部分在形状和大小上是一致的。

另外在制作一些重复图案比如地毯上的花纹等,如果想要花纹完全一样,也涉及到全等三角形的概念。

二、知识体系①知识图谱:全等三角形在几何这个知识体系里,是基础中的基础。

它就像树根,很多其他三角形关系知识像是树枝都从这延伸出去。

②关联知识:它和三角形的内角和定理是紧密联系的。

因为知道三角形全等了,那对应的角肯定相等,内角和也一样。

还和线段的相等有联系,全等三角形里对应边也是相等的,可以通过证明全等得出边相等从而解决线段长度的问题。

③重难点分析:掌握的难度在于准确找出对应边和对应角。

关键点就是要根据三角形提供的信息,比如安平叔叔给两个三角形分别做了标记,你就要根据标记以及三角形的摆放位置什么的来找对应的部分。

④考点分析:在考试中那是相当重要的。

考试方式多样,会让直接证明两个三角形全等,或者间接通过全等三角形去求线段长度、角的度数等。

三、详细讲解【理论概念类】①概念辨析:全等三角形就是两个三角形的三条边和三个角都分别对应相等。

这是最严格的定义,一个都不差。

②特征分析:主要特点就是对应边相等、对应角相等。

全等三角形中考复习12

全等三角形中考复习12

5.如图,△ABC中,∠BAC=90°,AB=AC,
AD⊥BC,垂足是D,AE平分∠BAD,交BC
于点E.在△ABC外有一点F,使FA⊥AE,
G
FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接
MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
②∵AD⊥BC,
(2)若 AC 2 3, BD 2 ,求四边形ABCD的周长;
(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.
(2)解:∵△ABC≌△ADC, ∴△ABC和△ADC是轴对称图形, ∴OB=OD,BD⊥AC,
∵OA=OC,
∴四边形ABCD是菱形,
∴ OA 1 AC 3,OB 1 BD 1
(1)证明:在△ABC和△ADC中, AB=AD BC=DC AC=AC, ∴△ABC≌△ADC(SSS), ∴∠BCA=∠DCA, 在△CBF和△CDF中, BC=DC ∠BCA=∠DCA CF=CF, ∴△CBF≌△CDF(SAS)
如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA ,若E是CD上任意一点,连接BE交AC于点F,连接DF. (1)证明:△CBF≌△CDF;
高频考点
命题趋势
1.全等三角形的定义及性质 2.全等三角形的判定 3.全等三角形的综合应用
全等三角形是证明线段、
角的数量关系的有力工具,在 中考中主要考查全等三角形的 性质及判定的综合应用,大多 数是以选择题、填空题或开放 探索题的形式出现
1、能够完全 _重__合__ 的两个三角形叫做全等三角形.
课堂小结
1、全等三角形的概念—— 能够重合的三角形 2、全等三角形的性质—— 对应边相等、对应角相等 3、全等三角形的判定方法—— (SSS)(SAS)(ASA)(AAS)(HL)

《三角形全等的判定》全等三角形PPT课件

《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你

全等三角形 知识点总结

全等三角形 知识点总结

全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。

全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。

全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。

本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。

一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。

用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。

全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。

也就是说,在全等三角形中,三个对应角是相等的。

2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。

也就是说,在全等三角形中,三个对应边是相等的。

3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。

二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。

1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。

也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。

2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。

也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。

3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。

也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)

全等三角形知识点总结(精选18篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据书信、讲话致辞、规章制度、策划方案、句子大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work summaries, work plans, contract agreements, document letters, speeches, rules and regulations, planning plans, sentence summaries, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!全等三角形知识点总结(精选18篇)全等三角形知识点总结第1篇全等三角形的课件一、教材分析(一)本节内容在教材中的地位与作用。

专题复习:三角形全等

专题复习:三角形全等

专题复习:三角形全等一、教材要求 (2)1、学习目标: (2)2、重点、难点: (2)3、考点分析: (2)4、知识点睛: (2)二、找相等边的方法 (3)1、利用等角对等边 (3)2、利用公共边相等 (3)3、利用等量代换 (4)4、利用三角形中线定理,或者等边三角形 (4)5、利用三角形角平分线定理 (5)6、旋转平移性质,角度不变,边长不变 (5)三、找相等角的方法 (6)1、利用平行直线性质 (6)2、巧用公共角 (6)3、利用等边对等角 (7)4、利用对顶角相等 (7)5、利用等量代换关系找出角相等 (7)6、结合旋转性质,即旋转图形角度不变,边长不变 (8)四、常见辅助线的做法 (9)1、找全等三角形的方法: (9)2、三角形中常见辅助线的作法: (9)3、常见辅助线的作法有以下几种: (9)一、教材要求1、学习目标:三角形全等找边相等的方法总结;三角形全等找角相等的方法技巧;归纳、掌握三角形中的常见辅助线;2、重点、难点:全等三角形相等边和相等角寻找思路;全等三角形的常见辅助线的添加方法。

掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。

3、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

4、知识点睛:全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.二、找相等边的方法1、利用等角对等边(注意:必须在同一个三角形中才能考虑)例1、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD2、利用公共边相等(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)例1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

全等三角形判定四种方法学习总结

全等三角形判定四种方法学习总结

三角形全等一.理解和掌握全等三角形判定方法1——“边边边”(SSS )图2-1 图2-2 图2-3 1.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .2.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).3.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).练习4.已知:如图2-4,AD =BC .AC =BD .试证明:∠CAD =∠DBC .如图2-45.“三月三,放风筝”.图2-5是小明制作的风筝,他根据DE =DF ,EH =FH ,不用度量,就知道∠DEH =∠DFH .请你用所学的知识证明.图2-5二.理解和掌握全等三角形判定方法2——“边角边”(SAS)图3-1 图3-21.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).2.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).练习4.已知:如图3-3,AB =AC ,∠BAD =∠CAD . 求证:∠B =∠C .图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-57.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6三.理解和掌握全等三角形判定方法3——“角边角”(ASA),判定方法4——“角角边”(AAS)图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2练习4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE =4.求BM、CF的长.11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11。

“三角形全等的条件”学习要点及注意事项

“三角形全等的条件”学习要点及注意事项

“三角形全等的条件”学习要点及注意事项 2014.5.9一、三角形全等的条件:1、三边对应相等的两个三角形全等,简写为“边边边”,或SSS ;2、两角及其夹边对应相等的两个三角形全等,简写为“角边角”,或ASA ;3、两角及其中一角的对边对应相等的两个三角形全等,简写为“角角边”,或AAS ;4、两边及其夹角对应相等的两个三角形全等,简写为“边角边”,或SAS ;注意:(1)条件中的边、角一定是三角形中的边、角!(2)条件中只有对应相等的边、对应相等的角;(3)“边边角”不能保证两个三角形全等!!二、过程的书写要求:先交待所要证的两个三角形,其次用单边大括号把三个条件写在一起,得出两个三角形全等,并在后面注明理由;例:如图 ,AB=AC , ∠CDA =∠BEA, △ACD 与△ABE 全等吗?为什么?解: 在△ACD 和△ABE 中,∠CDA =∠BEA (已知)∵ ∠ A = ∠A (公共角) AB= AC (已知)∴ △ACD ≌△ABE (AAS )注意事项:(1)按判定条件的顺序书写,例如上例中,利用的是“AAS ”,书写时先写两个角的条件,再写边的条件;(2)如果所需的条件不是题中直接给出,则先证明,再按上面要求书写;例:如图,O 是AB 的中点,∠A =∠B , △AOC 与△BOD 全等吗?为什么?解: △AOC ≌△BOD 理由:∵ O 是AB 的中点,∴ AO=BO在 △AOC 与△BOD 中,∠A =∠ B (已知) ∵ AO=BO (已证) ∠AOC= ∠BOD (对顶角相等)∴ △AOC ≌△BOD (ASA )说明:(1)条件中一定是相等的边、角,所以要把“中点”的条件转化为相等的边;(2)对顶角相等是能直接得到的结论,不需要先证明;(3)除对顶角相等可以直接写在条件中外,公共边、公共角也能直接作为条件写;A OD C B AE C DB。

有复习资料-直角三角形全等判定(基础)知识讲解

有复习资料-直角三角形全等判定(基础)知识讲解

直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案及解析】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt△ABD 和Rt△CDB中,∴Rt△ABD≌Rt△CDB(HL)∴AB=CD(全等三角形对应边相等)(2)由∠ADB=∠CBD∴AD∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明:∵AE⊥AB,BC⊥AB,∴∠DAE=∠CBA=90°在Rt△DAE 及Rt△CBA中,∴Rt△DAE≌Rt△CBA (HL)∴∠E=∠CAB∵∠CAB+∠EAF=90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED⊥AC.2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案及解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 及Rt △BCD 中,∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC=⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案及解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 及△CBE 中,∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参及,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt△ABC及Rt△'''A B C中, ∠C =∠'C= 90, A=∠'B, AB =''A B, 那么下列结论中正确的是( )A. AC =''B C D. ∠A C B.BC =''B C C. AC =''A =∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE 的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC ≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC及右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B 点及O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上及AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.13.【解析】解:在Rt △AOB 及Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得: ∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 及Rt △EDF 中 B EDF BC DFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠2.证明:∵AE⊥EC,AF⊥BF,∴△AEC、△AFB为直角三角形在Rt△AEC及Rt△AFB中∴Rt△AEC≌Rt△AFB(HL)∴∠EAC=∠FAB∴∠EAC-∠BAC=∠FAB-∠BAC,即∠1=∠2.【答案及解析】一、选择题1. 【答案】C;【解析】等腰直角三角形确定了两个锐角是45°,可由AAS定理证明全等.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF ≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】6;【解析】DB=DC+CB=AB+ED=4+2=6;11.【答案】90°;【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE. 12.【答案】45°;【解析】证△ADC及△BDF全等,AD=BD,△ABD为等腰直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形➢学习目标1.正确理解全等的概念,能够识别全等图形;2.能够准确找到全等的对应边、对应角,会进行全等三角形的表示;3.能够利用全等三角形的性质进行相关的计算.➢重难点分析1.全等三角形对应边、对应角的识别;2.全等三角形的性质及其相关计算.➢要点集结➢精讲精练全等的概念及其表示1、全等形的概念:能够完全重合的两个图形叫做全等形.2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.3、全等的符号表示:“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.4、全等的对应顶点、对应边、对应角(1)把两个全等三角形重合到一起,重合的顶点叫做对应顶点;(2)把两个全等三角形重合到一起,重合的边叫做对应边;(3)把两个全等三角形重合到一起,重合的角叫做对应角.例1.下列图形中与已知图形全等的是()A.B.C.D.【答案】B练习1.下列选项中,和下图全等的图形是()A.B.C.D.【答案】D练习2.下列图形中,是由多个全等图形组成的图案的是()A.B.C.D.【答案】C●小结根据全等的定义识别全等的图形,图形全等的本质就是经过移动后能够完全重合.例2.下列说法正确的是()A.面积相等的两个长方形全等B.周长相等的两个长方形全等C.形状相同的两个长方形全等D.能够完全重合的两个长方形全等【答案】D【解析】解:根据能够完全重合的两个图形是全等图形可知,能够完全重合的两个长方形全等,面积相等,周长相等,形状相同,都不一定能够完全重合.所以A、B、C选项不一定正确,D选项一定正确.故选D.练习1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【答案】C【解析】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;●小结利用语言描述图形的特征,再根据特征进行全等的判别,此类问题较直接看图辨别的类型难度要稍大一些,需要学生对所描述的图形的几何性质要相对熟悉一些,并能够根据几何性质去判断图形的具体形状是否可以固定,从而判断是否全等.例3.用两个全等的三角形一定不能拼出的图形是()A.等腰三角形B.直角梯形C.菱形D.矩形【答案】B【解析】解:用两个全等的直角三角形就能拼出等腰三角形,A可以;如图两个全等的正三角形就可以拼出菱形,C可以;两个全等的直角三角形时就可以拼出矩形,D可以;不管用什么形状的两个全等的三角形不管怎样也拼不出直角梯形.故选B.●小结利用全等形进行新图形的拼接,需要注意分类讨论思想的应用,将不同的边拼接在一起,得到的新图形的形状是不同的.例4.把下列各图分成若干个全等图形,请在原图上用虚线标出来.【答案】解:如图所示:【解析】根据能够完全重合的图形叫做全等形,将第一个图分割成5个正方形,将第二个图分割成3个直角三角形即可.例 5.已知A与A′,B与B′是对应点,则≌ABC和≌A′B′C′全等用符号语言表示为:.【答案】≌ABC≌≌A′B′C′【解析】解:≌A与A′,B与B′是对应点,≌≌ABC≌≌A′B′C′,故答案为:≌ABC≌≌A′B′C′.练习1.如图,≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,那么还有对应角是,,对应边是,.【答案】≌B=≌E,≌C=≌F;BC=EF,AC=DF【解析】解:≌≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,≌相等的边有:AB=DE,BC=EF,AC=DF;相等的角有:≌A=≌D,≌B=≌E,≌C=≌F.故答案为≌B=≌E,≌C=≌F;BC=EF,AC=DF.练习2.在≌ABC中,≌B=≌C,与≌ABC全等的三角形有一个角是100°,那么在≌ABC中与这100°角对应相等的角是()A.≌A B.≌B C.≌C D.≌B或≌C【答案】A【解析】解:在≌ABC中,≌≌B=≌C,≌≌B、≌C不能等于100°,≌与≌ABC全等的三角形的100°的角的对应角是≌A.故选:A.小结在用全等符号表示两三角形全等时,一定要注意将对应的点写在对应的位置上,这样方便找到对应边和对应角.在最开始学的时候就养成这样的好习惯,是非常有必要的.全等的性质及其相关计算1、全等三角形的性质性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等注意:(1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.2、关于全等三角形的性质应注意(1)全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边;(2)要正确区分对应边与对边,对应角与对角的概念对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指同一个三角形中角的对边,对角是指同一个三角形中边的对角.例1.如图,已知≌ABC≌≌DEB,点E在AB上,若DE=8,BC=5,线AE的长为()A.3B.5C.6D.4【答案】A【解析】解:≌≌ABC≌≌DEB,≌AB=DE=8,BE=BC=5,≌AE=AB﹣BE=3,故选:A.练习1.如图,已知≌ABC≌≌DAE,BC=2,DE=5,则CE的长为()A.2B.2.5C.3D.3.5【答案】C【解析】解:≌≌ABC≌≌DAE,≌AC=DE=5,BC=AE=2,≌CE=5﹣2=3.故选C.练习2.下列说法错误的是()A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等【答案】B小结全等的一个典型性质就是对应边相等,所以在有全等形的求线段长度的题目中,一定要注意对全等对应边相等这一性质的应用.同时对于两个全等的三角形来说,不仅对应边相等,对应的角平分线、中线、高线也分别是相等的,这就为全等形中计算线段的长度提供了又一个理论依据.例2.如图,在≌ABC中,D、E分别是AC、BC上的点,若≌ADB≌≌EDB≌≌EDC,则≌C 的度数是()A.15°B.20°C.25°D.30°【答案】D【解析】解:≌≌ADB≌≌EDB≌≌EDC,≌AB=BE=EC,≌ABD=≌DBE=≌C,≌≌A=90°,≌≌C=30°,故选:D.练习1.如图,两个三角形为全等三角形,则≌α的度数是()A.72°B.60°C.58°D.50°【答案】A【解析】解:根据三角形内角和可得≌1=180°﹣50°﹣58°=72°,因为两个全等三角形,所以≌α=≌1=72°,故选A.小结全等的另一个典型性质是对应角相等,在全等形存在的题目中进行角度计算时,一定要注意对这一性质的应用.全等性质中常见模型的识别在利用全等三角形的性质进行相关的边、角计算时,除了直接利用性质外,还需要对一些常见的几何结构能够准确识别,从而逐步建立几何感知能力.如:(1)平移型:(2)旋转型(3)翻折型(4)对调性型(5)共角型(6)共边型——其本质也是翻折型(7)一线三等角之三垂直模型例1.如图,已知≌ABC≌≌DEF,≌A=85°,≌B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB≌DE.【答案】解:(1)≌≌A=85°,≌B=60°,≌≌ACB=180°﹣≌A﹣≌B=35°,≌≌ABC≌≌DEF,AB=8,≌≌F=≌ACB=35°,DE=AB=8,≌EH=2,≌DH=8﹣2=6;(2)证明:≌≌ABC≌≌DEF,≌≌DEF=≌B,≌AB≌DE.【解析】(1)根据三角形内角和定理求出≌ACB,根据全等三角形的性质得出AB=DE,≌F=≌ACB,即可得出答案;(2)根据全等三角形的性质得出≌B=≌DEF,根据平行线的判定得出即可.练习1.如图,≌ABC≌≌DEF,AC≌DF,则≌C的对应角为()A.≌F B.≌AGE C.≌AEF D.≌D【答案】A【解析】解:≌AC≌DF,≌≌D=≌BAC;≌≌ABC≌≌DEF,≌≌ABC与≌DEF的对应角相等;又≌C是≌ABC的一个内角,≌≌C的对应角应≌DEF的一个内角;A、≌AGE不是≌DEF的一个内角,不符合题意;B、≌AEF不是≌DEF的一个内角,不符合题意;C、≌D与≌BAC是对应角,不符合题意;故选A.小结注意平移型全等形的识别,平移的距离可以有多种情况,两个图形可以没有公共的部分,这也是平移型的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例2.已知:如图,≌ABC≌≌AEF,AB=AE,≌B=≌E,则对于结论≌AC=AF,≌≌FAB=≌EAB,≌EF=BC,≌≌EAB=≌FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:≌≌ABC≌≌AEF,≌AC=AF,故≌正确;≌EAF=≌BAC,≌≌FAC=≌EAB≠≌FAB,故≌错误;EF=BC,故≌正确;≌EAB=≌FAC,故≌正确;综上所述,结论正确的是≌≌≌共3个.故选C.练习1.如图,≌ABC≌≌DBE,≌DBC=150°,≌ABD=40°,则≌ABE的度数是()A.70°B.65°C.60°D.55°【答案】A【解析】解:≌≌DBC=150°,≌ABD=40°,≌≌ABC=110°,≌≌ABC≌≌DBE,≌≌DBE=≌ABC=110°,≌≌ABE=≌DBE﹣≌ABD=70°,故选:A.小结注意旋转型全等形的识别,旋转的角度也可以有很多种,两个图形可以没有公共的部分,这也是旋转的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例3.如图,已知≌ABC≌≌DCB,AB=10,≌A=60°,≌ABC=80°,那么下列结论中错误的是()A.≌D=60°B.≌DBC=40°C.AC=DB D.BE=10【答案】D【解析】解:≌≌A=60°,≌ABC=80°,≌≌ACB=40°,≌≌ABC≌≌DCB,≌≌D=≌A=60°,≌DBC=≌ACB=40°,AC=BD,故A,B,C正确,故选D.练习1.如图,点E,F在线段BC上,≌ABF与≌DEC全等,其中点A与点D,点B与点C 是对应顶点,AF与DE交于点M,则≌DEC等于()A.≌B B.≌A C.≌EMF D.≌AFB【答案】D【解析】解:≌≌ABF与≌DEC全等,点A与点D,点B与点C是对应顶点,≌≌ABF≌≌DCE,≌≌DEC=≌AFB,故选:D.小结注意翻折型全等形的识别,翻折的本质是轴对称,其中轴对称的知识会在下一章中学到,其中对称轴的位置决定了翻折前后形成的两个图形的位置关系,建议老师在讲解旋转、翻折、平移这三个模型时,要以动态的思想来分析、帮助学生理解不同的形式产生的原因,在授课过程中注意帮助学生建立这种模型意识.例4.如图,≌ABD≌≌CDB,下面四个结论中不正确的是()A.≌ABD和≌CDB的面积相等B.≌ABD和≌CDB的周长相等C.≌A+≌ABD=≌C+≌CBD D.AD≌BC,且AD=BC【答案】C【解析】解:≌≌ABD≌≌CDB,≌≌ADB=≌CBD,AD=BC,≌ABD和≌CDB的面积相等,≌ABD和≌CDB的周长相等,≌AD≌BC,则选项A,B,D一定正确.由≌ABD≌≌CDB不一定能得到≌ABD=≌CBD,因而≌A+≌ABD=≌C+≌CBD不一定成立.故选C.练习1.如图,≌ABC≌≌BAD,若AB=6、AC=4、BC=5,则≌BAD的周长为.【答案】15【解析】解:≌≌ABC≌≌BAD,≌AD=CB=5,BD=AC=4,≌AB=6,≌≌BAD的周长为:5+4+6=15,故答案为:15.小结对调型的全等也有不同的位置、不同的情况,其中有一条边完全重合的情况构成的是平行四边形(在人教版初二下学期的课本中会学到),对于这种类型的全等,一定要注意区分其对应点和对应边分别是什么.例5.如图:若≌ABE≌≌ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5【答案】B【解析】解:≌≌ABE≌≌ACF,AB=5,≌AC=AB=5,≌AE=2,≌EC=AC﹣AE=5﹣2=3,故选B.练习1.如图,≌ABE≌≌ACF.若AB=5,AE=2,BE=4,则CF的长度是()A.2B.5C.4D.3【答案】C【解析】解:≌≌ABE≌≌ACF,≌CF=BE=4,故选:C.练习2.已知如图,≌OAD≌≌OBC,且≌O=70°,≌C=25°,则≌OAD=()A.95°B.85°C.75°D.65°【答案】B【解析】解:≌≌OAD≌≌OBC,≌≌D=≌C=25°,≌≌O=70°,≌≌OAD=180°﹣25°﹣70°=85°,故选:B.●小结共角模型其本质也是翻折的一种,由于它有一个公共角,其情况比较特殊,所以单独拿出来分析,此种模型在下一节的全等判定中出现的频率很高,其中蕴藏着两组全等三角形,两者之间的转化很经典.例6.如图,≌ABC≌≌DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5【答案】A【解析】解:≌≌ABC≌≌DCB,≌BD=AC=7,≌BE=5,≌DE=BD﹣BE=2,故选A.练习1.如图,已知≌ABC≌≌BAD,A和B,C和D分别是对应顶点,且≌C=60°,≌ABD=35°,则≌BAD的度数是()A.60°B.35°C.85°D.不能确定【答案】C【解析】解:≌≌ABC≌≌BAD,≌C=60°,≌≌D=≌C=60°,≌≌ABD=35°,≌≌BAD=180°﹣≌D﹣≌ABD=180°﹣60°﹣35°=85°,故选C.●小结共边型全等其本质也是翻折型,是翻折的一个特殊情况.例7.如图,E为线段AB上一点,AC≌AB,DB≌AB,≌ACE≌≌BED.(1)试猜想线段CE与DE的位置关系,并证明你的结论;(2)求证:AB=AC+BD.【答案】(1)CE≌DE,证明:≌AC≌AB,DB≌AB,≌≌A=≌B=90°,≌≌C+≌CEA=90°,≌≌ACE≌≌BED,≌≌C=≌DEB,≌≌CEA+≌DEB=90°,≌≌CED=180°﹣90°=90°,≌CE≌DE;(2)证明:≌≌ACE≌≌BED,≌AC=BE,BD=AE,≌AB=AE+BE=AC+BD.【解析】(1)求出≌A=≌B=90°,推出≌C+≌CEA=90°,根据全等得出≌C=≌DEB,推出≌CEA+≌DEB=90°即可;(2)根据全等三角形的性质得出AC=BE,BD=AE,即可得出答案.练习1.如图,已知Rt≌ABC≌Rt≌CDE,≌B=≌D=90°,且B,C,D三点共线.试说明≌ACE=90°.【答案】证明:≌Rt≌ABC≌Rt≌CDE,≌≌BCA=≌CED,≌≌DCE是直角三角形,≌≌CED+≌ECD=90°,≌≌BCA+≌ECD=90°,≌≌ACE=180°-90°=90°.【解析】根据Rt≌ABC≌Rt≌CDE可得≌BCA=≌CED,再根据直角三角形两锐角互余可得≌CED+≌ECD=90°,进而得到≌BCA+≌ECD=90°,再根据角之间的关系可得≌ACE=90°. 小结三垂直模型其本质也是一种旋转,由于其旋转中心不容易确定,所以将此类情况单独拿出来分析,而三垂直的更一般的情况是一线三等角,它是初三相似中非常重要的一个模型.➢当堂总结本次课重点讲解三角形全等的性质及其相关计算,其中需要学生特别关注的就是一些常见的全等的模型,这也为下一节讲解三角形全等的判定作铺垫,在学习全等三角形章节一定要着重关注常见的全等模型,这对计算和证明都有很好的帮助.➢课后作业1、如图,≌ADE≌≌BDE,若≌ADC的周长为12,AC的长为5,则CB的长为()A.8B.7C.6D.5【答案】B【解析】解:≌≌ADE≌≌BDE,≌DA=DB,≌ADC的周长=AC+CD+AD=AC+CD+BD=AC+BC=12,又AC=5,≌BC=7,故选:B.2、若≌ABC≌≌DEF,且≌ABC的周长为20,AB=5,BC=8,则DF长为()A.5B.8C.7D.5或8【答案】C【解析】解:≌≌ABC的周长为20,AB=5,BC=8,≌AC=20﹣5﹣8=7,≌≌ABC≌≌DEF,≌DF=AC=7,故选:C.3、如图,已知≌ABE≌≌ACD,≌1=≌2,≌B=≌C,不正确的等式是()A.AB=AC B.≌BAE=≌CAD C.BE=DC D.AD=DE【答案】D【解析】解:≌≌ABE≌≌ACD,≌1=≌2,≌B=≌C,≌AB=AC,≌BAE=≌CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4、如图,≌ABD≌≌ACE,点B和点C是对应顶点,AB=8,AD=6,BD=7,则CE的长是()A.1B.2C.4D.7【答案】D【解析】解:≌≌ABD≌≌ACE,≌BD=CE=7.故选:D.5、如图,CD≌AB于点D,BE≌AC于点E,≌ABE≌≌ACD,≌C=42°,AB=9,AD=6,G 为AB延长线上一点.(1)求≌EBG的度数.(2)求CE的长.【答案】解:(1)≌≌ABE≌≌ACD,≌≌EBA=≌C=42°,≌≌EBG=180°﹣42°=138°;(2)≌≌ABE≌≌ACD,≌AC=AB=9,AE=AD=6,≌CE=AC﹣AE=9﹣6=3.6、如图所示,已知≌ABC≌≌DCB,≌A=32°,≌BCD=115°,求≌BOC.【答案】解:≌≌ABC≌≌DCB,≌≌DBC=≌ACB,≌A=≌D,≌ABC中,≌A=32°,≌≌D=32°,≌≌DBC=≌ACB=180°﹣≌D﹣≌BCD=33°,≌≌OBC=≌OCB=33°,≌≌BOC=180°﹣33°﹣33°=114°.【解析】根据三角形内角和定理可求≌DBC=33°,根据全等三角形的性质可证≌DBC=≌ACB,即可求≌BOC.7、如图,E为线段BC上一点,AB≌BC,≌ABE≌≌ECD,判断AE与DE的关系,并证明你的结论.【答案】解:AE≌DE.≌AB≌BC,≌≌B=90°.≌≌ABE≌≌ECD,≌≌A=≌DEC,≌AEB=≌EDC,≌B=≌C=90°.≌≌A+≌AEB=90°,≌DEC+≌D=90°,≌≌AEB+≌DEC=90°,≌≌AED=90°,即AE≌DE.。

相关文档
最新文档