中考数学一轮复习练习题练习
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题(含解析)
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题一、单选题1.(2022·山东临沂·统考二模)如图,直线AB CD 、相交于点O ,射线OM 平分BOD ∠,若160AOM ∠=︒,则AOC ∠等于 ( )A .20°B .40°C .45°D .50°2.(2022·山东东营·校考一模)下列说法中正确的是( )A .不相交的两条直线叫平行线B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .平面内两条直线的位置关系有相交、平行和垂直D .同一平面内,过直线外一点有且只有一条直线与已知直线垂直3.(2022·山东济南·统考一模)下列各图中,已知∠1=∠2,不能证明AB ∠CD 的是( )A .B .C .D .4.(2022·山东·统考一模)下列关于过直线l 外一点P 作直线l 的平行线的尺规作图错误的是() A . B .C .D .5.(2022·山东淄博·统考二模)下列图形中,由12∠=∠能得到AB CD ∥的是( )A .B .C .D .6.(2022·山东潍坊·中考真题)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒7.(2022·山东滨州·统考中考真题)如图,在弯形管道ABCD 中,若AB CD ∥,拐角122ABC ∠=︒,则BCD ∠的大小为( )A .58︒B .68︒C .78︒D .122︒8.(2022·山东日照·统考一模)如图,在∠ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∠AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°9.(2022·山东淄博·统考一模)如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒10.(2022·山东济南·统考中考真题)如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为( )A .45°B .50°C .57.5°D .65°11.(2022·山东东营·统考中考真题)如图,直线a b ∥,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=( )A .40︒B .50︒C .60︒D .65︒12.(2022·山东东营·统考三模)如图,直线//a b ,将一个含30︒角的三角尺按如图所示的位置放置,若∠的度数为()124=,则2∠︒A.120︒B.136︒C.144︒D.156︒13.(2022·山东枣庄·统考模拟预测)如图,将直尺与含30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°14.(2022·山东济南·统考一模)如图所示,已知//C∠=︒,43AC ED,20∠的度数是()CBE∠=︒,BEDA.63︒B.83︒C.73︒D.53︒15.(2022·山东烟台·统考一模)在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行16.(2022·山东东营·统考一模)数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:∠将含30︒角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30︒角的三角尺的最短边紧贴;∠将含30︒角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则a∠b,小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等17.(2022·山东济宁·统考中考真题)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是___________.18.(2022·山东枣庄·统考中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线变成FH,点G在射线EF上,45,20∠=︒∠=,FED HFB ∠=__°.则GFH19.(2022·山东烟台·统考一模)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.20.(2022·山东德州·德州市同济中学校考模拟预测)如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.21.(2022·山东枣庄·统考模拟预测)如图,将周长为10的∠ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为________.22.(2022·山东东营·校考一模)如图,直线AB∠CD,∠C=44°,∠E为直角,求∠1的度数.参考答案:1.B【分析】根据邻补角的定义求出∠BOM ,再根据角平分线的定义求出∠BOD ,然后根据对顶角相等求解即可. 【详解】160AOM ∠=︒,18020BOM AOM ∴∠=︒-∠=︒,OM 平分BOD ∠,240BOD BOM ∴∠=∠=︒40AOC BOD ∴∠=∠=︒故选B【点睛】本题考查了本题考查了邻补角的定义,对顶角相等,角平分线的定义,掌握以上知识是解题的关键.2.D【分析】根据平行线的判定、点到直线的距离、平面内两直线的位置关系等求解判断即可.【详解】解:A :在同一平面内,不相交的两条直线叫平行线,故A 说法不符合题意;B :从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故B 说法不符合题意;C :平面内两条直线的位置关系有相交和平行,故C 说法不符合题意;D :同一平面内,过直线外一点有且只有一条直线与已知直线垂直,故D 说法符合题意;故选:D .【点睛】此题考查了平行线的判定,熟记平行线的判定定理、点到直线的距离的概念、平面内两直线的位置关系等是解题的关键.3.B【分析】根据平行线的判定定理即可判断求解.【详解】:A 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;B 、由∠1=∠2,不能判断AB ∠CD ,该选项符合题意;C 、∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠AB ∠CD ,该选项不符合题意;D 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;故选:B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.C【分析】根据选项图像逐个分析,判断能否平行即可.【详解】A .本选项作了角平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意;B .本选项作了一个角等于已知角,根据同位角相等两直线平行,从而可证两直线平行,故本选项不符合题意;C .本选项只截取了两条线段相等,无法保证两直线平行的位置关系,故本选项符合题意;D .本选项作了一个角与已知角相等,根据内错角相等两直线平行,从而可证两直线平行,故本选项不符合题意;故选:C .【点睛】本题考查了尺规作图和平行线的判定定理,熟练掌握尺规作图的操作是解题的关键.5.B【分析】根据平行线的判定定理逐项分析即可.【详解】A.∠1=∠2,不能判断//AB CD ,故A 不符合题意;B.∠∠1=∠2,∠AB CD ∥(内错角相等,两直线平行),故B 符合题意;C.12∠=∠,//AC BD ∴,故C 不符合题意;D.∠1=∠2,不能判断//AB CD ,故D 不符合题意.故选:B .【点睛】本题主要考查了平行线的判定,熟练掌握内错角相等,两直线平行,是解题的关键.6.C【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒∠l //m∠659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.A【分析】根据两直线平行,同旁内角互补得到180∠+∠=︒,进而计算即可.ABC BCD∥,【详解】AB CD∴∠+∠=︒,180ABC BCDABC∠=︒,122∴∠=︒-∠=︒-︒=︒,BCD ABC180********故选:A.【点睛】本题考查了平行线的性质,即两直线平行,同旁内角互补,熟练掌握知识点是解题的关键.8.B【分析】由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.【详解】解:∠∠A+∠C=100°∠∠ABC=80°,∠BD平分∠BAC,∠∠ABD=40°,∠DE∠AB,∠∠BDE=∠ABD=40°,故答案为B.【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.9.A【分析】过点P作PE∠a.则可得出PE∠a∠b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∠a,如图所示.∠PE∠a,a∠b,∠PE∠a∠b,∠∠AMP=∠MPE,∠BNP=∠NPE,∠∠2=∠MPE+∠NPE=∠AMP+∠BNP.∠∠1+∠AMP=180°,∠3+∠BNP=180°,∠∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.10.B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∠//∠∠AEC=∠1(两直线平行,内错角相等),∠EC平分∠AED,∠∠A EC=∠CED=∠1,∠∠1=65°,∠∠CED =∠1=65°,∠∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.11.B【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∠∠1=40°,∠∠3=180°-∠1-∠ABC=50°,∥,∠a b∠∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.12.C【分析】根据平行线的性质求解,找出图中1424∠=∠=︒,进而求出∠3,再根据平行线性质求出∠2即可.c a,【详解】解:如图,作//三角尺是含30︒角的三角尺,3460∴∠+∠=︒,a c,//∴∠=∠=︒,14243602436∴∠=︒-︒=︒,a b,//a c,//b c∴,//∴∠=︒-︒=︒,218036144故选:C.【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.13.D【分析】根据平行线的性质即可解答.【详解】如图,由已知得∠3=60°,∥,因为AB CD所以∠2+∠1+∠3=180°,∠2=180°-(40°+60°)=80°;故选D.【点睛】本题考查了平行线的性质,解题关键是熟练运用平行线的性质进行推理解题.14.A【分析】过点B 作BM ∠AC ,求出∠EBM 即可.【详解】过点B 作BM ∠AC ,∠//AC ED ,∠////AC ED BM ,∠20CBM C ∠=∠=︒,EBM E ∠=∠,∠43CBE ∠=︒,∠63EBM CBE CBM ∠=∠+∠=︒,∠63E EBM ∠=∠=︒.故选:A .【点睛】本题考查了平行线的判定与性质,解题关键是熟练添加辅助线,利用平行线的性质求角.15.B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.16.A【分析】先利用平移的性质得到∠1=∠2=60°,然后根据同位角线段两直线平行可判断a ∠b .【详解】利用平移的性质得到∠1=∠2=60°,所以a ∠b .故选:A .【点睛】此题考查作图-平移变换,平行线的判定,解题关键在于确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.17.5328'︒【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠∠=,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠∠=,24∴∠=∠,∠1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键.18.25【分析】根据平行线的性质知45GFB FED ∠=∠=︒,结合图形求得GFH ∠的度数.【详解】解:∠//AB CD ,∠45GFB FED ∠=∠=︒.∠20HFB ∠=︒,∠452025GFH GFB HFB ∠=∠-∠=︒-︒=︒.故答案为:25.【点睛】本题考查了平行线的性质,属于基础题,熟练掌握平行线的性质是解决本类题的关键. 19.7或17.【分析】分两种情况讨论,EF 在AB ,CD 之间或EF 在AB ,CD 同侧,进而得出结论.【详解】解:分两种情况:∠当EF 在AB ,CD 之间时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12﹣5=7(cm ).∠当EF 在AB ,CD 同侧时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12+5=17(cm ).综上所述,EF 与AB 的距离为7cm 或17cm .故答案为:7或17.【点睛】此题主要考查线段之间的距离,解题的关键是根据题意分情况作图进行求解.20.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.21.14【分析】利用平移的性质求解即可.【详解】∠△ABC沿BC方向平移2个单位得到△DEF,∠AD=CF=2,∠四边形ABFD的周长=AB+BC+DF+CF+AD=△ABC的周长+AD+CF=10+2+2=14.故答案为:14.【点睛】本题考查了平移的性质,抓住平移后对应线段相等是解题的关键.22.134°.【分析】过E作EF∠AB,可得AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【详解】过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,(平行于同一直线的两直线平行)∠∠C=∠FEC,∠BAE=∠FEA,(两直线平行,内错角相等)∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°.【点睛】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.。
中考数学一轮复习各章节复习有答案完美版
中考数学一轮复习第1讲:实数概念与运算一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( )A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )二、能力提升 6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A .4℃ B .9℃ C .-1℃ D .-9℃ 7、定义一种运算☆,其规则为a ☆b =+,根据这个规则、计算2☆3的值是( ) A .65 B .C .5D .68、下列计算不正确的是( )(A ) (B ) (C ) (D 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )131a 1b 1531222-+=-21139⎛⎫-= ⎪⎝⎭33-==A. 6或6- B. 6 C. 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、― 2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、23、4、A5、C二、能力提升6、C7、A8、A三、课外拓展>9、a b四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(=2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x 32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍C .扩大9倍D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-24.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -y B .x 2-2xy +y 2x -y =x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12B .-12C .2D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(—)·的结果是( ) A . 4 B . -4 C .2a D .-2a13.分式方程的解是( )A .x=-2B .x=2C . x=±2 D.无解14.把分式中的,都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3. 2-a a2+a aa a 24-2114339x x x +=-+-(0)xyx y x y +≠+x y 13参考答案一、夯实基础1.B B 项分母中含有字母.2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1.二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=a a -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23 D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________.9.当-1<x<3时,化简:x-2+x2+2x+1=__________.10.如果代数式4x-3有意义,则x的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
2023年中考苏科版数学一轮复习专题提优练习-一次函数和二次函数综合
2023年中考数学一轮复习专题提优练习一次函数和二次函数综合一、选择题1.二次函数y 1=ax 2+bx +c 与一次函数y 2=mx +n 的图象如图所示,则满足ax 2+bx +c >mx +n 的x 的取值范围是( )A .﹣3<x <0B .x <﹣3或x >0C .x <﹣3D .0<x <3第1题 第2题2.如图,直线y =kx +b 与直线y =mx 相交于点A (﹣1,2),与x 轴相交于点B (﹣3,0),则关于x 的不等式组0<kx +b <mx 的解集为( )A .x >﹣3B .﹣3<x <﹣1C .﹣1<x <0D .﹣3<x <03.已知二次函数y=-(x -h)2(h 为常数),当自变量x 的值满足2≤x≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或64.用列表法画二次函数y=x 2+bx+c 的图象时先列一个表,当表中自变量x 的值以相等间隔增加时,函数y 所对应的值依次为:20, 56, 110, 182, 274, 380, 506, 650. 其中有一个值不正确,这个不正确的值是( )A .505B .380C .274D .1825.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫作“整点”. 例如:P (1,0),Q (2,-2)都是“整点”. 抛物线y=mx 2-4mx+4m -2(m>0)与x 轴的交点为A ,B ,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域(包含边界)恰有7个“整点”,则m 的取值范围是( )A .121<≤m B .121≤<m C .1<m ≤2 D .1≤m<26.四位同学在研究函数y=x 2+bx+c (b, c 是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4. 已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁7.根据关于x 的一元二次方程x 2+px +q =0,可列表如下:则方程x 2+px +q =0的正数解满足( )x 0 0.5 1 1.1 1.2 1.3 x 2+px +q﹣15﹣8.75﹣2﹣0.590.842.29A .解的整数部分是0,十分位是5B .解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D .解的整数部分是1,十分位是28. 已知二次函数c bx x y ++=2中,函数y 与自变量x 之间的部分对应值如下表所示:X … 0 1 2 3 … y…5212…点A (x 1,y 1),B (x 2,y 2)在函数图象上,则当0<x 1<1,2<x 2<3时,y 1与y 2的大小关系正确性是( )A .y 1≥y 2B .y 1>y 2C .y 1<y 2D .y 1≤y 2二、填空题9.已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2= .10.如图,在抛物线y 1=ax 2(a >0)和和y 2=mx 2+nx (m <0)中,抛物线y 2的顶点在抛物线y 1上,且与x 轴的交点分别为(0,0)(4,0),则不等式(a ﹣m )x 2﹣nx <0的解集是 .第9题 第10题 第11题 第12题11.如图,二次函数y 1=ax 2+bx +c 与一次函数y 2=kx 的图象交于点A 和原点O ,点A 的横坐标为﹣4,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足0<y 1<y 2的x 的取值范围是 .12. 如图是抛物线y=c bx ax ++2(0≠a )的一部分,其对称轴为直线x=2,若其与x 轴的一个交点为B (5,0),则由图像可知,不等式02>++c bx ax 的解集是________. 13. 如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1),则方程ax 2=bx +c 的解是__________________.第13题 第14题14.已知点A (﹣2,0),点P 是直线y =x 上的一个动点,当以A ,O ,P 为顶点的三角形面积是3时,点P 的坐标为 .15. 对于二次函数322-==mx x y ,有下列说法:①它的图像与x 轴有两个公共点;②如果当x≤1时,y 随x 的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3. 其中正确的说法是___________(把你认为正确说法的序号都填上). 三、解答题16.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,其中点A (﹣1,0),点C (0,5),点D (1,8)都在抛物线上,M 为抛物线的顶点.(1)求抛物线的函数解析式; (2)求△MCB 的面积;(3)根据图形直接写出使一次函数值大于二次函数值的x 的取值范围.17.如图①,将抛物线y =ax 2(﹣1<a <0)平移到顶点恰好落在直线y =x ﹣3上,并设此时抛物线顶点的横坐标为m .(1)求抛物线的解析式(用含a 、m 的代数式表示)(2)如图②,Rt △ABC 与抛物线交于A 、D 、C 三点,∠B =90°,AB ∥x 轴,AD =2,BD :BC =1:2.①求△ADC 的面积(用含a 的代数式表示)②若△ADC 的面积为1,当2m ﹣1≤x ≤2m +1时,y 的最大值为﹣3,求m 的值.18.如图1,平面直角坐标系xOy 中,已知抛物线y =ax 2+4x 与x 轴交于O 、A 两点.直线y =kx +m 经过抛物线的顶点B 及另一点D (D 与A 不重合),交y 轴于点C .(1)当OA =4,OC =3时.①分别求该抛物线与直线BC 相应的函数表达式;②连结AC ,分别求出tan ∠CAO 、tan ∠BAC 的值,并说明∠CAO 与∠BAC 的大小关系; (2)如图2,过点D 作DE ⊥x 轴于点E ,连接CE .当a 为任意负数时,试探究AB 与CE 的位置关系?19.如图,在平面直角坐标系xOy 中,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2,3)和(﹣3,﹣12).(1)求此二次函数的表达式;(2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,若锐角∠PCO =∠ACO ,写出此时点P 的坐标;(3)若直线l :y =kx (k ≠0)与线段BC 交于点D (不与点B ,C 重合),则是否存在这样的直线l ,使得以B ,O ,D 为顶点的三角形与△BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由.20. 如图,抛物线y=ax ax 22(a<0)位于x 轴上方的图象记为F 1,它与x 轴交于P 1,O 两点,图象F 2与F 1关于原点O 对称,F 2与x 轴的另一个交点为P 2,将F 1与F 2同时沿x 轴向右平移P 1P 2的长度即可得F 5与F 6;……;按这样的方式一直平移下去即可得到一系列图象F 1,F 2,…,F n ,我们把这组图象称为“波浪抛物线”.(1)当a=-1时, ①求图象F 1的顶点坐标.②点H (2014,-3)________(填“在”或“不在”)该“波浪抛物线”上;若图象F n 的顶点T n 的横坐标为201,则图象F n 对应的解析式为__________,其自变量x 的取值范围为_________.(2)设图象F m ,F m+1的顶点分别为T m ,T m+1(m 为正整数),x 轴上一点Q 的坐标为(12,0).试探究:当a 为何值时,以O ,T m ,T m+1,Q 四点为顶点的四边形为矩形?并直接写出此时m 的值.21. 设二次函数)(2b a bx ax y +-+=(a ,b 是常数,a≠0).(1)判断该二次函数图象与x 轴的交点的个数,说明理由.(2)若该二次函数图象经过A (-1,4),B (0,-1),C (1,1)三个点中的其中两个点,求该二次函数的表达式.(3)若a+b<0,点P (2,m )(m>0)在该二次函数图象上,求证:a>0.22. 如图所示,已知二次函数c bx x y ++-=2的图像经过点C (0,3),与x 轴分别交于点A.点B (3,0).点D (n, y 1).E (n+t ,y 2).F (n+4,y 3)都在这个二次函数的图像上,其中0<t<4,连接DE.DF.EF ,记ΔDEF 的面积为S.(1)求二次函数c bx x y ++-=2的表达式; (2)若n=0,求S 的最大值,并求此时t 的值;(3)若t=2,当n 取不同数值时,S 的值是否变化?如不变,求该定值;如变化,试用含n 的代数式表示S.23.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点).C.H.N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.。
2023年中考苏科版数学一轮复习专题练习-代数式和幂的运算
2023年中考数学一轮复习专题练习七(上)第三章 代数式 七(下)第八章幂的运算一、选择题1.下列表述中,不能表示代数式“4a”意义的是( )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘 2.对于非零实数m ,下列式子运算正确的是( )A .923)(m m = B .623m m m =⋅ C .532m m m =+ D .426m m m =÷3.下列计算正确的是 ( )A .623a a a =⋅B .4442b b b =⋅C .1055x x x =+ D .87y y y =⋅4.当a =-1时,代数式(a +1)2+a (a -2)的值等于 ( ) A .-4 B .4 C .-3 D .35.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.某企业今年3月份的产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元 7.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( )A .669B .670C .671D .6728.m 的值是( )A .38B .52C .66D .749.若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .6 10.若2a m b 2m+3n与a 2n -3b 8的和仍是一个单项式,则m 与n 的值分别是( )A .1,2B .2,1C .1,1D .1,3 11.如果x 2+x -1=0,那么代数式x 3+2x 2-7的值为 ( )A .6B .8C .-6D .-8 二、填空题0 284 2 4 622 46 8 4412.单项式-72x 3y 2的次数是______. 13.若3223mnx y x y -与 是同类项,则m +n =____________. 14.已知2a -3b 2=5,则10-2a +3b 2的值是_____15.若代数式2x 2+3x +5的值是7,则代数式6x 2+9x -5的值是_____ 16.按照以下运算程序操作:若输入-2,输出_____.17.如图,是一个数表,现用一个矩形在数表中任意框出4个数dc ba ,则: (1)a.c 的关系是:_______.(2)当a +b +c +d =32时,a =______.18.对于两个非0实数x, y ,定义一种新的运算:ybx a y x +=*.若2)1(1=-*,则2)2(*-的值是______. 19.若61=-a a ,则221aa +的值为________. 20.若(x ﹣1)0=1,则x 需要满足的条件 .21.如果43(a )÷25(a )=64,且a<0,那么a= .22.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.23.我国古代数学家杨辉发现了如图所示的三角形数阵,我们称之为“杨辉三角”. 从图中取一列数:1,3,6,10,…,记10,6,3,14321====a a a a ,…,那么10210114+-+a a a 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425262728…的值是________.三、解答题24.用简便方法计算下面各题:(1)4()52012×(一1.25)2013; (2)(318)12×(825)11×(一2)325.解方程:(1)15822=•x ; (2)5)7(7-=x .26.先化简,再求值:(一2a )3·(一b 3)2+(一32ab 2)3,其中a =一12,b =2.27.(1)已知235,310mn ==,求29m n -.(2)的值。
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题(解析版)
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。
2023年中考数学第一轮复习应用题专项训练
2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。
中考数学第一轮复习基础知识训练(一)(附答案)
中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。
2024年中考数学一轮复习练习题:整式的加减(含答案)
2024年中考数学一轮复习练习题:整式的加减一、单选题1.下列各式计算正确的是( )A .2x•3x 2=6x 2B .(﹣3a 2b )2=6a 4b 2C .﹣a 2+2a 2=a 2D .(a+b )(a ﹣2b )=a 2﹣2b 22.已知A=5a ﹣3b ,B=﹣6a+4b ,则A ﹣B 等于( )A .﹣a+bB .11a+bC .11a ﹣7bD .﹣a ﹣7b3.代数式的4x ﹣4﹣(4x ﹣5)+2y ﹣1+3(y ﹣2)值( )A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x ,y 都有关4.单项式 ―m 2n 3 的系数、次数分别是( )A .―1,3B .―13,3C .13,3D .―13, 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .13x ﹣1B .6x 2+13x ﹣1C .5x+1D .﹣5x ﹣16.如果单项式x m+2n y 与x 4y 4m ﹣2n 的和是单项式,那么m ,n 的值为( )A .m=﹣1,n=1.5B .m=1,n=1.5C .m=2,n=1D .m=﹣2,n=﹣17.已知a ,b ,c 在数轴上对应的点如图所示,则代数式|b ―a|―|c +b|+|a ―c|化简后的结果为( )A .2b ―2cB .2b +2aC .2bD .―2a 8.不改变多项式3b 3―2ab 2+4a 2b ―a 3的值,把后三项放在前面是“-”号的括号中,以下正确的是( )A .3b 3―(2ab 2+4a 2b ―a 3)B .3b 3―(2ab 2+4a 2b +a 3)C .3b 3―(―2ab 2+4a 2b ―a 3)D .3b 3―(2ab 2―4a 2b +a 3)二、填空题9.计算: 3x ―2x = .10.代数式2x ﹣4y ﹣3中,y 的系数是 ,常数项是 .11.单项式﹣ 12 y 2﹣bx 2a 与 14 x 3﹣ay b 是同类项,那么3b ﹣3a 的值是 .12.长方形的长为 2b ―a ,宽比长少 b ,则这个长方形的周长是 .13.一个多项式 A 与 x 2―2x +1 的和是 3x ―6 ,则这个多项式 A 为 .三、解答题14.化简:(1)5m +2n ―m ―3n(2)3a 2―1―2a ―5+3a ―a 2(3)14ab 2―5a 2b ―34a 2b +0.75ab 2(4)4(m +n)―5(m +n)+2(m +n)15.已知A=x 2+ax ,B=2bx 2﹣4x ﹣1,且多项式2A+B 的值与字母x 的取值无关,求a ,b 的值. 16.先化简,再求值:2(m 2―2mn)+[(m 2+4mn)―(2m 2+n 2)],其中m ,n 的取值如图所示.17.已知A =2x 2+3mx ―2x ―1,B =―x 2+mx ―1.(1)求3A +6B 的值;(2)若3A +6B 的值与x 无关,求m 的值.18.红枣丰收了,为了运输方便,小华的爸爸打算把一个长为(a+2b) cm 、宽为(a+b)cm 的长方形纸板制成一个有底无盖的盒子,在长方形的四个角各截去一个边长为12 bcm 的小正方形,然后沿虚线折起即可,如图所示.(1)现将盒子的外表面贴上彩纸,用代数式表示至少需要多大面积的彩纸;(2)当a=8,b=6时,求所需彩纸的面积.答案1.C2.C3.C4.B5.D6.B7.D8.D9.x10.﹣4;﹣311.012.6b ―4a13.―x 2+5x ―714.(1)解: 5m +2n ―m ―3n=(5―1)m +(2―3)n=4m ―n ;(2)解: 3a 2―1―2a ―5+3a ―a 2=(3―1)a 2+(3―2)a ―(1+5)=2a 2+a ―6 ;(3)解: 14ab 2―5a 2b ―34a 2b +0.75ab 2=(14ab 2+34ab 2)―(5a 2b +34a 2b)=ab 2―234a 2b ;(4)解: 4(m +n)―5(m +n)+2(m +n)=(4+2―5)(m +n)=m +n .15.解:∵A=x 2+ax ,B=2bx 2﹣4x ﹣1,∴2A+B=2(x 2+ax )+(2bx 2﹣4x ﹣1)=2x 2+2ax+2bx 2﹣4x ﹣1=(2+2b )x 2+(2a ﹣4)x ﹣1,由结果与x取值无关,得到2+2b=0,2a﹣4=0,解得:a=2,b=﹣116.解:原式=2m2―4mn+m2+4mn―2m2―n2=m2―n2,由数轴标注的m,n的值可知m=―2,n=3,当m=―2,n=3时,原式=(―2)2―32=4―9=―5.17.(1)解:3A+6B=3(2x2+3mx―2x―1)+6(―x2+mx―1)=6x2+9mx―6x―3―6x2+6mx―6=15mx―6x―9=(15m―6)x―9(2)解:3A+6B=15mx―6x―9=(15m―6)x―9,因为该多项式的值与x无关,所以15m―6=0,则m≠2.518.略。
中考数学一轮复习《圆》专项练习题-附带答案
中考数学一轮复习《圆》专项练习题-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知⊙O的半径为3,点P到圆心O的距离为d,若点P在圆外,则d的取值范围为()A.d≤3B.d=3C.d>3D.0≤d<32.如图,在⊙O中,半径OA垂直弦BC于点D.若∠ACB=33°,则∠OBC的大小为()A.24°B.33°C.34°D.66°3.如图,AB是⊙O的直径,△ACD内接于⊙O,OC⊥AD延长AB,CD在⊙O外相交于点E,若∠ACD=100°,则∠E的度数是()A.25°B.30°C.35°D.40°4.如图,四边形ABCD是⊙O的内接四边形,E是BC延长线上一点.若∠BAD=114°,则∠DCE的度数是()A.124°B.114°C.94°D.66°5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4则BC⌢的长为()A.103πB.109πC.59πD.518π6.如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为()A.32B.32√2C.3 D.3√27.如图,PA,PB分别与⊙O相切于A,B两点,∠P=72°,点D是劣弧AB̂上的一点,则∠ADB=()A.108°B.72°C.54°D.126°8.如图一个扇形纸片的圆心角为90°,半径为6,将这张扇形纸片折叠,使点A和点O恰好重合,折痕为CD,则阴影部分的面积为()A.9√3−3πB.6π−9√3C.3π−9√3D.9√3−6π二、填空题9.如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为.10.如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.11.如图,PA、PB是⊙O的切线,切点分别为A、B,若∠P=40°,则弦AB所对的圆周角的度数为度.12.如图,PA,PB分别与半径为3的⊙O相切于点A,B,直线CD分别交PA,PB于点C,D,并切⊙O于点E,当PO=6时,△PCD的周长为.13.如图,在Rt△ABC中AB=AC,以AB为直径的⊙O交BC于点D,若BC=4√2cm,则图中阴影部分的面积为cm2.三、解答题14.如图,四边形内接于,为的直径.(1)求的度数;(2)若,AD=1,求的长度.15.如图,中,以为直径作,点为上一点,且,连接并延长交的延长线于点(1)判断直线与的位置关系,并说明理由;(2)若,求的值.16.如图,AB是⊙O的直径,BC是⊙O的弦,AE⊥OC于点D,交BC于F,与过点B的直线交于点E,且BE=EF.(1)求证:BE是⊙O的切线;(2)若⊙O的半径为10,OD=6求BE的长.17.如图,⊙O是△ABC的外接圆,直径BD与AC交于点E,过点D作⊙O的切线,与BC的延长线交于点F.(1)求证:∠F=∠BAC;(2)若DF∥AC,若AB=8,CF=2求AC的长.18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】A9.【答案】45°10.【答案】80°11.【答案】70°或110°12.【答案】6√313.【答案】(π+2)14.【答案】(1)解:为的直径;(2)解:.,.15.【答案】(1)解:是的切线证明:连接在和中∵OD是圆的半径是的切线(2)解:.设在中.设的半径为则在中.在中16.【答案】(1)证明:∵BE=EF∴∠EBF=∠EFB∵∠CFD=∠EFB∴∠EBF=∠CFD∵OC=OB∴∠OCB=∠OBC∵AE⊥OC∴∠OCB+∠CFD=90°∴∠OBC+∠EBF=90°=∠ABE∴AB⊥BE∵AB是⊙O的直径∴BE是⊙O的切线;(2)解:∵⊙O的半径为10∴OA=OB=OC=10∴AB=20∵AE⊥OC∴∠ADO=90°∴在Rt△ADO中AD=√AO2−DO2∵OD=6∴AD=√AO2−DO2=√102−62=8∵结合(1),可知∠ABE=∠ADO=90°,∠BAE=∠DAO ∴△ADO∽△ABE∴BEAB =DOAD,即BE=DOAD×AB∵AD=8,AB=20,DO=6∴BE=DOAD ×AB=68×20=15即所求的值为15.17.【答案】(1)证明:∵DF是⊙O的切线∴OD⊥DF∴∠ODF=90°∴∠F+∠DBC=90°∵BD是⊙O的直径∴∠BAD=90°∴∠BAC+∠DAC=90°∵∠DBC=∠DAC∴∠F=∠BAC;(2)解:连接CD∵DF∥AC,∠ODF=90°∴∠BEC=∠ODF=90°∴直径BD⊥AC于E∴AE=CE=12AC∴AB=BC=8∵BD是⊙O的直径∴∠BCD=90°∴∠DBC+∠BDC=90°∵∠DBC+∠F=90°∴∠BDC=∠F∵∠BCD=∠FCD=90°∴△BCD∽△DCF∴BCDC =DCCF,即8DC=DC2∴DC=4∴BD=√BC2+CD2=√82+42=4√5∵在△BCD中SΔBCD=12BC⋅CD=12BD⋅CE∴12×8×4=12×4√5⋅CE∴CE=85√5∴AC=2CE=165√5.18.【答案】(1)解:AC与⊙O的相切,理由如下又OD⊥BC是半径是的切线AC与⊙O的相切;(2)解:过A作于M,如图设在中解得第 11 页 共 11 页在中扇形 阴影部分扇形。
中考数学一轮复习《四边形》综合复习练习题(含答案)
中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。
2023年中考苏科版数学一轮复习专题练习-二次函数
2023年中考数学一轮复习专题练习二次函数一、选择题1.若二次函数y=x2﹣mx的对称轴是x=﹣3,则关于x的方程x2+mx=7的解是()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7 2.对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是()A.图象与x轴的交点为(1,0),(﹣3,0) B.图象的对称轴是直线x=﹣2C.当x<1时,y随x的增大而增大D.此函数有最小值为83.已知抛物线y=x2﹣4x+3,当0≤x≤m时,y的最小值为﹣1,最大值为3,则m的取值范围为()A.m≥2B.0≤m≤2C.2≤m≤4D.m≤44.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表给出了以下结论:x…﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…12 5 0 ﹣3 ﹣4 ﹣3 0 5 12 …①二次函数y=ax2+bx+c有最小值,最小值为﹣3;②当﹣<x<2时,y<0;③二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴的两侧;④当x<1时,y随x的增大而减小.则其中正确结论有()A.4个B.3个C.2个D.1个5.如图,抛物线S1与x轴交于点A(﹣3,0),B(1,0),将它向右平移2个单位得新抛物线S2,点M,N是抛物线S2上两点,且MN∥x轴,交抛物线S1于点C,已知MN=3MC,则点C的横坐标为()A.B.C.D.16.如图二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法中,错误的是()A.对称轴是直线x=B.当﹣1<x<2时,y<0C.a+c=b D.a+b>﹣c第6题第7题7.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断:①abc<0,②a+b+c >0,③2a﹣b<0,④5a﹣c=0,⑤当x <或x>6时,y1>y2.其中正确的个数有( ) A.2个B.3 个C.4 个D.5个8.从地面竖直向上抛出一小球,小球的高度y(米)与小球运动的时间x(秒)之间的关系式为y=ax2+bx+c(a≠0).若小球在第7秒与第14秒时的高度相同,则在下列时间中小球所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒二、填空题9.如果开口向下的抛物线y=ax2+5x+4﹣a2(a≠0)过原点,那么a 的值是.10.已知在同一坐标系中,抛物线y1=ax2的开口向上,且它的开口比抛物线y2=3x2+2的开口小,请你写出一个满足条件的a值:____________________.11.若抛物线C1:y=x2+mx+2与抛物线C2:y=x2﹣3x+n关于y轴对称,则m+n=.12.二次函数的部分图象如图所示,则使y>0的x的取值范围是.13.已知抛物线y=(x+1)2+k与x轴交于A、B两点,AB=4,点C是抛物线上一点,如果线段AC被y轴平分,那么点C的坐标为________________________.14.抛物线y=ax2(a≠0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y=x2沿直线y=x平向上平移,平移距离为时,那么它的“同簇抛物线”的表达式是____________________.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M ﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是.第12题第14题第15题三、解答题16.已知二次函数的解析式是y=x2﹣2x﹣3.(1)与x轴的交点坐标是,顶点坐标是;(2)画出函数图像,并结合图象回答:当﹣2<x<2时,函数值y的取值范围是.17.如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴,y轴的交点分别为(1,0)和(0,﹣3).(1)求此二次函数的表达式;(2)结合函数图象,直接写出当y>﹣3时,x的取值范围.18.在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2﹣k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值﹣,求k的值.19.如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A、B,与y轴交于点C(3,0).(1)求m的值和直线BC对应的函数表达式;(2)P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.20.二次函数y=﹣x2+(a﹣1)x+a(a为常数)图象的顶点在y轴右侧.(1)写出该二次函数图象的顶点横坐标(用含a的代数式表示);(2)该二次函数表达式可变形为y=﹣(x﹣p)(x﹣a)的形式,求p的值;(3)若点A(m,n)在该二次函数图象上,且n>0,过点(m+3,0)作y轴的平行线,与二次函数图象的交点在x轴下方,求a的范围.21.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.。
北京市2023年九年级中考数学一轮复习——一次函数 练习题(解析版)
北京市2023年九年级中考数学一轮复习——一次函数练习题一、单选题1.(2022·北京·中考真题)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③2.(2020·北京·中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系3.(2022·北京四中模拟预测)对于温度的计量,世界上大部分国家使用摄氏温标(℃) ,少数国家使用华氏温标(°F),两种温标间有如下对应关系:则摄氏温标(℃) 与华氏温标(°F)满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系4.(2022·北京密云·二模)一辆经营长途运输的货车在高速公路某加油站加满油后匀速行驶,下表记录了该货车加满油之后油箱内剩余油量y (升)与行驶时间x (小时)之间的相关对应数据,则y 与x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系5.(2022·北京西城·二模)一条观光船沿直线向码头前进,下表记录了4个时间点观光船与码头的距离,其中t 表示时间,y 表示观光船与码头的距离.如果观光船保持这样的行进状态继续前进,那么从开始计时到观光船与码头的距离为150m 时,所用时间为( ) A .25minB .21minC .13minD .12min6.(2022·北京丰台·二模)如图,某容器的底面水平放置,匀速地向此容器内注水,在注满水的过程中,水面的高度h 与时间t 的函数关系的图象大致是( )A .B .C .D .7.(2022·北京东城·一模)将一圆柱形小水杯固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度(cm)h 与注水时间(s)t 的函数图象大致是( )A.B.C.D.8.(2022·北京师大附中模拟预测)若A、B两地的距离是120km,甲和乙沿相同的路线由A地到B地的行驶路程与时间的关系如图所示,根据图象判断以下结论正确的个数有()①甲比乙晚两小时出发②甲的速度是30km/h,乙的速度是15km/h③乙出发4小时后,甲在乙的前面④甲行驶的路程y与时间x的函数关系是y=15xA.1个B.2个C.3个D.4个9.(2022·北京·中国人民大学附属中学分校一模)为了缅怀先烈.继承遗志,某中学初二年级同学于4月初进行“清明雁栖湖,忆先烈功垂不朽”的定向越野活动.每个小组需要在点A出发,跑步到点B打卡(每小组打卡时间为1分钟),然后跑步到C点,……,最后到达终点(假设点A,点B,点C在一条直线上,且在行进过程中,每个小组跑步速度是不变的),“函数组”最先出发.过了一段时间后,“方程组”开始出发,两个小组恰好同时到达点C.若“方程组”出发的时间为x(单位:分钟),在点A与点C之间的行进过程中,“函数组”和“方程组”之间的距离为y(单位:米),它们的函数图像如图所示,则下面判断不正确的有()个.(1)当2x 时,“函数组”恰好到达B点;(2)“函数组”的速度为150米/分钟,“方程组”的速度为200米/分钟;(3)两个小组从A点出发的时间间隔为1分钟;(4)图中M点表示“方程组”在B点打卡结束,开始向C点出发;(5)出发点A到打卡点B的距离是600米,打卡点B到点C的距离是800米;A.1 B.2 C.3 D.410.(2022·北京昌平·模拟预测)如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短()A.(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B.(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C.(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D.以上都不对11.(2022·北京·中国人民大学附属中学朝阳学校一模)某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如下表:例如,购买A 类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40250(0.910)940+⨯⨯⨯=元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为( )A .购买A 类会员卡 B .购买B 类会员卡 C .购买C 类会员卡D .不购买会员卡12.(2022·北京房山·二模)如图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(),x h 两车之间的距离为()y km ,图中的折线表示y 与x 之间的函数关系,下列说法中错误的是( )A .甲乙两地相距1000kmB .点B 表示此时两车相遇C .慢车的速度为100/km hD .折线B C D --表示慢车先加速后减速最后到达甲地二、填空题13.(2022·北京昌平·二模)如图,在平面直角坐标系xOy 中,点A (1,0),B (0,2).将线段AB 绕点A 顺时针旋转90°得到线段AC ,则点C 的坐标为_____.14.(2022·北京房山·二模)某公司生产一种营养品,每日购进所需食材500千克,制成A ,B 两种包装的营养品,并恰好全部用完.信息如下表:已知生产的营养品当日全部售出.若A 包装的数量不少于B 包装的数量,则A 为__________包时,每日所获总售价最大,最大总售价为__________元.15.(2022·北京大兴·一模)在平面直角坐标系xOy 中,一次函数()10y kx k =+≠的图象经过点()2,3,则k 的值为______.16.(2022·北京石景山·一模)如图,某建筑公司有A (1,3),B (3,3),C (5,3)三个建筑工地,三个工地的水泥日用量分别为a 吨,b 吨,c 吨.有M (1,5),N (3,1)两个原料库供应水泥.使用一辆载重量大于(a +b +c )吨的运输车可沿图中虚线所示的道路运送水泥.为节约运输成本,公司要进行运输路线规划,使总的“吨千米数”(吨数×运输路程千米数)最小.若公司安排一辆装有(a +c )吨的运输车向A 和C 工地运送当日所需的水泥,且a >c ,为使总的“吨千米数”最小,则应从______原料库(填“M ”或“N ”)装运;若公司计划从N 原料库安排一辆装有(a +b +c )吨的运输车向A ,B ,C 三个工地运送当日所需的水泥,且a :b :c =3:2:1,为使总的“吨千米数”最小,写出向三个工地运送水泥的顺序______(按运送的先后顺序依次排列即可).17.(2022·北京师大附中模拟预测)如图是房山区行政规划图.如果周口店的坐标是(-2,1),阎村的坐标是(0,2),那么燕山的坐标是______________,窦店坐标是____________.18.(2022·北京市第七中学一模)在函数y+(x ﹣4)0中,自变量x 的取值范围是_____. 19.(2022·北京·东直门中学一模)为了做到合理用药,使药物在人体内发挥疗效作用,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图:根据图中提供的信息,下列关于成人患者使用该药物的说法中: ①首次服用该药物1单位约10分钟后,药物发挥疗效作用; ②每间隔4小时服用该药物1单位,可以使药物持续发挥治疗作用; ③每次服用该药物1单位,两次服药间隔小于2.5小时,不会发生药物中毒. 所有正确的说法是_____.20.(2022·北京昌平·模拟预测)函数32y x =+中,自变量x 的取值范围是_____.三、解答题21.(2022·北京·中考真题)在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.22.(2021·北京·中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到. (1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.23.(2020·北京·中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.24.(2022·北京顺义·一模)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象平行于直线12y x =,且经过点(2,2)A .(1)求这个一次函数的表达式;(2)当2x <时,对于x 的每一个值,一次函数(0)y kx b k =+≠的值大于一次函数1(0)y mx m =-≠的值,直接写出m 的取值范围.25.(2022·北京平谷·一模)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x >﹣2时,对于x 的每一个值,函数y =mx (m ≠0)的值小于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.26.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy 中,对于任意两点111(,)P x y 与222(,)P x y 的“非常距离”,给出如下定义:若1212x x y y --,则点P 1与点P 2的“非常距离”为12x x -;若1212x x y y -<-,则点P 1与点P 2的“非常距离”为12y y -.(1)已知点1(,0)2A -,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为4,直接写出点B 的坐标: ; ②求点A 与点B 的“非常距离”的最小值;(2)已知C 是直线122y x =+上的一个动点, ①若点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②若点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.27.(2022·北京西城·一模)在平面直角坐标系xOy 中,直线1:l y kx b =+与坐标轴分别交于(2,0)A ,(0,4)B 两点.将直线1l 在x 轴上方的部分沿x 轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线2:(4)(0)l y m x m =-≠分别交于点C ,D .(1)求k ,b 的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC ,CD ,DA 围成的区域(不含边界)为W . ①当m =1时,区域W 内有______个整点;②若区域W 内恰有3个整点,直接写出m 的取值范围.28.(2022·北京海淀·一模)在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象由函数12y x =的图象平移得到,且经过点()2,0-. (1)求这个一次函数的解析式;(2)当x >m 时,对于x 的每一个值,函数34y x =-的值大于一次函数y kx b =+的值,直接写出m 的取值范围.29.(2022·北京石景山·一模)在平面直角坐标系xOy 中,直线11:2l y x b =+与直线2:2l y x =交于点(),A m n . (1)当2m =时,求n ,b 的值;(2)过动点(),0P t 且垂直于x 轴的直线与1l ,2l 的交点分别是C ,D .当1t ≤时,点C 位于点D 上方,直接写出b 的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy 中,直线l 1:y =ax (a ≠0)过点A (﹣2,1),直线l 2:y =mx +n 过点B (﹣1,3). (1)求直线l 的解析式; (2)用含m 的代数式表示n ;(3)当x <2时,对于x 的每一个值,函数y =ax 的值小于函数y =mx +n 的值,求m 的取值范围.参考答案:1.A【分析】由图象可知:当y 最大时,x 为0,当x 最大时,y 为零,即y 随x 的增大而减小,再结合题意即可判定.【详解】解:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 随行驶时间x 的增大而减小,故①可以利用该图象表示;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 随放水时间x 的增大而减小,故②可以利用该图象表示;③设绳子的长为L ,一边长x ,则另一边长为12L x -,则矩形的面积为:21122y L x x x Lx ⎛⎫=-⋅=-+ ⎪⎝⎭,故③不可以利用该图象表示; 故可以利用该图象表示的有:①②, 故选:A .【点睛】本题考查了函数图象与函数的关系,采用数形结合的思想是解决本题的关键. 2.B【分析】设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案. 【详解】解:设水面高度为,hcm 注水时间为t 分钟, 则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系, 故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键. 3.B【分析】从表格可看出,摄氏温标每增加10°C ,华氏温标增加18°F ,即摄氏温标 (℃) 与华氏温标(°F )成一次函数关系.【详解】解:从表格可看出,摄氏温标每增加10°C ,华氏温标增加18°F ,即摄氏温标 (℃) 与华氏温标(°F )成一次函数关系. 故选:B .【点睛】此题主要考查了一次函数,根据已知得出y 与x 的函数关系式是解题的关键. 4.B【分析】根据题意,设y 与x 的关系式为y =kx +b ,从表格中任选两组值代入求解,求出关系式,再把其他值代入验证正确,即可得出答案.【详解】解:设y 与x 的关系式为y =kx +b ,把x =0,y =100,x =1,y =80代入,得10080b kx b =⎧⎨=+⎩,解得:20100k b =-⎧⎨=⎩, ∴y =-20x +100,把x =2代入,y =-20×2+100=60,把x =2.5代入,y =-20×2.5+100=50,符合题意,∴y 与x 满足的函数关系是一次函数关系,故选:B .【点睛】本题考查函数关系,掌握列表法表示函数关系是解题的关键.5.B【分析】根据记录表由待定系数法就可以求出y 与x 的函数表达式.【详解】解:根据记录表知,每3 min 钟,观光船与码头的距离缩短75m ,∴y 与x 的函数表达式为一次函数关系,设y 与x 的函数表达式为y =kx +b ,由记录表得:6753600b k b =⎧⎨+=⎩, 解得:25675k b =-⎧⎨=⎩. ∴y 与x 的函数表达式为y =-25x +675.当y =150时,150=-25x +675,解得x =21,∴从开始计时到观光船与码头的距离为150m 时,所用时间为21min ,故选:B .【点睛】本题考查了一次函数的应用,在解答时利用待定系数法求出一次函数解析式是关键.6.C【分析】根据图象可知,物体的形状为首先大然后变小.故注水过程的水的高度是先慢后快.【详解】解:相比较而言,注满下面圆柱体,用时较多,高度增加较慢且是匀速增长;注满上面圆柱体,用时较少,高度增加较快,也是匀速增长,所以选项C 的图像符合此图.故选:C .【点睛】本题考查函数的图象,解题的关键是理解题意,灵活运用所学知识解决问题.7.B【分析】根据注水开始一段时间内,当大容器中书面高度小于h 时,小水杯中无水进入,此时小水杯水面的高度h 为0cm ;当大容器中书面高度大于h 时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到h ;然后小水杯水面的高度一直保持在h 不再发生变化,对各选项进行判断即可.【详解】解:由题意知,当大容器中书面高度小于h 时,小水杯水面的高度h 为0cm ;当大容器中书面高度大于h 时,小水杯先匀速进水,此时小水杯水面的高度不断增加,直到h ;然后小水杯水面的高度一直保持在h 不再发生变化;故选:B .【点睛】本题考查了一次函数的应用,函数的图象.解题的关键在于理解题意,抽象出一次函数.8.C【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确.【详解】解:由图可知,甲比乙晚两小时出发,故①正确;甲的速度为:120÷(6-2)=120÷4=30km /h ,乙的速度为:120÷8=15km /h ,故②正确;乙出发4小时后,甲在乙的前面,故③正确;设甲行驶的路程y 与x 的函数关系式为y =kx +b ,206120k b k b +=⎧⎨+=⎩,得3060k b =⎧⎨=-⎩, 即甲行驶的路程y 与x 的函数关系式为y =30x -60,故④错误;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.B【分析】根据函数图像和已知条件逐个进行分析和探讨其是否正确.【详解】(1)由图像可看出,2x =以后的一分钟,两组距离在逐渐减小,说明“函数组”在2x =开始停下来进行一分钟打卡,所以当2x =时,“函数组”恰好到达B 点,故(1)正确,不符合题意;(2)在第2分钟到第3分钟这一分钟内,“函数组”打卡,“方程组”一分钟走了200米,所以“方程组”的速度为200米/分钟,在第3分钟到第4分钟这一分钟内,“方程组”打卡,“函数组”一分钟走了150米,所以“函数组”的速度为150米/分钟,故(2)正确,不符合题意;(3)、由图可看出,“方程组”开始出发时,相隔了300米,所以“函数组”走了300米,“方程组”才出发,所以间隔2分钟,故(3)不正确,符合题意;(4)、M点开始,距离在慢慢减小,说明“方程组”打卡结束,去追“函数组”,所以(4)正确,不符合题意;⨯=(米),“方程组”(5)“方程组”从开始出发,经过了3分钟到达了B点,所以AB距离为:3200600打开结束从M点开始到达C,也用了3分钟,所以BC距离为600米,故(5)不正确,符合题意.故只有(3)(5)不正确,所以有两个.故选B.【点睛】本题考查了一次函数的图像和意义,行程问题,结合题意理解函数图像的意义,以及理解图像上转折点的实际意义是解题的关键.10.A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A.【详解】解:要想路线最短,就只应向右及向下走,故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.11.C【分析】设一年内在该便利店买咖啡的次数为x次,消费的钱数为y元,根据题意得:列出3类会员卡用含x的关系表示消费的费用y,再确定y的范围,进行比较即可解答.⨯⨯【详解】设一年内在该便利店买咖啡的次数为x次,消费的钱数为y元,根据题意得:y A=40+0.9210⨯⨯x=80+16x,y C=130+15x⨯=130+15x,x=40+18x,y B=80+0.8210当75≤x≤85时,1390≤y A≤1570;1280≤y B≤1440;1255≤y C≤1405;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.【点睛】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.12.D【分析】根据题意,AB段表示两车逐渐相遇,到点B处两车相遇,BC段表示两车相遇后各自继续向前运动,点C处快车到达乙处,CD段表示慢车继续向前行驶,点D处慢车到达甲处.【详解】由图形得,甲乙两地相距1000km,A正确慢车共行驶了10h,速度为100km/h,C正确根据分析,点B 处表示两车相遇,B 正确折线B-C-D 表示的是两车运动的状态,而非速度变化,D 错误故选:D【点睛】本题考查一次函数图像与行程问题,解题关键是将函数图像中每一条线段与实际情况的一一匹配上.13.(3,1)【分析】过点C 作CH ⊥x 轴于点H .证明△AOB ≌△CHA (AAS ),推出OA =CH =1,OB =AH =2,可得结论.【详解】解:过点C 作CH ⊥x 轴于点H .∵A (1,0),B (0,2),∴OA =1,OB =2,∵∠AOB =∠AHC =∠BAC =90°,∴∠BAO +∠CAH =90°,∠CAH +∠ACH =90°,∴∠BAO =∠ACH ,在△AOB 和∠CHA 中,AOB CHA BAO ACH AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△CHA (AAS ),∴OA =CH =1,OB =AH =2,∴OH =OA +AH =1+2=3,∴C (3,1),故答案为:(3,1).【点睛】本题考查坐标与图形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.14. 400 22800【分析】设A 包装的数量为x 包,B 包装数量为y 包,总售价为W 元,根据题意列出y 与x 的关系和W与x 的函数关系式,利用一次函数的性质求解即可.【详解】解:设A 包装的数量为x 包,B 包装数量为y 包,总售价为W 元,根据题意,得:0.25500x y x y +=⎧⎨≥⎩, ∴y =-4x +2000,由x ≥-4x +2000得:x ≥400,∴W =45x +12y =45x +12(-4x +2000)=-3x +24000,∵-3<0,∴W 随x 的增大而减小,∴当x =400时,W 最大,最大为-3×400+24000=22800(元),故答案为:400,22800.【点睛】本题考查一次函数的实际应用、一元一次不等式的实际应用,解答的关键是根据题意,正确列出一次函数关系式,会利用一次函数性质解决问题.15.1【分析】把()2,3代入函数解析式()10y kx k =+≠,得到关于k 的一元一次方程,求解即可.【详解】解:把()2,3代入函数解析式()10y kx k =+≠,可得321k =+,解得1k =,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象上的点都会满足其解析式.16. M N -B -A -C【分析】根据题意列式,利用整式的加减运算,分类求解即可.【详解】解:∵MA +AC <NA +AC ,∴若公司安排一辆装有(a +c )吨的运输车向A 和C 工地运送当日所需的水泥,且a >c ,为使总的“吨千米数”最小,则应从M 料库装运;∵N (3,1),A (1,3),B (3,3),C (5,3),∴NA =NC NB =AB =BC =2,∵a :b :c =3:2:1,∴a =3c ,b =2c ,当按N -A -B -C 运输时:×6c +2×3c +2c c ≈24.97c ;按N-B-A-C运输时:2×6c +2×4c+(2+2)c=24c;按N-B-C-A运输时:2×6c +2×4c+(2+2) ×3c=32c;∵24c<24.97c<32c,∴按N-B-A-C运输时,总的“吨千米数”最小,故答案为:M;N-B-A-C.【点睛】本题考查了坐标与图形,整式加减运算的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(-2,3)(0,0)【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【详解】解:如图所示:燕山的坐标是(-2,3),窦店坐标是(0,0).故答案为:(-2,3),(0,0).【点睛】本题主要考查了坐标确定位置,正确得出原点位置是解题关键.18.x>3且x≠4.【分析】结合二次根式的被开方数为非负数,分式的分母不能为零,零的零次幂没有意义等知识点求解自变量取值范围.(x﹣4)0有意义,【详解】解:要使函数y则x﹣3>0且x﹣4≠0,解得x>3且x≠4,故答案为:x>3且x≠4.【点睛】本题主要考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.19.①②【分析】根据该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间时,药物在人体内发挥疗效作用,通过观察图象的变化情况即可判断① ②正确,③ 错误.【详解】解:∵该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间时,药物在人体内发挥疗效作用,∴观察图象的变化情况可知:① 首次服用该药物1单位约10分钟后,达到最低有效浓度,药物开始发挥疗效作用,所以① 正确;② 每间隔4小时服用该药物1单位,该药物的血药浓度应介于最低有效浓度与最低中毒浓度之间,可以使药物持续发挥治疗作用,所以② 正确;③ 每次服用该药物1单位,两次服药间隔小于2.5小时,会发生药物中毒,所以③ 错误.故答案为:① ②.【点睛】本题考查了函数图象的应用,解决本题的关键是利用数形结合思想.20.2x ≠【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【详解】解:根据题意得x +2≠0,解得x ≠-2,故答案为x ≠-221.(1)112y x =+,()0,1A (2)1n ≥【分析】(1)利用待定系数法即可求得函数解析式,当0x =时,求出y 即可求解.(2)根据题意112x n x +>+结合0x >解出不等式即可求解. (1)解:将(4,3),(2,0)-代入函数解析式得, 3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩, ∴函数的解析式为:112y x =+, 当0x =时,得1y =,∴点A 的坐标为(0,1).(2)由题意得,112x n x +>+,即22x n >-, 又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关键.22.(1)112y x =-;(2)112m ≤≤ 【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:1m =,然后结合函数图象可进行求解.【详解】解:(1)由一次函数()0y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到可得:一次函数的解析式为112y x =-; (2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:()12212m -=⨯--,解得:1m =, 函数图象如图所示:∴当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于一次函数y kx b =+的值时,根据一次函数的k 表示直线的倾斜程度可得当12m =时,符合题意,当12m <时,则函数()0y mx m =≠与一次函数y kx b =+的交点在第一象限,此时就不符合题意, 综上所述:112m ≤≤. 【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键. 23.(1)1y x =+;(2)2m ≥【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到,∴1k =,将点(1,2)代入y x b =+可得1b =,∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∴当12x m >>,时,(0)y mx m =≠都大于1y x =+,又∵1x >,∴m 可取值2,即2m =,∴m 的取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 24.(1)112y x =+(2)1322m ≤≤ 【分析】(1)根据一次函数图象平移时k 不变可知12k =,再把点A (2,2)代入求出b 的值,进而可得出结论. (2)由函数解析式1(0)y mx m =-≠可知其经过点(0,-1),由题意可得临界值为当2x =,两条直线都过点A (2,2),将点A (2,2)代入到一次函数1(0)y mx m =-≠,可求出m 的值,结合函数图象的性质即可得出m 的取值范围.(1)解:∵一次函数y kx b =+(0)k ≠ 的图象与函数12y x =的图象平行, ∴12k =, ∵一次函数12y x b =+的图象过点A (2,2), ∴1222b =⨯+, ∴1b =,∴这个一次函数的表达式为112y x =+; (2)对于一次函数1(0)y mx m =-≠,当0x =时,有1y =-,可知其经过点(0,-1).当2x <时,对于x 的每一个值,一次函数(0)y kx b k =+≠的值大于一次函数1(0)y mx m =-≠的值,即一次函数(0)y kx b k =+≠图象在函数1(0)y mx m =-≠的图像上方,由下图可知:临界值为当2x =时,两条直线都过点A (2,2),将点A (2,2)代入到函数1y mx =-中,可得 221m =-,解得32m =,。
2023年河北省中考数学一轮复习—一元一次方程练习题附答案
2023年河北省中考数学一轮复习—一元一次方程练习题附答案一、单选题1.(2022·河北·中考真题)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出.然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置.如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为120斤,设每块条形石的重量是x 斤,则正确的是()A .依题意3120120x ⨯=-B .依题意()203120201120x x +⨯=++C .该象的重量是5040斤D .每块条形石的重量是260斤2.(2022·河北廊坊·一模)已知23a b =,且0a ≠,则ab=()A .32B .23C .32-D .23-3.(2022·河北保定·二模)解方程221123x x --=-,嘉琪写出了以下过程:①去分母,得3(2)62(21)x x -=--;②去括号,得36642x x -=--;③移项、合并同类项,得710x =;④系数化为1,得107x =,开始出错的一步是()A .①B .②C .③D .④4.(2022·河北保定·一模)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A .5(12)48x x +-=B .5(12)48x x +-=C .12(5)48x x +-=D .5(12)48x x +-=5.(2022·河北秦皇岛·一模)一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是()A .(1+50%)x ×80%=x -28B .(1+50%)x ×80%=x +28C .(1+50%x )×80%=x -28D .(1+50%x )×80%=x +286.(2022·河北唐山·二模)长江比黄河长836km ,黄河长度的6倍比长江长度的5倍多1284km ,设长江长度为km x ,则下列方程中正确的是()A .56(836)1284x x --=B .65(836)1284x x -+=C .6(836)51284x x +-=D .6(836)51284x x --=7.(2021·河北保定·一模)我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”下面四个同学的思考正确的是()小聪:设共有x 人,根据题意得:9232x x --=;小明:设共有x 人,根据题意得:9+232x x -=小玲:设共有车y 辆,根据题意得:3(y ﹣2)=2y +9小丽:设共有车y 辆,根据题意得:3(y +2)=2y +9A .小聪、小丽B .小聪、小明C .小明、小玲D .小明、小丽8.(2021·河北唐山·三模)已知21m ⨯=,则m 表示数()A .12B .12-C .2D .-29.(2021·河北秦皇岛·一模)下列变形中,一定正确的是()A .若a b =,那么a c b c +=-B .若35x -=,则35x =-C .若a b =,那么a bc c=D .若113x -=,则3x =-二、填空题10.(2022·河北唐山·一模)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3),以此类推.(2)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖______块.11.(2022·河北沧州·一模)已知关于x 的方程21132--=-x x a的解为10x =-,则a 的值为______;嘉琪在解该方程去分母时等式右边的-1忘记乘6,则嘉琪解得方程的解为x =______.12.(2021·河北唐山·一模)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.则前4个台阶上数的和是________;第5个台阶上的数x =_________;从下到上前35个台阶上数的和=_____________.三、解答题13.(2022·河北保定·二模)已知两个整式2A x x =+,B =■x +1,其中系数■被污染.(1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?14.(2022·河北唐山·一模)嘉淇准备完成题目:计算:22713骣÷ç´--÷ç÷ç桫()233¸+-.发现有一个数“”印刷不清楚,(1)他把“”猜成18,请你计算:()2227118333骣ç´--¸+-çç桫;(2)他妈说:“你猜错了,我看到该题标准答案的结果是32-.”通过计算说明原题中“”是几?15.(2022·河北邯郸·三模)老师写出一个整式(ax 2+bx ﹣4)﹣(3x 2+2x )(其中a 、b 为常数,且表示为系数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为2x 2﹣3x ﹣4.则甲同学给出a 、b 的值分别是a =,b =;(2)乙同学给出了a =2,b =﹣1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x 的取值无关,请直接写出丙同学的计算结果.16.(2022·河北保定·一模)已知整式()()2224a ab ab b ---■,其中“■”处的系数被墨水污染了.当2a =-,1b =时,该整式的值为16.(1)则■所表示的数字是多少?(2)小红说该代数式的值是非负数,你认为小红的说法对吗?说明理由.17.(2022·河北承德·一模)某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.(1)当1a b ==时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A 、B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?18.(2022·河北张家口·一模)现有质量分数分别为8%和13%的两种盐水.常温下,从这两种盐水中各取一部分,混合制成另一种盐水.a b,求混合制成盐水的质量分数(用含a,b的式子表示);(1)若从8%和13%的两种盐水中分别取kg,kg(2)要混合制成20kg质量分数为10%的盐水,需要取用8%和13%的两种盐水各多少千克?19.(2021·河北唐山·二模)已知“□-7=△+3”,其中□和△分别表示一个实数.(1)若□表示的数是3,求△表示的数;(2)若□和△表示的数互为相反数,求□和△分别表示的数;(3)当□和△分别取不同的值时,在□与△的+,-,×,÷,四种运算中,哪种运算的结果一定不会发生变化,请说明理由.20.(2021·河北保定·一模)老师在黑板上写下了下图所示的等式,让同学自己出题,并作出答案.7+▢﹣5×〇=38请你解答下列两个同学所提出的问题.(1)甲同学提出的问题:当〇代表﹣2时,求▢所代表的有理数;(2)乙同学提出的问题:若▢和〇所代表的有理数互为相反数,求〇所代表的有理数.21.(2021·河北承德·二模)小明在解一道有理数混合运算时,一个有理数m 被污染了.计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.22.(2021·河北唐山·一模)(1)化简求值:()()2232543m m m m -++--+,其中2m =-.(2)老师出了一道整式计算题化简求值题:()()22592x ax -++,其中的字母a 为常数;小明计算后说这个题的最后结果与x 的取值无关,请你通过计算找到a 的值.23.(2021·河北石家庄·二模)幻方是一个古老的数学问题,我国古代的《洛书》中记载了最早的三阶幻方——九宫图.如图所示的幻方中,每一横行、每一竖列以及两条对角线上的数字之和都相等.(1)请求出中间行三个数字的和;(2)九宫图中m ,n 的值分别是多少?24.(2021·河北保定·一模)已知有理数﹣3和5.(1)计算:35 2--;(2)若添一个有理数n,使得这三个数中最大的数与最小的数的差为11,求n的值.25.(2021·河北唐山·一模)解密数学魔术:魔术师请观众心想一个数a,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小明想的数是1-,那么她告诉魔术师的结果应该是______________;(2)如果小明想了一个数计算后,告诉魔术师结果为42,那么魔术师立刻说出小明想的那个数是___________;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.请通过计算说明这个魔术的奥妙.参考答案:1.B【解析】利用题意找出等量关系,将等量关系中的量用已知数和未知数的代数式替换即可得出结论.解:根据题意可得方程;()203120201120x x +⨯=++则A 错误,B 正确;解上面的方程得:x =240,故D 错误;∴大象的重量是20×240+3×120=5160(斤)故C 错误,故选:B .本题主要考查一元一次方程的应用,根据题意真确列出方程是解题的关键.2.A【解析】根据等式的性质直接解答即可.解:∵2a=3b ,且a≠0,∴32a b =故选:A .此题考查了等式的性质,熟练掌握比例的性质是解题的关键.3.B【解析】解决此题应先去括号,再移项,移项时要注意符号的变化.在第②步,去括号得36642x x -=--,等式右边去括号时忘记变号,故选B .解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;在移项时要注意符号的变化,此题是形式较简单的一元一次方程.4.A【解析】所用的1元纸币为x 张,那么所用的5元纸币为()12x -张,列出方程即可.设所用的1元纸币为x 张,则所用的5元纸币为()12x -张,列方程:()51248x x +-=.故选:A .本题考查一元一次方程的应用,解题的关键是找到题目中的等量关系列方程.5.B【解析】根据售价的两种表示方法解答,关系式为:标价80%⨯=进价28+,把相关数值代入即可.解:标价为:(150%)x +,八折出售的价格为:(150%)80%x +⨯;∴可列方程为:(150%)80%28x x +⨯=+,故选:B .考查列一元一次方程;根据售价的两种不同方式列出等量关系是解决本题的关键.6.D【解析】依题意得黄河长度为(x -836)km ,根据“黄河长度的6倍比长江长度的5倍多1284km ”列出方程即可.解:设长江长度为km x ,则黄河长度为(x -836)km ,依题意得,6(836)51284x x --=故选:D .此题主要考查了列一元一次方程,解答此题的关键是找出等量关系.7.C 【解析】、分别设人和车的数量为,x y ,根据题意列出方程即可.设共有x 人,车的数量相等,根据题意得:9+232x x -=,设共有车y 辆,人的数量相等,根据题意得:3(y ﹣2)=2y +9,结合选项,小明、小玲的为正确解,符合题意.故选C .本题考查了一元一次方程的应用,理解题意设出未知数,列出方程是解题的关键.8.A【解析】根据等式性质2求解即可.由等式性质2可得:12m =,故选:A .本题考查等式的基本性质,熟记基本性质是解题关键.9.D【解析】根据等式的性质,方程的解法,比的性质判断即可.A.仅当c=0时,a c b c +=-,该选项错误;B.若35x -=,则53x =-,该选项错误;C.若a b =,当c≠0时,那么a bc c=,该选项错误;D.若113x -=,则3x =-,该选项正确;故选D.本题考查等式的性质,解方程,比的性质,关键在于熟悉相关基本性质.10.2;1008.【解析】(1)观察图形1可知:中间的每个正方形都对应了两个等腰直角三角形,即可得出答案;(2)观察图形得出规律2n +4;由于等腰直角三角形地砖块数2n +4是偶数,根据现有2021块等腰直角三角形地砖,剩余最少,可得:2n +4=2020,即可求得答案.解:(1)观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块,故答案为:2;(2)观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1,图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2,∴若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为2n +4块,等腰直角三角形地砖块数2n +4是偶数,∴用2021-1=2020块,再由题意得:2n +4=2020,解得:n =1008,∴等腰直角三角形地砖剩余最少为1块,则需要正方形地砖1008块,故答案为:1008.本题以等腰直角三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.11.2-5【解析】把x =-10代入方程21132--=-x x a求出a 的值;再根据嘉琪的方法求出x 的值即可.解:把x =-10代入方程21132--=-x x a ,得:2(10)1101a⨯----=-解得,a =2当a =2时,方程为212132x x --=-根据嘉琪的方法得:2(21)3(2)1x x -=--解得,5x =-故答案为:2;-5本题主要考查了一元一次方程的解和解一元一次方程,熟练掌握解方程的步骤是解答本题的关键.12.3-518【解析】将前4个数字相加可得前4个台阶上数的和;根据“相邻四个台阶上数的和都相等”列出方程求解可得第5个台阶上的数;根据“台阶上的数字是每4个一循环”求解可得从下到上前35个台阶上数的和.解:由题意得前4个台阶上数的和是−5−2+1+9=3;∵任意相邻四个台阶上数的和都相等,∴−2+1+9+x =3,解得:x =−5,则第5个台阶上的数x 是−5;由题意知,台阶上的数字是每4个一循环,∵35÷4=8…3,∴8×3−6=18.∴从下到上前35个台阶上数的和为18.故答案为:3,−5,18.本题主要考查了数字类变化问题,理解题意,根据已知得出数字变化的规律是解题的关键.13.(1)21x x --(2)-1【解析】(1)先将污染的系数代入2,再去括号、合并同类项即可;(2)设所求系数为m ,先计算出A -B ,再将x =1代入,得到关于m 的方程,求解即可.(1)解:由题意知,A -B =()221x x x +-+=221x x x +--=21x x --(2)解:设所求系数为m ,A -B =()21x x mx +-+=21x x mx +--,当x =1时,A -B =2,∴211112m +-⨯-=,解得:m =-1,即原题中■是-1.本题考查了整式的加减,解一元一次方程的解法,属于基础题型.解题关键是掌握解题顺序,注意事项为:括号前为负号时,去括号后括号内的项要变号.14.(1)-42;(2)-12【解析】(1)先算乘方,再算乘除,最后算加减,然后得到结果;(2)设“”是x ,将x 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出x的值.解:(1)()2227118333骣÷ç´--¸+-÷ç÷ç桫952763骣÷ç=´--+÷ç÷ç桫4569=--+42=-.(2)设为x ,依题意得,()22127133233x 骣÷ç´--+-=-÷ç÷ç桫.解之得,12x =-.本题主要考查有理数的加减和解一元一次方程,熟悉相关解法是解题的关键.15.(1)5,﹣1;(2)﹣x 2﹣3x ﹣4;(3)-4【解析】(1)整式进行整理后,利用等式的性质列方程求解即可;(2)把2a =,1b =-代入求解即可;(3)计算的最后结果与x 的取值无关,则含x 项的系数为0,据此求解即可.解:(ax 2+bx ﹣4)﹣(3x 2+2x ),=ax 2+bx ﹣4﹣3x 2﹣2x ,=(a ﹣3)x 2+(b ﹣2)x ﹣4;(1)∵甲计算的结果为2x 2﹣3x ﹣4,∴a ﹣3=2,b ﹣2=﹣3.∴a =5,b =﹣1.故答案为:5,﹣1;(2)乙同学给出了a =2,b =﹣1,∴计算结果为(2﹣3)x 2+(﹣1﹣2)x ﹣4,=﹣x 2﹣3x ﹣4.(3)∵丙同学计算的最后结果与x 的取值无关,∴a ﹣3=0,b ﹣2=0.∴a =3,b =2.当a =3,b =2时,丙同学的计算结果﹣4.本题考查了整式的加减运算,解一元一次方程,熟练掌握运算法则是解题的关键.16.(1)■所表示的数字是2;(2)小红的说法是正确的,理由见解析.【解析】(1)直接把2a =-,1b =代入代数式其值等于16,解关于■方程即可;(2)把(1)求得的■的结果代入代数式整理即可求解.(1)(1)将2a =-,1b =代入()()2224a ab ab b ---■,可得44((2)4)16+-⨯--=■,解得2=■;(2)(2)由(1)求得的结果可得该整式为,()()2222222444(2)0a ab ab b a ab b a b ---=-=-≥+,故小红的说法是正确的.本题考查了代数式的化简求值及解一元一次方程、完全平方公式等,求得■的值是解题的关键.17.(1)A 生产线的加工时间为5小时,B 生产线的加工时间为5小时(2)分配到A 生产线的吨数为2吨,分配到B 生产线的吨数为3吨【解析】(1)把1a b ==分别代入()41a +,()23b +,即可求解;(2)然后设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为()5x -吨,可得A 生产线的加工时间为()41x +小时,B 生产线的加工时间为()132x -小时,根据题意.列出方程,即可求解.(1)解:当1a b ==时,A 生产线的加工时间为:4115⨯+=(小时),B 生产线的加工时间为:2135⨯+=(小时),答:A 生产线的加工时间为5小时,B 生产线的加工时间为5小时;(2)解:设分配到A 生产线的吨数为x 吨,则分配到B 生产线的吨数为()5x -吨,∵A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时,∴A 生产线的加工时间为()41x +小时,B 生产线的加工时间为()()253132x x -+=-小时,根据题意得:41132x x +=-,解得∶2x =,∴53x -=,答:分配到A 生产线的吨数为2吨,分配到B 生产线的吨数为3吨.本题主要考查了求代数式的值,一元一次方程的应用,明确题意,准确得到数量关系是解题的关键.18.(1)8%13%a b a b ++(或813100100a b a b++)(2)需要取用8%和13%的两种盐水分别为12kg ,8kg【解析】(1)理解质量分数的概念,利用8%和13%的两种盐水中分别取kg,kg a b 所含盐的总质量除以取出来的总质量即可;(2)设取用8%的盐水kg x ,根据盐的质量相等建立等式求解即可.(1)解:混合制成盐水的质量分数为8%13%a b a b ++(或813100100a b a b++).(2)解:设取用8%的盐水kg x .根据题意,得8%(20)13%2010%x x ⋅+-⋅=⨯,解得12x =.∴208x -=.答:需要取用8%和13%的两种盐水分别为12kg ,8kg .本题考查了列代数式,一元一次方程的应用,解题的关键是掌握弄清相关数量的基本关系建立等式进行求解.19.(1)-7;(2)□=5,△=-5;(3)减法,见解析【解析】(1)把□表示的数3代入,求△即可;(2)因为□和△表示的数互为相反数,所以-□=△,代入求出□即可;(3)根据□-7=△+3,移项可得□-△=3+7=10,即可得出结论.解:3-7=△+3△=-7(2)当□和△表示的数互为相反数-□=△□-7=-□+3∴□=5△=-5(3)∵□-7=△+3∴□-△=3+7=10∴减法运算的结果一定不会发生变化.本题考查了相反数:只有符号不同的两个数叫做互为相反数.也考查了方程思想.20.(1)甲同学提出的问题中▢所代表的有理数为21;(2)乙同学提出的问题:〇所代表的有理数为316-.【解析】(1)当〇代表﹣2时,求▢所代表的有理数设为x ,根据题意列出方程,求出方程的解即可;(2)当▢和〇所代表的有理数互为相反数时,分别设为a ,-a ,根据题意列出方程,求出方程的解即可.解:(1)当〇代表﹣2时,▢所代表的有理数为x ,根据题意得:7+1038x +=,解得:21x =,则甲提出的问题:▢所代表的有理数为21;(2)当▢和〇所代表的有理数互为相反数时,分别设为a ,-a ,根据题意得:7+538a a +=,解得:316a =,则乙提出的问题:〇所代表的有理数为316-.本题主要考查有理数的混合运算,以及解一元一次方程,熟练掌握一元一次方程的解法是解决本题的关键.21.(1)0;(2)1m =-;(3)1m =.【解析】(1)先算乘除,再计算加法,即可求解;(2)解出一元一次方程,即可求解;(3)根据最小的正整数为1,可列出关于m 的方程,即可求解.解:(1)原式()232103=⨯+⨯-=;(2)∵()33132m ÷+⨯-=,∴解得:1m =-;(3)()33122m m ÷+⨯-=-,∵最小的正整数为1,即21m -=,解得:1m =.本题主要考查了有理数的混合运算,解一元一次方程,熟练掌握有理数的混合运算法则,解一元一次方程的基本步骤是解题的关键.22.(1)2437m m --+,-3;(2)5a =-.【解析】(1)先去括号,再合并同类项,最后把2m =-代入即可求解.(2)先计算()()22592x ax -++()257a x =+-,根据最后结果与x 的取值无关,得到50a +=,即可求出5a =-.解:(1)原式()()2232543m m m m =-++--+2232543m m m m =-++-+-2437m m =--+,当2m =-时,原式=()()24232716673-⨯--⨯-+=-++=-;(2)由题意得()()()2222259259257x ax x ax a x -++=-++=+-,因为小明说这个题的最后结果与x 的取值无关,所以计算结果没有x 项,即50a +=,所以5a =-.本题考查了整式的加减,一元一次方程的解法等知识,熟练掌握整式的加减是解题的关键.23.(1)3;(2)1m =-,3n =【解析】(1)根据题意把表格中间三个数相加即可;(2)根据每一横行、每一竖列以及对角线上的数字之和都为定值,列出方程运算求解即可.解:(1)7193-++=(2)由(1)可知:每一横行、每一竖列以及对角线上的数字之和都等于3,∴593m -++=,13n m ++=,∴1m =-,3n =.本题主要考查了一元一次方程的数字运用,仔细阅读题意列出方程是解题的关键.24.(1)-4;(2)n 的值为8或-6.【解析】(1)根据有理数的运算法则及运算顺序计算即可;(2)分当n 为最大数和n 为最小数两种情况求解即可.(1)358422---==-;(2)当n为最大数时,n-(-3)=11,解得n=8;当n为最小数时,5-n=11,解得n=-6.综上,n的值为8或-6.本题考查了有理数的运算,解决第(2)题时要注意有两种情况,不要漏解.25.(1)1;(2)40;(3)见解析【解析】(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于42,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.解:(1)(﹣1×2﹣4)÷2+4=1;故答案为:1;(2)设这个数为x,(2x﹣4)÷2+4=42;解得:x=40,故答案为:40;(3)设观众想的数为a.则根据题意得:2442 2a a-+=+.因此,魔术师只要将最终结果减去2,就能得到观众想的数了.此题主要考查了数的运算,以及运算步骤的规律性,题目比较新颖.。
2023年中考苏科版数学一轮复习专题练习-一次函数与反比例函数综合应用
2023年中考数学一轮复习专题练习一次函数与反比例函数综合应用 一、选择题 1.下列式子:①y =3x −5;②y =x 1;③y=1-x ;④y 2=x ;⑤y =|x |,其中y 是x 的函数的个数是( )A .2个B .3个C .4个D .5个2.点P (3,﹣1)关于x 轴对称的点的坐标是( )A .(﹣3,1)B .(﹣3,﹣1)C .(1,﹣3)D .(3,1) 3.下列函数是反比例函数的是( )A .2x y =B .x y 1-=C .y =x 2D .y =2x +1 4.在反比例函数x m y 31-=的图像上有A (x 1,y 1),B (x 2,y 2)两点,x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >31B .m <31C .m≥31D .m≤31 5.一次函数y =—2x +3的图象与坐标轴的交点是 ( ) A .(3,1)(1,23) B .(1,3)(23,1) C .(3,0)(0,23) D .(0,3)(23,0) 6.若函数y =(m +2)x |m |﹣3是反比例函数,则m 的值是( ) A .2 B .﹣2C .±2D .不为2的实数 7.已知点A (﹣2,y 1)、B (﹣1,y 2)、C (3,y 3)都在反比例函数y =的图象上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 8. 函数y 1=x 和y 2=x1的图像如图所示,则y 1>y 2的x 取值范围是( ) A .x <-1或x >1 B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <1 9. 如图,函数y =-x 与函数y =-x4的图像相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为C 、D ,则四边形ACBD 的面积为( ) A .2 B .4C .6D .8第8题第9题二、填空题10.已知直线y=k1x(k1≠0)与反比例函数y =(k2≠0)的图象交于M.N两点,若点M 的坐标是(1,2),则点N 的坐标是.11.如图,直线y 1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是.12.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.13.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.14.点A(a,b)是一次函数y=x﹣2与反比例函数y=的交点,则a2b﹣ab2=.三、解答题15.如图,点A和点E(2,1)是反比例函数y=kx(x>0)图象上的两点,点B在反比例函数y=6x(x<0)的图象上,分别过点A,B作y轴的垂线,垂足分别为点C,D,AC=BD,连接AB交y轴于点F.(1)k=;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2;(3)连接CE,DE,当∠CED=90°时,直接写出点A的坐标:.第11题第12题第13题16.如图,反比例函数y =与一次函数y =ax +b 的图象交于点A (﹣2,6)、点B (n ,1).(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.(3)将一次函数y =ax +b 的图象沿y 轴向下平移n 个单位,使平移后的图象与反比例函数y =的图象有且只有一个交点,求n 的值.17.在平面直角坐标系中,O 为坐标原点,直线y =﹣x +3与x 轴交于点B ,与y 轴交于点C ,二次函数y =ax 2+2x +c 的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数y =ax 2+2x +c 的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与△ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.18.如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0k y x x=>的图像经过点B ,求k 的值.19.已知一次函数y=kx+b和反比例函数y=图象相交于A(2,4),B(n,﹣2)两点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式kx+ b﹣<0的解集;(3)点C(a,b),D(a,c)(a>2)分别在一次函数和反比例函数图象上,且满足CD=2,求a的值.20如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)求出反比例函数解析式;(2)求证:△ACB∽△NOM.(3)延长线段AB,交x轴于点D,若点B恰好为AD的中点,求此时点B的坐标.21.如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B 在右侧),与y轴交于点C,点A的横坐标恰好为a.动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.22.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.23.如图,在平面直角坐标系中,□ABCO的顶点A在x轴正半轴上,两条对角线相交于点D,双曲线y=(x>0)经过C,D两点.(1)求□ABCO的面积.(2)若□ABCO是菱形,请直接写出:①tan∠AOC=.②将菱形ABCO沿x轴向左平移,当点A与O点重合时停止,则平移距离t与y轴所扫过菱形的面积S之间的函数关系式:.24.学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.【初步感知】如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).(1)点P1旋转后,得到的点P1′的坐标为;(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.【深入感悟】如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.【灵活运用】如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.。
中考数学第一轮复习四边形专项练习
中考数学第一轮复习四边形专项练习一、单选题1.如图,在▱ABCD中,对角线AC,BD相交于点O,若AC⊥AB,AC=6,BD=8,则AB的长为()A.10B.2√7C.5D.√72.如图,在直角坐标系xOy中,菱形ABCD的周长为16,点M是边AB的中点,⊥BCD=60°,则点M的坐标为()A.(- √3,-2)B.(- √3,-1)C.(-1,- √3)D.(- √3,2)3.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是()A.√5B.√6C.√7D.√84.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若⊥CEF的周长为18,则OF的长为()A.3.2B.3.5C.3.6D.3.75.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8B.5C.6D.7.26.一个多边形的内角和等于1080°,这个多边形的边数为()A.6B.7C.8D.97.如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,P,Q两点同时从点O 出发,以厘米/秒的速度在菱形的对角线及边上运动.P,Q的运动路线:点P为O−A−D−O,点Q为O−C−B−O.设运动的时间为x秒,P,Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,则菱形ABCD的面积为()图1 图2A.2√3cm2B.2cm2C.√3cm2D.√2cm28.如图,▱ABCD中,E,F分别是AB,CD的中点,则图中有()个平行四边形.A.7个B.8个C.9个D.10个9.顺次连接菱形四边中点得到的四边形是()A.矩形B.菱形C.正方形D.等腰梯形10.如图,在矩形ABCD中,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为()A.2B.3C.4D.511.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定12.已知等边ΔABC中,在射线BA上有一点D,连接CD,以CD为边向上作等边ΔCDE,连接BE和AE,下列结论:①AE=BD;②AE与AB的所夹锐角为60°;③当D在线段AB或BA延长线上时,总有∠BED−∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2,正确的结论序号有()A.①②B.①②③C.①②④D.①②③④二、填空题13.若一个正多边形的外角与其相邻的内角之比为1:5,则该正多边形的内角和的度数为.14.一个n边形的内角和是1080°,那么n=.15.如图,在⊥ABC中,AB=AC,延长CB至点E,点D在AC边上,以CE,CD为边作▱DCEF.若⊥F=70°,则⊥A的度数为度.16.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 √5cm,且tan⊥EFC= 34,那么矩形ABCD的周长为cm.17.用正多边形镶嵌,设在一个顶点周围有m个正方形,n个正八边形,则m+n=.18.如图,对折矩形纸片ABCD,使AD与BC重合得到折痕EF,将纸片展平,再一次折叠,使点A落到EF上的点G处,并使折痕经过点B,交EF于点H,交AD于点M.已知AB=2,则线段HG的长度为.三、综合题19.如图,在矩形ABCD中,点O为对角线AC的中点,点E是CD上一点,连接EO并延长交AB于点F,连接AE、CF.(1)求证:ΔCOE≅ΔAOF;(2)当∠DEA=2∠CAB时,试判断四边形AECF的形状,并说明理由.20.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.(1)求证:HE=HG;(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求PQ与PB的数量关系,并说明理由.21.如图,以BC为底的等腰△ABC的三个顶点都在⊙O上,过点A作AD//BC交BO的反向延长线于点D.(1)求证:AD是⊙O的切线;(2)若四边形ADBC是平行四边形,且BC=12,求⊙O的半径.22.已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0),反比例函数图象经过点C,直线AC交双曲线另一支于点E,连接DE,CD,设反比例函数解析式为y1= k x,直线AC解析式为y2=ax+b.(1)求反比例函数解析式;(2)当y1<y2时,求x的取值范围;(3)求⊥CDE的面积.23.已知:如图所示,在△ABC中,D是AC的中点,E是线段BC的延长线上一点,过点A作AF平行BE,交线段ED的延长线于点F,连接AE、CF .(1)求证:AF=CE;(2)若AF=CF=4,∠AFD=30°,求EF的长.24.在Rt△ABC中,∠ACB=90°点D是边AB上的一个动点,连接CD.作AE∥DC,CE∥AB,连接ED.(1)如图1,当CD⊥AB时,求证:AC=ED;(2)如图2,当D是AB的中点时,①四边形ADCE的形状是;请说明理由.②若AB=5,ED=4,则四边形ADCE的面积为.答案解析部分1.【答案】D2.【答案】B3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】A10.【答案】C11.【答案】C12.【答案】C13.【答案】1800°14.【答案】815.【答案】4016.【答案】3617.【答案】318.【答案】2√3319.【答案】(1)证明:∵四边形ABCD是矩形∴AB//CD,∠D=90°∴∠OCE=∠OAF,∠OEC=∠OFA ∵点O是对角线AC的中点∴OC=OA在△COE和△AOF中,{∠OCE=∠OAF ∠OEC=∠OFA OC=OA∴△COE≅△AOF(AAS);(2)解:四边形AECF是菱形,理由如下:由(1)已证:△COE≅△AOF∴OE=OF,CE=AF又∵AB//CD,即CE//AF∴四边形AECF是平行四边形∵AB//CD∴∠DEA=∠BAE=∠CAB+∠CAE∵∠DEA=2∠CAB∴∠CAE=∠CAB,即OA是∠EAF的角平分线∴OA⊥EF(等腰三角形的三线合一)∴平行四边形AECF是菱形∵点E是CD上一点,∠D=90°∴∠DEA≠90°,即∠CEA≠90°∴菱形AECF不是正方形综上,四边形AECF是菱形.20.【答案】(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,∵G为BC的中点,∴BG=CG,∵四边形ABCD是矩形,∴⊥ABG=⊥DCB=90°,∴⊥ABG=⊥MCG=90°,在⊥ABG和⊥MCG中,{∠ABG=∠MCGBG=CG∠AGB=∠MGC,∴⊥ABG⊥⊥MCG(ASA),∴GA=GM,∵F为AE的中点,∴FA=FE,∴FG是⊥AEM的中位线,∴FG⊥EM,∴⊥HGE=⊥MEC,在⊥DCE和⊥MCE中,{CD=CM∠DCE=∠MCECE=CE,∴⊥DEC⊥⊥MEC(SAS),∴⊥DEC=⊥MEC,∵⊥HGE=⊥MEC,∴⊥HEG=⊥HGE,∴HE=HG(2)答:PQ =√2PB理由:过点B作BQ⊥BP交DE于Q,则⊥QBP=90°,∵AP⊥DE,四边形ABCD是矩形,∴⊥APE=⊥ABE=90°,∵⊥APO+⊥AOP+⊥BAP=180°,⊥EOB+⊥ABE+⊥BEP=180°,⊥AOP=⊥EOB,∴⊥BEQ=⊥BAP,∵⊥QBP=⊥ABE=90°,∴⊥EBQ=⊥ABP=90°﹣⊥ABQ,在⊥ABP和⊥EBQ中,{∠BAP=∠BEQAB=EB∠ABP=∠EBQ,∴⊥BEQ⊥⊥BAP(ASA),∴BQ=BP,PA=QE,∴⊥PBQ是等腰直角三角形,∴PQ =√2PB.21.【答案】(1)证明:如图,连接OA,∵ΔABC是以BC为底的等腰三角形;∴AB=AC,∴BC⊥OA,∵AD//BC,∴AD⊥OA,∵OA是⊙O的半径,∴AD是⊙O的切线(2)解:如图,设OA与BC交于E,∵四边形ADBC是平行四边形,∴AC//OD,∴∠C=∠CBO,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠CBO,∵OA⊥BC,∴BA=BO,∵AO=BO,∴ΔABO是等边三角形,∵BC=12,∴BE=12BC=6,,∴OB=BEsin60°=4√3∴⊙O的半径为4√322.【答案】(1)解:∵A(0,﹣3),B(4,0),∴AB= √32+42 =5=BC ,∴C (4,5),∵反比例函数y 1= k x图象经过点C , ∴k=4×5=20,∴反比例函数解析式为y 1= 20x(2)解:把A (0,﹣3),C (4,5)代入y 2=ax+b 得, {b =−34a +b =5 ,解得 {a =2b =−3直线AC 解析式为y 2=2x ﹣3,解 {y =2x −3y =20x 得 {x 1=4y 1=5 , {x 2=−52y 2=−8, ∴E (﹣ 52,﹣8) 当y 1<y 2时,x >4或﹣ 52<x <0 (3)解:S ⊥CDE =S ⊥ADE +S ⊥ADC = 12 ×× 5×52+ 12 ×5×4= 654 23.【答案】(1)证明: ∵D 点为 AC 的中点, ∴AD =CD ,∵AF//BE ,∴∠FAD =∠ECD ,在 △ADF 和 △CDE 中,{∠FAD =∠ECD ∠ADF =∠CDE AD =CD,∴△ADF ≌△CDE(AAS) ,∴AF =CE(2)解: ∵AF//BE ,AF =CE , ∴四边形 AFCE 为平行四边形, ∵AF =CF =4 ,∴四边形 AFCE 为菱形,∴AD ⊥EF ,EF =2FD ,∵∠AFD=30°,∴AD=12AF=2,∴FD=√AF2−AD2=√42−22=2√3,∴EF=2FD=4√3 24.【答案】(1)证明:∵AE//DC,CE//AB,∴四边形AECD是平行四边形,又∵CD⊥AB,⊥⊥ADC=90°,⊥四边形AECD是矩形,⊥AC=ED;(2)菱形;6。
北京市2023年九年级中考数学一轮复习——整式的运算 练习题(解析版)
北京市2023年九年级中考数学一轮复习——整式的运算 练习题一、单选题1.(2022·北京顺义·一模)下列计算正确的是( )A .22423a a a +=B .632a a a ÷=C .352()a a =D .222()ab a b =2.(2022·北京十一学校一分校模拟预测)下列运算中正确的是( )A .326a a a =B .347()a a =C .632a a a ÷=D .5552a a a +=3.(2022·北京一七一中一模)某中学开展“筑梦冰雪,相约冬奥”的学科活动,设计几何图形作品表达对冬奥会的祝福.小冬以长方形ABCD 的四条边为边向外作四个正方形,设计出“中”字图案,如图所示.若四个正方形的周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .1B .32C .2D .834.(2022·北京东城·二模)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 5.(2022·北京·中国人民大学附属中学朝阳学校一模)如果23+=x x ,那么代数式(1)(1)(2)x x x x +-++的值是( )A .2B .3C .5D .66.(2022·北京石景山·一模)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .236()a a -=D .3222a b ab a b -÷=-7.(2022·北京·清华附中一模)广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米8.(2022·北京昌平·模拟预测)下列运算正确的是( )333336C .(﹣2x )3=﹣6x 3D .a 6÷a 2=a 4二、填空题9.(2022·北京东城·一模)已知23-=x x ,则代数式(1)(1)(2)x x x x +-+-=________.10.(2022·北京大兴·一模)某游泳馆为吸引顾客,推出了不同的购买游泳票的方式.游泳票在使用有效期限内,支持一个人在一天内不限次数的进入到游泳馆进行游泳.游泳票包括一日票、三日票、五日票及七日票共四种类型,价格如下表:某人想连续6天不限次数的进入到游泳馆游泳,若决定从以上四种类型中购买游泳票,则总费用最低为______元.11.(2022·北京石景山·一模)0m >,0n >,若22413m n +=,3mn =,请借助下图直观分析,通过计算求得2m n +的值为______.12.(2022·北京朝阳·一模)如图,2022年北京冬奥会上,一些可看作正六边形的“小雪花”对称地排列在主火炬周围,中间空出了13个“小雪花”的位置来突出主火炬,在其中91个“小雪花”上面写有此次参会的国家或地区的名称,此外还有几个“小雪花”上面只有中国结图案,这些只有中国结图案的“小雪花”共有_________个.13.(2022·北京市师达中学模拟预测)如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形按图2所示的方式不重叠的放在长方形内,未被覆盖的部分恰好被分割为两个长方形A 和B ,设长方形A 和B 的周长分别为1C 和2C ,则1C ______________2C (填“>”、“=”或“<”)三、解答题14.(2022·北京·中考真题)已知2220x x +-=,求代数式2(2)(1)x x x +++的值.15.(2022·北京市第二中学朝阳学校九年级阶段练习)已知21m m -=,求代数式()()()21213m m m m +--+的值.16.(2022·北京·长辛店学校九年级期中)已知a 2+2a ﹣2=0,求代数式(a ﹣1)(a +1)+2(a ﹣1)的值. 17.(2022·北京朝阳·一模)已知230x x +-=,求代数式(23)(23)(3)+---x x x x 的值.18.(2022·北京市第七中学一模)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD a =,AB b =.(1)求纸片乙的边长(用含字母a 、b 的代数式表示);(2)探究纸片乙、丙面积之间的数量关系.19.(2022·北京十一学校一分校模拟预测)已知2210x x +-=,求代数式2(1)(4)(3)(3)x x x x x ++++-+的值.20.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x ﹣5<2(2+x );(2)413x x -->1; (3)323228x x ->-; (4)x (x +4)≤(x +1)2+9.21.(2022·北京房山·模拟预测)为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m (m 为正整数).将这2m 个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确实其中感染者,则将这些人平均分成两组,每组12m -个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下轮检测,直至确定所有的感染者.例如,当待检测的总人数为8,且标记为“x ”的人是唯一感染者时,“二分检测方案”可用如图所示.从图中可以看出,需要经过4轮共n 次检测后,才能确定标记为“x ”的人是唯一感染者.(1)n 的值为___________;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值___________;22.(2022·北京昌平·模拟预测)先化简,再求值:已知1x y -=,求()()()()212x y x y y x x +-+---的值.23.(2022·北京师大附中模拟预测)已知210x x +-=,求代数式()()()112x x x x +-++的值.24.(2022·北京市第五中学分校模拟预测)已知2410x x -=+,求代数式22(2)(3)(3)x x x x +-+-+的值. 25.(2022·北京·东直门中学模拟预测)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()22-++a b b a b 的值.27.(2020·北京·中考真题)已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.参考答案:1.D【分析】由合并同类项、同底数幂除法,幂的乘方、积的乘方,分别进行判断,即可得到答案.【详解】解:A.22223a a a +=,故A 错误;B.633a a a ÷=,故B 错误;C.236()a a =,故C 错误;D.222()ab a b =,故D 正确;故选:D .【点睛】本题考查了同底数幂除法,积的乘方,幂的乘方,合并同类项,解题的关键是熟练掌握运算法则进行解题.2.D【分析】根据同底数幂的乘法和除法,幂的乘方,合并同类项逐项计算判断即可.【详解】325a a a =,故A 错误,不符合题意;3412()a a =,故B 错误,不符合题意;633a a a ÷=,故C 错误,不符合题意;5552a a a +=,故D 正确,符合题意;故选D .【点睛】本题考查同底数幂的乘法和除法,幂的乘方,合并同类项.掌握各运算法则是解题关键.3.B【分析】设矩形ABCD 的边AB a ,AD b ,根据四个正方形周长之和为24,面积之和为12,得到3a b +=,226a b +=,再根据222[()()]21ab a b a b =+-+,即可求出答案. 【详解】解:设AB a ,AD b ,由题意得,8824a b +=,222212a b +=,即3a b +=,226a b +=,2223[()()]121(96)22ab a b a b ∴=+-+=-=, 即长方形ABCD 的面积为32, 故选:B .【点睛】本题考查完全平方公式的意义和应用,掌握完全平方公式的结构特征是正确应用的前提.4.C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确;D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.5.C【分析】先将代数式(1)(1)(2)x x x x +-++进行化简,然后代入求值.【详解】解:(1)(1)(2)x x x x +-++=x 2-1+x 2+2x=2(x 2+x)-1.∵23+=x x ,∴原式=231 5.⨯-=故选C.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.6.B【分析】根据整式的运算法则即可求出答案.【详解】A 、a 2与a 3不是同类项不能合并,故A 错误;B 、235a a a ⋅=,底数不变指数相加,故B 正确;C 、(-a 2)3=a 6,底数不变指数相乘,故C 错误;D 、3222a b ab a -÷=-,原选项计算错误.故选B.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】9 500 000 000 000×4.2=39900000000000≈40000000000000=4×1013.故选A .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D【详解】A 、a 3•a 3=a 3+3=a 6同底数幂的乘法,底数不变指数相加;故本选项错误;B 、a 3+a 3=2a 3合并同类项,系数相加字母和字母的指数不变;故本选项错误;C 、(﹣2x )3=﹣8x 3幂的乘方,底数不变指数相乘.故本选项错误;D 、a 6÷a 2=a 4同底数幂的除法,底数不变指数相减;故本选项正确.故选D .9.5【分析】根据()2()()(112)21x x x x x x =+----+,将代数式23-=x x 代入求解即可.【详解】解:()22211()()()12212x x x x x x x x x +-=-++--=--,将23-=x x 代入得,原式2315=⨯-=,故答案为:5.【点睛】本题考查了代数式求值,平方差公式.解题的关键在于将代数式进行正确的化简.10.250【分析】分5种方案计算费用比较即可.【详解】解:连续6天不限次数的进入到游泳馆游泳方案一:买一日票6张,费用506300⨯=(元)方案二:买一日票1张,五日票1张,费用50200250+=(元)方案三:买一日票3张,三日票1张,费用350130280⨯+=(元)方案四:买三日票2张,费用2130260⨯=(元)方案五:买七日票1张,费用270(元)故方案二费用最低:250(元)故答案为:250.【点睛】本题考查了根据实际问题求最小值,解题的关键是需要分情况列出可能性.11.5【分析】设图形中小正方形边长为n ,最中间的正方形边长为m ,则大正方形的边长为2m n +,根据最大正方形的面积计算即可.【详解】设图形中小正方形边长为n ,最中间的正方形边长为m ,则大正方形的边长为2m n +, ∴大正方形的面积为:22244(2)m n mn m n ++=+∵22413m n +=,3mn =∴222(2)44131225m n m n mn +=++=+=∵0m >,0n >,∴25m n +=.故答案为:5.【点睛】本题考查完全平方公式与几何图形,利用数形结合思想表示图形的边长是解题的关键. 12.5【分析】根据图形先计算图中共有的小雪花的数量,再减去上面写有此次参会的国家或地区名称的小雪花,即可得答案.【详解】解:仔细观察图像可知,图中共有小雪花3×2+4×2+4×2+9×2+10×2+9×2+6×2+3×2=96(个)其中有在其中91个“小雪花”上面写有此次参会的国家或地区的名称,∴“小雪花”上面只有中国结图案有 96-91=5(个)故答案为:5.【点睛】本题考查了图形的规律,以及有理数的加减运算,解题的关键是仔细看图.13.=【分析】设图2中大长方形长为x ,宽为y ,再表示出长方形A 和B 的长和宽,进而可得周长,然后可得答案.【详解】解:设图2中大长方形长为x ,宽为y ,则长方形A 的长为x ﹣1,宽为y ﹣3,周长1C =2(x ﹣1+y ﹣3)=2x +2y ﹣8,长方形B 的长为x ﹣2,宽为y ﹣2,周长2C =2(x ﹣2+y ﹣2)=2x +2y ﹣8,则1C =2C ,故答案为:=.【点睛】本题主要考查整式的加减,关键是正确设出未知数,表示出长方形A 和B 的长和宽.14.5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.15.2【分析】根据平方差公式、合并同类项,化简代数式即可求解.【详解】解:()()()21213m m m m +--+22413m m m =---()231m m =--21m m -=∴原式3112=⨯-=【点睛】本题考查了代数式、整式加减、合并同类项、平方差公式等知识点,熟练的正确运算是解决问题的关键.16.1-【分析】(1)(1)2(1)a a a -++-223a a =+-,由2220a a +-=可得222a a +=,整体代入求解即可.【详解】解:(1)(1)2(1)a a a -++-(1)(12)a a =-++(1)(3)a a =-+223a a =+-∵2220a a +-=∴222a a +=∴原式23=-1=-.【点睛】本题考查了代数式求值.解题的关键在于熟练掌握平方差公式及整体代入的思想.17.0【分析】根据整式的乘法对代数式进行化简,整体代入即可得到答案.【详解】解:(23)(23)(3)+---x x x x=222(2)3(3)x x x ---=22493x x x --+=2339x x +-=23(3)x x +-∵230x x +-=∴原式=0即代数式(23)(23)(3)+---x x x x 的值为0.【点睛】本题考查整式的化简求值,根据整式的运算法则和乘法公式进行准确计算是解题的关键. 18.(1)纸片乙的边长为2a b + (2)纸片丙的面积是纸片乙的面积的2倍【分析】(1)设纸片乙的边长为m .根据丙图中线段的和差关系列出一元一次方程求解即可.(2)用a 和b 分别表示纸片乙和纸片丙的面积,即可求出纸片乙、丙的数量关系.(1)解:设纸片乙的边长为m ,则MP =m ,PL =m .∴MP+PL=2m .∵AD =a ,AB =b ,∴OL =a ,MQ =b .∵纸片OPQR 是正方形,∴OP =QP .∴MP +PL =MQ +QP +PL =MQ +OP +PL =MQ +OL =a +b .∴2m =a +b . ∴2a b m +=. ∴纸片乙的边长为2a b +. (2)解:S 乙=222224a b a ab b +++⎛⎫= ⎪⎝⎭. ∵MQ =b ,MP =2a b +,∴2a b QP MP MQ -=-=. S 丙=22221122222222a b a b a ab b ab +-++⎛⎫⎛⎫⨯+⨯+= ⎪ ⎪⎝⎭⎝⎭. ∴S 丙=2S 乙.∴纸片丙的面积是纸片乙的面积的2倍.【点睛】本题考查线段的和差关系,解一元一次方程,三角形面积公式,正方形面积公式,整式的混合运算,熟练掌握这些知识点是解题关键.19.5-【分析】根据完全平方公式,单项式乘以多项式,平方差公式进行化简,再将已知代数式变形代入求解即可.【详解】解:∵2(1)(4)(3)(3)x x x x x ++++-+2222149x x x x x =+++++-2368x x =+-又2210x x +-=221x x +=∴原式()2328x x =+-318=⨯-=5-【点睛】本题考查了整式的化简求值,掌握完全平方公式,单项式乘以多项式,平方差公式是解题的关键.20.(1)x >3,数轴见解析(2)x >4,数轴见解析(3)x ≤4.5,数轴见解析(4)x ≤5,数轴见解析【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x ﹣5<2(2+x )去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:413xx-->1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:323 228x x->-去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x 2﹣x 2+4x ﹣2x ≤1+9,合并同类项,得2x ≤10,∴x ≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.21.(1)7(2)2、3、4【分析】(1)由图可计算得到n 的取值.(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此得到所有可能的结果.(1)由题意可知,第1轮需检测1次,第2轮需检测2次,第3轮需检测2次,第4轮需检测2次, ∴12227n =+++=故答案为7.(2)由(1)可知,若只有1个感染者,则只需7次检测即可,经过4轮9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都进行检查,即对最后四个人进行检查,可能的结果如下图所示:故答案为:2、3、4【点睛】本题考查了数学建模能力,正确理解题意并合理建模是解答本题的关键.22.221y x -++,3【分析】根据乘法公式与单项式乘以多项式法则展开合并同类项,然后整体代入1x y -=,求值即可.【详解】解:()()()()212x y x y y x x +-+---,2222212x y y y x x =-+-+-+ ,221y x =-++ ,∵1x y -=,∴原式()221212113x y x y =-+=-+=⨯+=.【点睛】本题考查多项式乘法化简求值,掌握平方差公式和完全平方公式,以及单项式乘以多项式法则是解题关键.23.1【分析】先根据整式混合运算法则进行化简,再得出21x x +=,代入即可【详解】解:()()()112x x x x +-++2212x x x =-++2221x x =+-()221x x =+-∵210x x +-=∴21x x +=,则原式=211=1⨯-;【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.24.x 2+4x +13;14【解析】先把原式化简成含有x 2+4x 的代数式,再由已知得到x 2+4x =1并代入到化简后的代数式即可得到解答.【详解】解:由已知可得:x 2+4x =1,∴原式=()222449x x x x ++--+=222449x x x x ++-++=2413x x ++=1+13=14.【点睛】本题考查代数式的应用,由已知得到某式的值然后代入化简后的代数式求值是解题关键. 25.12【分析】将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.【详解】解:∵2410x x --=,∴241x x -=.∴22(23)()()x x y x y y --+--22224129x x x y y =-+-+-23129x x =-+()2349x x =-+139=⨯+12=.26.1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.【详解】解:()()22-++a b b a b=22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点睛】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.27.21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+- 2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学一轮复习练习题练习
中考作为考生迈入重点高中的重要考试,备受家长和考生的关注,多做题,多练习,为中考奋战,小编为大家整理了中考数学一轮复习练习题,希望对大家有帮助。
A级基础题
1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有()
A.(15+a)万人
B.(15-a)万人
C.15a万人
D.15a万人
2.若x=1,y=12,则x2+4xy+4y2的值是()
A.2
B.4
C.32
D.12
3.如图1-2-5,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()
A.2
B.3
C.6
D.x+3
4.已知实数x,y满足x-2+(y+1)2=0,则x-y=()
A.3
B.-3
C.1
D.-1
5.有3张边长为a的正方形纸片,4张边长分别为a,b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()
A.a+b
B.2a+b
C.3a+b
D.a+2b
6.(2019年湖南湘西州)图1-2-6是一个简单的数值运算程序,
当输入x的值为3时,则输出的数值为______(用科学计算器计算或笔算).
输入x―→平方―→-2―→÷7―→输出
7.已知代数式2a3bn+1与-3am+2b2是同类项,则
2m+3n=________.
8.观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2019个单项式是________.
9.已知A=2x+y,B=2x-y,计算A2-B2.
10.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.
B级中等题
11.若a2-b2=14,a-b=12,则a+b的值为()
A.-12
B.12
C.1
D.2
12.化简m2-163m-12得__________;当m=-1时,原式的值为________.
13.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是________.
14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对
称式的是()
A.①②
B.①③
C.②③
D.①②③
C级拔尖题X Kb 1. C om
15.若3x=4,9y=7,则3x-2y的值为()
A.47
B.74
C.-3
D.27
16如图1-2-7,对于任意线段AB,可以构造以AB为对角线的矩形ACBD.连接CD,与AB交于A1点,过A1作BC的垂线段A1C1,垂足为C1;连接C1D,与AB交于A2点,过A2作BC的垂线段A2C2,垂足为C2;连接C2D,与AB交于A3点,过A3作BC的垂线段A3C3,垂足为C3……如此下去,可以依次得到点A4,A5,…,An.如果设AB的长为1,依次可求得A1B,A2B,A3B……的长,则AnB的长为(用n的代数式表示)()
图1-2-7
A.1n
B.12n
C.1n+1
D.12n+1
代数式
1.B
2.B
3.B
4.A
5.D
6.1
7.5
8.4025x2
9.解:A2-B2=(2x+y)2-(2x-y)2
=4x?2y=8xy.
10.解:当a=3,b=|-2|=2,c=12时,
a2+b-4c=3+2-2=3.
11.B 解析:a2-b2=(a+b)?(a-b),得到14=12(a+b),即可得到a+b=12.
12.m+43 1 解析:m2-163m-12=?m+4??m-4?3?m-4?=m+43;当m=-1时,原式=-1+43=1.
13.9 14.A
15.A 解析:∵3x=4,9y=7,∴3x-2y=3x32y=3x9y=47.
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼
儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
16.C
中考数学一轮复习练习题的内容,希望符合大家的实际需要。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?。