污泥干燥的一些知识点
论述污泥干燥的基本原理
论述污泥干燥的基本原理污泥干燥技术是将污泥中的水分蒸发除去,使其达到一定的干燥程度的过程。
污泥干燥的基本原理主要包括水分蒸发和溶质传递两个方面。
首先,水分蒸发是污泥干燥的基本原理之一。
污泥中的水份存在于两个形式,一个是结合水,它和一个固体结合在一起;另一个是游离水,即污泥中的自由水。
在干燥过程中,首先是自由水从表层开始蒸发,然后逐渐侵入污泥的内部,最后污泥中的结合水也开始蒸发。
水分蒸发是通过给污泥提供热量,使水分分子的动力增加,从而跳出污泥颗粒之间的结合力,最终蒸发为水蒸汽。
其次,溶质传递是污泥干燥的另一个基本原理。
污泥中含有各种有机物、无机盐和重金属等溶质,当水分蒸发时,这些溶质会逐渐浓集在污泥颗粒中。
这是因为在污泥干燥过程中,水分蒸发速度较快,而溶质传递速度较慢。
溶质传递过程中,主要是通过水的传递和质量传递两种方式来实现。
一方面,水分的蒸发带走了一部分溶质;另一方面,溶质也可以通过迁移、扩散、对流等方式从污泥颗粒中传递出来。
在实际的污泥干燥过程中,为了高效地蒸发污泥中的水分,常常借助一些辅助设备和工艺。
常见的污泥干燥设备有滤板脱水机、离心脱水机、污泥干燥床等。
其中,滤板脱水机又称为压滤机,主要是通过过滤介质的作用将污泥中的自由水脱除;离心脱水机则是通过高速旋转离心力将污泥内外表面的水分分离;而污泥干燥床则是通过热风对污泥进行干燥,利用热风的传导和对流作用加速水分蒸发。
此外,在污泥干燥过程中,还可以通过调节干燥温度、气流速度和湿度等参数来控制干燥效果。
其中,干燥温度是影响污泥干燥速度的关键因素之一,通常情况下,提高干燥温度可以加快水分蒸发速度。
然而,过高的温度可能会导致溶质的挥发和有机物的分解,从而影响干燥后的污泥性质。
因此,合理控制干燥温度,使其既能满足干燥效果要求,又不会引起其他不良反应是非常重要的。
总之,污泥干燥的基本原理是通过提供热量驱动污泥中的水分蒸发,并通过溶质传递将污泥中的溶质浓缩。
污泥干化技术总结
工业污泥干化
工业污泥干化是指对工业生产过程中产生的污泥进行干化的过程。由于工业污泥中含有大量的重金属 、有毒有害物质和放射性物质,需要进行特殊的处理和处置。
工业污泥干化的方法主要有高温干化和低温干化两种。高温干化可以将污泥中的水分迅速蒸发,同时 还可以杀灭病菌和寄生虫卵。低温干化则是利用低温空气进行自然风干,这种方法比较经济,但干化 速度较慢。
资源化利用
干化后的污泥可作为肥料 、建筑材料等资源进行再 利用,实现资源循环利用 。
污泥干化技术的发展历程
自然干化阶段
早期的污泥干化主要采用自然 晾晒的方式,但效率低下,占
地面积大。
机械干化阶段
随着技术的发展,出现了各种 机械式干化设备,如带式干化 、转鼓干化等,提高了干化效 率。
热能干化阶段
利用外部热源提供热量进行干 化,具有更高的能量利用效率 和更低的能耗。
资源化利用
污泥干化后的产物可以作为肥料、 土壤改良剂、建材原料等,实现资 源化利用,减少对环境的压力。
智能化控制
随着物联网、大数据等技术的发展 ,污泥干化技术将逐步实现智能化 控制,提高生产效率和稳定性。
市场发展前景
市场需求增长
01
随着城市化进程的加速和污水处理量的增加,污泥干化技术的
市场需求将不断增长。
竞争格局变化
02
随着技术的进步和市场需求的增加,污泥干化技术的竞争格局
将发生变化,部分技术落后、服务不佳的企业将被淘汰。
跨国合作与交流
03
随着全球环境治理术发展的重要趋势。
技术创新与政策支持
技术创新
鼓励企业加大研发投入,推动污泥干化技术的创新发展,提高技术水平和市场竞 争力。
环保监管
【专业知识】城市污泥干燥方法
【专业知识】城市污泥干燥方法研究表明,经传统的浓缩和脱水工艺处理之后的污泥的含水率不可能达到60%以下如果要达到较为深度的脱水,就必须引进各种污泥干燥技术。
3.1热干燥目前,许多国家已在污泥处理中采用热干燥技术。
按照热介质是否与污泥相接触,现行的污泥热干燥技术可以分为三类:直接热干燥技术、间接热干燥技术和直接-间接联合式干燥技术。
直接热干燥技术又称对流热干燥技术。
对流热干燥是通过热空气从污泥表面去除水分。
干燥的效率取决于如下两个因素:空气运行条件(稳点、相对湿度、速度)和污泥的自身结构及特征。
在操作过程中,热介质(热空气、燃气或蒸汽等)与污泥直接接触,热介质低速流过污泥层,在此过程中吸收污泥中的水分,处理后的干污泥需与热介质进行分离。
排出的废气一部分通过热量回收系统回到原系统中再用,剩余的部分经无害化后排放。
此技术热传输效率及蒸发速率较高,可使污泥的含固率从25%提高至85%~95%.但由于与污泥直接接触,热介质将受到污染,排出的废水和水蒸气须经过无害化处理后才能排放;同时,热介质与干污泥需加以分离,给操作和管理带来一定的麻烦。
闪蒸式干燥器(flashdryer)、转筒式干燥器(rotarydryer)、带式干燥器(beltdryer)、喷淋式干燥器(spraydryer)、螺环式干燥器(toroidaldryer)和多效蒸发器(multipleeffectvaporattion)等都属直接热干燥装置类型。
在间接热干燥技术中,热介质并不直接与污泥相触,而是通过热交换器将热传递给湿污泥,使污泥中的水分得以蒸发,因而热介质不仅仅限于气体,也可用热油等液体,同时热介质也不会受到污泥的污染,省却了后续的热介质与干污泥分离的过程。
过程中蒸发的水分到冷凝器中加以冷凝。
热介质的一部分回到原系统中再用,以节约能源。
由于间接传热,该技术的热传输效率及蒸发速率均不如直接热干燥技术,这种技术的操作设备有薄膜热干燥器,圆盘式热干燥器等。
污泥干燥工艺五大原则
污泥干燥工艺五大原则
污泥干燥是处理污水处理厂污泥的关键环节之一,它能够将污泥中的
水分蒸发掉,减小体积,便于后续处理或处置。
在进行污泥干燥过程中,
需要遵循以下五大原则,以确保工艺的高效性和经济性。
原则一:能量效率原则
污泥干燥过程需要大量的能量,如热能和电能。
为了提高能源利用率,减少能源消耗,应该采用适宜的干燥设备,如带热泵的热泵干燥机等。
此外,还可以通过热回收、余热利用等方式进一步提高能源利用效率。
原则二:设备可靠性原则
原则三:产品质量原则
干燥后的污泥产品需要满足一定的质量要求,如水分含量、颗粒度等。
为了保证产品质量,应当选择适宜的干燥方式和工艺参数,如干燥温度、
干燥时间等,并进行合理的产品质量监测和控制。
原则四:环境保护原则
污泥干燥过程中会产生一定的废气和废液,可能含有有害物质和臭味,对环境造成污染。
为了保护环境,应该采取适当的废气处理和废液处理措施,如使用除臭装置和净化设备,合理回收和处理废气和废液。
原则五:经济性原则
总结而言,污泥干燥工艺的五大原则是能量效率原则、设备可靠性原则、产品质量原则、环境保护原则和经济性原则。
在进行污泥干燥过程中,应该充分考虑这些原则,选择适宜的设备和工艺参数,确保工艺的高效性
和经济性,同时保护环境和提高产品质量。
污泥干化详细方案
污泥干化详细方案污泥干化是一种将污泥进行脱水处理的方法,通过去除其中的水分,使污泥质量减轻,从而减少处理和处置的成本。
下面将详细介绍污泥干化的方案。
首先,污泥干化的方法有很多种,包括热风干化、低温烘干、冷风干燥等。
在选择干化方法时,需要综合考虑污泥的特性、干化设备的性能和能源消耗等因素。
在此,我们以热风干化为例进行详细介绍。
热风干化是一种常用的污泥干化方法,它利用高温空气将污泥中的水分蒸发掉。
具体方案如下:1.设备选型:选用具有良好干燥效果和稳定性的热风干燥设备,包括热风炉、烘干机等。
设备的选择要考虑到处理污泥的规模、含水率和干化效果等因素,以满足干化要求。
2.热源选择:选择适当的热源,如燃煤、燃气、生物质等。
考虑到环境保护和能源消耗等因素,推荐使用清洁能源作为热源,如天然气、生物质等,同时要注意减少氮氧化物和颗粒物的排放。
3.水分控制:在干化过程中,要根据污泥的含水率调控干燥机的进料量和出料速度,以控制水分含量。
通常,污泥的含水率在50%左右时,可进行干燥处理。
4.控制温度:根据干燥设备和污泥的特性,设定合理的热风温度和进出料温度。
在干燥过程中,要保持适当的温度,以提高干燥效率和节约能源。
5.加强搅拌:在干燥机内加装搅拌装置,以增加污泥与热风的接触面积,加快水分的蒸发速度。
同时,要控制搅拌速度和力度,避免造成过度搅拌和磨损。
6.除尘处理:对于热风干化过程中产生的粉尘和颗粒物要进行有效的处理。
可采用除尘设备,如除尘器、湿式除尘器等,以减少粉尘的排放。
7.干化后处理:干化后的污泥可以进一步进行处理和利用。
例如,可通过焚烧、堆肥等方式进行无害化处理,或者利用污泥中的有机物和养分进行肥料生产和能源回收等。
总之,污泥干化是一种有效的污泥处理方法,通过选择适当的干化设备和控制过程参数,可以提高污泥的干化效率,减少处理成本,实现资源化利用。
需要根据具体情况进行综合考虑和选择,确保干化过程的安全、高效和环保。
化工污泥干化工作原理
化工污泥干化工作原理
化工污泥干化是通过物理、化学和热力学等过程将污泥中的水分蒸发脱除,达到降低污泥湿度的目的。
其工作原理如下:
1. 初期加热:使用干化设备对污泥进行初期加热,使其温度快速升高。
此时,污泥中的水分开始蒸发。
2. 流化床干燥:在一定温度下,污泥通过流化床干燥器进行干燥。
在流化床中,加热介质(如热空气)通过床层底部送入,使床料产生流态,促进污泥颗粒和加热介质之间的热交换。
在这个过程中,水分继续快速蒸发,减少污泥湿度。
3. 间歇排浆:在干化过程中,处理后的污泥会形成干度较高的颗粒,需要通过间歇排浆系统将其定期排出。
4. 余热回收:通过对干燥过程中产生的热量进行回收利用,可以减少能源消耗。
5. 排气处理:干化过程中,污泥中可能会释放出有害气体或异味物质,需要通过适当的气体处理系统进行处理,以保护环境。
通过上述工作原理的连续运行,化工污泥的湿度逐渐降低,最终转化为干燥固体。
这样可以减少污泥的体积和重量,便于后续处理和储存,同时还可以回收部分能量。
污泥干燥的作用与方法
污泥干燥的作用与方法环保网整理污泥的分类1.工业废水处理产生的经浓缩池排出的物化和生化混合污泥,如造纸厂、印染厂、水洗布厂、肉联厂及酿造厂等;污泥分类:属中细粒度混合污泥,含纤维体的脱水性能较好,其余可压缩性能和脱水性能较好。
2. 化工工业废水处理产生的经浓缩池排出的物化和生化混合污泥,如石油化工厂、有机化工厂等;污泥分类:属细粒度混合污泥,含油性且粘性较大,其可压缩性能和脱水性能较差。
3.生活污水厂二沉池排出的剩余活性污泥;污泥分类:属亲水性、微细粒度有机污泥,可压缩性能差,脱水性能一般。
4.自来水厂沉淀池或浓缩池排出的物化污泥;污泥分类:属中细粒度有机与无机混合污泥,可压缩性能和脱水性能较好。
5.工业废水处理产生的物化沉淀粗粒度污泥:如洗煤厂尾泥、玻璃厂石英渣等;污泥分类:属粗粒度疏水性无机污泥,可压缩性能和脱水性能好。
6.工业废水处理产生的经浓缩池排出的物理法和化学法产生的物化细粒度污泥,如电镀厂、线路板厂等;污泥分类:属细粒度无机污泥,可压缩性能和脱水性能一般。
7.工业废水处理产生的物化沉淀中粒度污泥,如钢铁厂脱硫除尘污泥、制碱厂盐泥、铝厂赤泥、陶瓷厂污泥、彩管厂污泥、石灰中和沉淀污泥等;污泥分类:属中粒度疏水性无机污泥,可压缩性能和脱水性能较好。
污泥干燥的作用污泥没干化前含水量很高,剩余污泥含水量达99.2%~99.5%,经过浓缩池后的污泥含水量为95~97%,压滤后的含水量在80%左右,之所以要降低含水率以及污泥干化,一是污水厂污泥产量都比较大,必须降低污泥体积,以便后续运输、处理方便,二是国内污泥处理很多都是以填埋的方式运往垃圾填埋厂,减少体积可以也可以为填埋厂节约空间,三是污泥要经过一些处理后,干化才可以作为肥料、建筑材料使用,这种利用目前运用的不是很普遍,更不用说污泥气利用。
污泥干燥机的干燥方法一、污泥干燥机的干燥方法。
气流干燥的一般方法是将粉末或者是比较小的物料悬空在热空气中进行干燥的一种干燥的方法。
污泥干化的若干问题解答大全
污泥干化的若干问题1.不同的干化工艺为什么工艺气量不同?工艺气量的大小决定于工艺本身所采用的热交换形式。
热传导为主的系统,需要的气量小,因为气体主要起湿分离开系统的载体作用;而热对流系统则依赖气体所携带的热量来进行干燥,因此气量较大。
转鼓式干燥器的干燥依靠热对流,因此气量的大小必须满足携带热量的全部需要;流化床系统也是以热对流为主要换热手段的工艺,由于流化态的形成要求工艺气体具有更高的速度,因此总的气量需求更高;圆盘式工艺以热传导为主要手段,理论上仅需抽取蒸发量。
但是由于蒸汽在上部易于形成饱和,而下部易于形成高温、高粉尘浓度,因此,气体的流量决定了工艺的安全性和粉尘分布。
涡轮薄层干燥器是采用热对流和热传导两者并重的一种特殊工艺,气量小于纯热对流系统,大约是一个标准热对流系统的1/2-1/3。
转碟式是纯粹的热传导型干燥器,依靠碟片、主轴或热壁的热量与污泥颗粒的接触、搅拌进行换热,其中的热量来自填充在其中的导热油。
这一工艺无需气体。
2.为什么干化系统必须抽取气体形成微负压?抽取微负压的目的有两个:1)由于干化系统必须是闭环,在干化过程中,污泥中携带的某些物质被热解,形成不可凝气体,这些气体无法被冷却水冷凝,因此不断在回路中积聚,最终可能形成饱和。
不可凝气体具有可燃性,这将降低系统内粉尘爆炸下限,给干化系统带来危险,因此,避免不可凝气体在回路中的饱和是安全性的重要内容之一;2)大量工艺气体在系统内的流动依靠引风机进行,不可凝气体的积聚,将使得系统内形成超过环境压力的正压,此时,工艺气体可能提供各种可能的缝隙、出口离开回路,形成臭气泄漏,这在安全性和卫生性方面是不可接受的,因此必须通过动力装置(风机)从回路中排出,送往生物过滤器或热源装置处理掉。
3.间接干化工艺的热源-导热油锅炉如何选型?间接干化工艺是指热源与污泥无接触,换热是通过介质进行的,当这个介质为导热油时,需要使用到导热油锅炉。
导热油锅炉在我国是一种成熟的化工设备,其标准工作温度为280度,这是一种有机质为主要成份的流体,在一个密闭的回路中循环,将热量从燃烧所产生的烟气转移到导热油中,再从导热油传给介质(气体)或污泥本身。
污泥干化技术汇总解析
污泥干化技术汇总解析污泥是指在水处理过程中产生的含有有机物、无机物及微生物的混合物质。
污泥的处理一直是环保领域关注的焦点,而污泥干化技术则是处理污泥的一种有效方法。
本文将对当前主流的污泥干化技术进行汇总解析,以期为环保行业相关人士提供参考和指导。
**一、热风干化技术**热风干化技术是目前应用最为广泛的污泥干化技术之一。
其原理是利用高温热风对污泥进行间接加热,使污泥中的水分蒸发,达到干化的目的。
热风干化技术具有干化效率高、适用范围广、操作简便等优点,但是能耗相对较高,且设备投资较大。
**二、生物干化技术**生物干化技术是利用微生物的降解作用对污泥进行干化处理。
其原理是通过设定适宜的温度、湿度和通气条件,促进污泥中微生物的生长和代谢,从而实现污泥的干化。
生物干化技术具有能耗低、无二次污染等优点,但是反应时间较长,技术难度较大。
**三、低温干化技术**低温干化技术是一种相对较新的污泥干化技术。
其原理是利用低温干燥器对污泥进行连续干化处理,通过控制干燥器内部的气候参数,实现污泥的快速脱水和干化。
低温干化技术具有能耗低、设备投资适中等优点,但是对干燥器的设计和操作要求较高。
**四、热泵干化技术**热泵干化技术是一种能源利用效率较高的污泥干化技术。
其原理是通过热泵系统将空气中的低温热量转换为高温热量,对污泥进行加热和干燥。
热泵干化技术具有能耗低、节能环保等优点,但是设备复杂度较高,维护成本较大。
**五、微波干化技术**微波干化技术是一种高效的污泥干化技术。
其原理是利用微波在污泥中产生快速振动,使水分分子快速蒸发,实现污泥的快速干燥。
微波干化技术具有干化速度快、操作简便等优点,但是设备投资较大,且对污泥的处理能力有一定限制。
通过以上对不同污泥干化技术的汇总解析,我们可以看到各种技术在干化效率、能耗、操作难度等方面存在一定差异。
在实际应用中,可以根据污泥的性质、干化要求和经济条件等因素选择合适的干化技术,同时也可以结合不同技术进行综合利用,以提高污泥的处理效率和资源化利用水平。
污泥干化培训资料PPT课件
脱水处理后的污泥,含固率25%左右。
3、污泥输送泵 作用:将湿泥料仓内的 污泥送至干燥线薄层蒸 发器,其输送量可控制, 且根据磨损情况定期进 行校准。其额定流量为 6250kg/h。 4、滑架 作用:将污泥池内的污 泥均匀分布,防止污泥 板结,也有对污泥输送 泵进行保护的作用。
(二)干化系统
薄层蒸发器
2、切碎机 作用:将薄层蒸发器出来 的污泥通过挤压穿过带孔 眼的筛网,使污泥形成细 条状,本阶段为污泥塑形 阶段,为后续带式干燥机 的干化做准备。 原理:切碎机安装在薄层 蒸发器出泥的正下方,经 薄层蒸发器干燥后的泥首 先被铲状的旋转浆片均匀 分布挤压至离心转子上, 通过转子的旋转而被挤压 穿过孔眼筛网,形成细条 状。
1、薄层蒸发器 作用:接收污泥输送泵的脱水污泥进行第一阶段干化,可 将含水率75%左右的污泥蒸发至含水率约45%-55%,使污泥 达到可塑阶段。 原理:薄层蒸发器采用的是间接加热方式,热油的温度通 过交换壁传递给污泥,与污泥无直接接触。薄层内部分为 定子、转子、 热交换壁、热油夹层和保温层,定子内部 是管状腔体带翅片的转子,转子通过电机带动,转子上的 翅片根据形状和安装角度不同分别将污泥涂至加热壁、刮 下和推至出口端;通过转子的快速旋转及转子腔体上的翅 片,污泥的薄层在交换壁上形成,一边有规律的运行并保 持震荡,一边通过推进翅片迫使污泥进入薄层的出口端。 在转子的尾端有一组与推进翅片角度相反安装的翅片,将 污泥反向推入下部切碎机入口,防止污泥堆积和堵塞。其 单台最大处理量为6250kg/h。
4、带式干燥机 作用:接收由切碎机塑形合格的污 泥,用循环热风直接对污泥进行干 燥。通过上层带、下层带、冷却带 三级皮带传送将污泥含固率由薄层 蒸发器出来的45%-55%干化至80%95%,最后经降温将最终污泥送出 车间。 原理:带式干燥机内部为全密封的 三层输送皮带,上层带和下层带蒸 发污泥水分,最下层带为冷却带, 通过循环风对出泥进行降温,其循 环风是通过风机带动,用一组冷却 塔使用闭路循环水对循环风进行降 温。每层皮带驱动电机均为变频器 驱动,可通过频率的设定改变污泥 在每层带中的停留时间,另外每层 皮带都带有自动纠偏装置,在皮带 跑偏时进行调整。
污泥干化详细方案
污泥干化详细方案污泥干化是指将湿性污泥通过低温加热和脱水处理,将其中的水分蒸发掉,使其成为干燥的物料。
这种处理方法可以有效地减少污泥体积、减少环境污染,并提供了一种资源回收利用的途径。
在本文中,将详细介绍污泥干化的方案。
一、主要设备1. 烘干机:烘干机是实现污泥干化的核心设备,可分为直接热源烘干和间接热源烘干两种类型。
直接热源烘干利用高温气流对污泥进行脱水、烘干处理;间接热源烘干通过传热介质(如热风或热油)间接加热污泥。
选择合适的烘干机型号和规格,确保其能够满足污泥处理量的要求。
2. 输送设备:污泥烘干过程中需要进行输送,常用的输送设备有螺旋输送机、皮带输送机等。
输送设备的选型应根据污泥的性质和处理量进行合理选择,确保输送的顺畅和高效。
3. 辅助设备:包括给料系统、排泥系统和废气处理系统等。
给料系统用于将污泥送入烘干机;排泥系统用于将烘干后的固体废物进行排除;废气处理系统用于处理烘干产生的废气,以防止污染物外排。
二、工艺流程1. 污泥收集与预处理:首先将污泥从污水处理厂或其他场所收集起来,并进行初步的沉淀与脱水处理,以减少水分含量。
2. 运输与存储:将预处理后的污泥进行运输,并存放在专门的储存设施中,以备后续处理使用。
3. 进料与加热:将储存的污泥通过输送设备送入烘干机中,烘干机内部提供适当的加热方式,使污泥开始蒸发水分。
4. 硬化与制粒:当污泥中的水分大部分蒸发后,剩余的固态物质会聚集在一起形成硬块。
此时可以采用制粒机等设备将硬块破碎,以增加其表面积和干燥效果。
5. 烘干与冷却:经过硬化制粒后的污泥再次进入烘干机,继续进行干燥;随着水分的蒸发,污泥的体积会进一步减小,直至达到所需的干燥度。
烘干完成后,需要通过冷却设备对污泥进行冷却处理,以防止过热和二次污染。
6. 产物处理:经过干燥和冷却的污泥成为干燥物料,可以进一步加工利用,如转化为固体燃料、土壤改良剂等。
三、能耗控制与运维维护1. 能耗控制:为了提高干燥效率,减少能源消耗,首先要对设备进行合理的调整和控制。
污泥干化培训资料
Thanks!
污泥干化工艺流程图
(一)脱水污泥接收单元 (二)干化系统 (三)干化污泥卸料和输送系统 (四)加热单元 (五)臭气收集及处理系统
(一)脱水污泥接收单元
1、地埋式湿泥料仓 作用:存储脱水后的 湿污泥,恒定干化系 统进泥流量,平衡和 缓冲进泥量和泥质波 动。 2、污泥自动门 作用:为了保证污泥 的密封性,防止污泥 中有害气体外泄。
(三)干化污泥卸料和输送系统
Байду номын сангаас
1、颗粒污泥链斗输送机 作用:将带式干燥机处理 的干燥污泥输送至干泥料 仓,方便卡车接运。 原理:通过驱动电机带动 输送链条,同时带动链条 上均匀安装的污泥收集斗 匀速运行,从而将污泥运 送至干泥料仓。
2、干污泥料仓
作用:存储料斗输送机运 送的干污泥,便于污泥外 运。
4、臭气碱反应塔
作用:用于中和臭气中存 在的氧化物及硫化物,同 时次氯酸钠起氧化杀菌作 用。 原理:经过降温及酸洗涤 后的臭气,进入碱反应塔 内,臭气从底进顶出;其 塔内溶剂为两种,分别为 氢氧化钠和次氯酸钠共同 投加,混合后的药剂通过 循环泵抽至塔顶进行喷洒 ,再通过塔中间层的填料 加大气体与液体的接触反 应时间和面积。
原理:通过电机、联轴器带动高压容积泵工作,将导热油 在热循环进出管路上进行循环,其进口取自初级循环油路 的出口,回油路线与初级循环回路相连,通过三向阀混入 二级油路的热油量进行调控,从而根据需要提供给用热设 备的热量。
5、膨胀槽 膨胀槽安装在热油系统的顶部,与油路系统相连接。主要 用于系统排气、高位稳压、中间联通、系统补偿、高位溢 流, 6、热油泄空罐 热油泄空罐安装在油路系统的最底部,主要用于接收系统 溢流的导热油、高压排气、提供系统所需的导热油、全部 接收系统导热油等;底部用一台小泵用于将泄空罐的导热 油输送至膨胀槽,给系统进行补油。
污泥干化详细方案要点
污泥干化方案1.1 总体方案思路本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。
1.2 污泥干化工艺选择根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。
污泥干化常规方法主要有自然干化、热力干化、高干脱水等。
1.2.1自然干化自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。
该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。
由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。
此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。
自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。
1.2.2热力干化污泥的大规模、工业化处理工艺中最常见的是热力干化。
事实上,通常人们所讨论的“干化”多数是指热力干化。
热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。
这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。
污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。
污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。
污泥干化技术总结
污泥干化技术总结污泥是污水处理后的产物,污泥的主要特性是含水率高(可高达99%以上),有机物含量高,容易腐化发臭,这就需要进行污泥干化处理,目前污泥处理工艺中,污泥处理的干化处理方式占比仍居前位。
今天总结了一些关于污泥干化技术解答,以供大家参考。
1.干化为什么要区分间接或直接加热方式?直接和间接加热方式的划分在于热源利用的形式区别,具体来说就是直接作为介质还是间接对换热的介质进行加热。
干化是依靠热量来完成的,热量一般都是能源燃烧产生的。
燃烧产生的热量存在于烟道气中,这部分热量的利用形式有两类:1.1.间接利用:将高温烟道气的热量通过热交换器,传给某种介质,这些介质可能是导热油、蒸汽或者空气。
介质在一个封闭的回路中循环,与被干化的物料没有接触。
热量被部分利用后的烟道气正常排放。
间接利用存在一定的热损失。
对干化工艺来说,直接或间接加热具有不同的热效率损失,也具有不同的环境影响,是进行项目环评和经济性考察的重要内容。
1.2.直接利用:将高温烟道气直接引入干燥器,通过气体与湿物料的接触、对流进行换热。
这种做法的特点是热量利用的效率高,但是如果被干化的物料具有污染物性质,也将带来排放问题,因高温烟道气的进入是持续的,因此也造成同等流量的、与物料有过直接接触的废气必须经特殊处理后排放。
2.旋风分离器的固体回收率是多少?在许多热对流系统中,污泥干化必须将全部或部分产品通过旋风分离的方式收集起来,由于各个工艺的风量和风压不同,通过此方法进行回收的颗粒粒径和比例不同,造成其设计的千差万别。
一般来说,旋风分离器的固体回收率在95-98%之间。
含固率越高,产品的粒度越小,捕集的难度也就会提高。
干化包括哪些必要的工艺步骤?污泥干化的目的在于去掉湿泥中的部分水分,以适应不同的处置要求。
干化意味着在单位时间里将一定数量的热能传给物料所含的湿分,这些湿分受热后汽化,与物料分离,失去湿分的物料与汽化的湿分被分别收集起来,这就是干化的工艺过程。
污泥干燥特性及干燥过程研究
污泥干燥特性及干燥过程研究一、本文概述本文旨在全面研究污泥的干燥特性及其干燥过程。
污泥作为一种废弃物,其处理与处置问题一直是环境保护领域的研究热点。
污泥干燥作为一种有效的污泥减量化、稳定化及资源化的技术手段,具有广泛的应用前景。
本文首先介绍了污泥的来源、性质及其对环境的潜在影响,然后重点探讨了污泥的干燥特性,包括污泥的含水率、热值、干燥速率等关键参数。
接着,本文详细分析了污泥的干燥过程,包括干燥动力学、干燥过程中的热传递与质传递规律、以及干燥设备的设计与优化等方面。
本文总结了污泥干燥技术的研究现状与发展趋势,为污泥的干燥处理提供了理论支持和实践指导。
通过本文的研究,期望能为污泥的减量化、稳定化及资源化提供有益的参考。
二、污泥的干燥特性污泥的干燥特性是理解和优化其干燥过程的关键。
污泥的干燥特性主要包括其含水率、热导率、热稳定性、以及干燥过程中的收缩和龟裂等特性。
污泥的含水率是影响其干燥过程的主要参数。
一般来说,新鲜污泥的含水率通常高达80%甚至更高。
在干燥过程中,污泥中的水分以游离水和结合水的形式存在,游离水较容易通过加热蒸发,而结合水则需要更高的能量才能去除。
因此,污泥的干燥过程需要根据其含水率的变化调整干燥条件,以确保干燥效率和效果。
污泥的热导率较低,这意味着其热传递速度较慢,需要较长的时间才能达到所需的干燥温度。
因此,在干燥过程中需要采取适当的措施,如提高热源温度、增加搅拌或翻动频率等,以提高热传递效率。
污泥的热稳定性也是其干燥特性之一。
在干燥过程中,污泥中的有机物可能会发生热解或燃烧,这会影响干燥效果并可能产生有害气体。
因此,需要控制干燥温度和时间,以避免污泥中的有机物发生热解或燃烧。
污泥在干燥过程中可能会出现收缩和龟裂现象。
这是由于在去除水分的过程中,污泥的体积会发生变化,导致表面产生裂纹。
这不仅会影响污泥的干燥效果,还可能导致干燥后的污泥强度降低。
因此,在干燥过程中需要采取适当的措施,如控制干燥速率、添加干燥剂等,以减少收缩和龟裂现象的发生。
污泥脱水及干化工艺知识
污泥脱水及干化工艺调研一、污泥概述 (1)1. 污泥的分类 (1)2. 污泥的主要成分 (1)3. 污泥措置、措置存在的问题 (1)4. 污泥的脱水与干化 (2)二、污泥的主要措置、措置途径 (3)1. 污泥措置、措置的工艺路线 (3)2. 污泥措置方式 (3)三、污泥浓缩 (5)1. 污泥浓缩工艺 (5)2. 污泥浓缩工艺的开展趋势 (6)四、污泥脱水 (7)1. 带式压滤脱水机 (8)2. 离心式脱水机 (10)3. 板框式压滤脱水机 (12)五、污泥干化〔枯燥〕 (15)1. 污泥干化概述 (15)2. 污泥干化工艺 (16)3. 污泥干化设备 (18)1〕三通式回转圆通枯燥机 (18)2〕普通回转圆通枯燥机 (20)3) 间接加热式回转圆通枯燥机 (21)4) 带粉碎装置的回转圆通枯燥机 (21)5) 带式枯燥机 (21)6〕浆叶式枯燥机 (22)7〕盘式枯燥机 (23)8〕蝶式枯燥机 (23)9〕太阳能枯燥工艺 (24)10〕流化床枯燥工艺 (24)六、污泥措置措置工艺选择 (25)1. 污泥干化工艺选择 (25)2. 污泥干化-燃烧工艺选择 (25)七、污泥干化实例 (26)1. 上海石洞口污水措置厂污泥干化、燃烧工程 (27)2. 杭州市固废中心“热枯燥造粒技术〞 (28)3.意大利涡龙公司污泥涡轮枯燥技术 (29)4. 德国拉文斯堡流化床系统爱雪唯斯流化床干化系统 (30)5. Andritz的EcoDry技术 (32)八、综述 (33)附1 相关信息检索关键词 (34)附2 相关资料来源 (34)污泥的发生在人类活动过程中是不成防止的。
污水措置发生的大量污泥的任意堆放和投弃对环境造成了新的污染,如何妥善措置这些污泥已成为全球共同存眷的课题。
一、污泥概述污泥(sludge) 是由水和污水措置过程所发生的固体沉淀物质。
1. 污泥的分类按照其来源,污泥可以划分为:1〕市政污泥(sewage sludge),主要指来自污水厂的污泥,这是数量最大的一类污泥。
污泥脱水知识
污泥学习资料第一部分:污泥的种类及特性一、`污泥的定义及来源1、污泥是污水处理过程所产生的固体沉淀物质。
2、由于各类污泥的性质变化较大,分类是非常必要的,其处理和处置也是不同的。
根据其来源,可以划分为:(1)市政污泥:主要指来自污水厂的污泥,这是数量最大的一类污泥。
此外,自来水厂的污泥也来自市政设施,可以归入这一类。
(2)管网污泥:来自排水收集系统的污泥。
(3)河湖淤泥:来自江河,湖泊的污泥。
(4)工业污泥:来自各种工业生所产生的固体与水、油、化学污染、有机质的混合物。
3、在非特指环境下,污泥一般指市政排水污泥。
二、污泥的产生1、废水的处理是由一系列物理化学和生物处理过程组成的:(1)沉淀(使用或不使用化学絮凝剂)、过滤、滤清(2)通过微生物进行好氧和厌氧处理,产生有机复合物(3)生化脱氮和脱磷(4)消化处理并产生沼气2、在废水净化过程中,废水中的污染物经生化降解集中去除。
生物处理可将大部分有机污染物降解为水和气体(好氧处理产生CO2`O2,厌氧处理产生CH4为住的气体),金属污染物(包括重金属)则不能处理而集中到污泥中。
3、污水中的污染物和营养成分在大量繁殖的细菌作用下,在化学药剂的作用下形成聚集,逐渐增大的团粒结构最终在水中沉淀下来,形成污泥。
污泥是经各级污水处理后产生的固形物,是污水处理厂不可避免的副产品。
三、污泥的分类1、初沉污泥:是一级处理过程中产生的污泥,也就是在初沉池中沉淀下来的污泥。
含水率一般为96%——98%。
2、剩余污泥:指生化处理等二级处理过程中排放的污泥,含水率一般为99.2%以上。
3、消化污泥:是指初沉污泥、剩余污泥经消化处理后达到稳定、无害化的污泥,其中的有机物大部分被消化分解,因而不易腐败,同时污泥中的寄生虫卵和病原微生物被杀灭。
4、化学污泥:指絮凝沉淀和化学深度处理过程中的污泥,如石灰法去除磷、酸碱废水中和以及电解法等产生的沉定物。
四、污水污泥的特性1、物理特性污泥组成为水中悬浮固体经不同方式胶结凝聚而成,结构松散,形状不规则,比表面积与孔隙率极高(孔隙率大于99%),含水率高,脱水性差。
污水处理中的污泥干燥与焚烧
污水处理中的污泥干燥与焚烧在污水处理的过程中,会产生大量的污泥。
这些污泥如果不妥善处理,不仅会对环境造成严重的污染,还会占用大量的土地资源。
污泥干燥与焚烧作为一种有效的处理方法,正逐渐受到广泛的关注和应用。
污泥是污水处理过程中的副产物,它通常含有大量的水分、有机物、病原体、重金属等有害物质。
未经处理的污泥具有较高的含水率,一般在 80%以上,这使得其运输和处置都非常困难。
同时,污泥中的有机物如果不加以处理,会在自然环境中分解产生恶臭气体,对周边环境和居民生活造成不良影响。
此外,污泥中的重金属等污染物如果进入土壤和水体,还会对生态环境和人类健康构成威胁。
污泥干燥是污泥处理的重要环节。
通过干燥,可以显著降低污泥的含水率,使其从初始的 80%以上降低到 30%甚至更低。
常见的污泥干燥方法包括自然干燥、热干燥和冷冻干燥等。
自然干燥是一种传统且简单的方法,它利用太阳能和风能将污泥中的水分蒸发掉。
这种方法成本低,但受天气条件影响较大,干燥时间长,且占地面积较大。
在一些气候干燥、土地资源丰富的地区,自然干燥仍有一定的应用。
热干燥则是利用热能将污泥中的水分蒸发掉。
常见的热干燥设备有转筒干燥器、流化床干燥器等。
热干燥的效率高,干燥时间短,但能耗较大,运行成本较高。
在选择热干燥方法时,需要综合考虑污泥的性质、干燥要求和成本等因素。
冷冻干燥是将污泥冷冻至冰点以下,然后在真空环境下将水分升华除去。
这种方法可以较好地保留污泥中的有机物和微生物活性,但设备投资和运行成本都非常高,目前在实际应用中相对较少。
经过干燥处理后的污泥,其体积和重量都大大减小,为后续的处理和处置提供了便利。
然而,干燥后的污泥仍然含有一定量的有机物和有害物质,需要进一步处理。
焚烧就是一种有效的处理方法。
污泥焚烧是在高温条件下将污泥中的有机物氧化分解,使其转化为二氧化碳、水和灰分等无害物质。
焚烧可以实现污泥的减量化、无害化和资源化。
通过焚烧,污泥的体积可以减少 90%以上,重量可以减少 70%以上。
污泥干燥基本理论和技术支撑点的剖析
机械运动、使用寿命、维护成本的分析
德国卧式圆盘为例:
1
2
3
干燥机中部:
盘被污泥包容(埋)在干燥室~蒸发面积 极小、盘运动扭矩极大、盘与泥的摩擦极 大。
干燥机中后部:
盘被污泥包容(埋)在干燥室~ 干燥状态同上。
干燥机尾部:
污泥含水率减少、粘度减少,污泥 沉积在干燥室中下部,磨擦的蹭亮。
1. 强制摩擦换热,蒸发面积极小; 2. ~80%的干燥旅程存在高黏糊状态,使得干燥工段
PART
06
异物的适应性研究
异物的适应性研究
在远途驳运污泥中,由于管理不到位,往往会不自觉地混入砖 头、瓦砾、石子等,薄层干燥等设备因无有效的异物分选设备,导 致故障频繁发生,维护时间和费用特别高。
造粒干燥,因有异物分选机构而安然无忧!
传质耗能=f*r(迁移阻力和迁移路径的乘积)=动能 =物质外部传导给物质内部的热能转变成动能获得,是蒸发辅助能量消耗。
传质:由于蒸汽分压差(相对湿度差)的存在,水分从物体内部迁移到外表面形成自由水蒸发的 运动过程。
传热传质的分析 传质耗能Q=Fr*R(迁移阻力和迁移路径的乘积)=动能
降低传质耗能的方法:
的动能+热能消耗更高; 3. 与物料全程处于高黏糊、高摩擦状态;
4. 焊缝处于高摩擦区域,污泥硬化后摩擦加剧; 5. 盘面拉钉焊缝在磨损后很难修复或不可修复; 6. 维护成本高、设备使用寿命短; 6. 热能消耗大。
PART
05
粘滞区的滞区是低速搅拌、碾压、挤压 过程“糊化”现象导致,当含水量进 入70%~60%某个阶段,粘性特别大, 所以,在早期污泥干化研究领域, “粘滞区”成了主题!
污泥干燥基本理论和技术支撑点的剖析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污泥干燥的一些知识点
不同的干燥工艺为什么工艺气量不同?
工艺气量的大小决定于工艺本身所采用的热交换形式。
热传导为主的系统,需要的气量小,因为气体主要起湿分离开系统的载体作用;而热对流系统则依赖气体所携带的热量来进行干燥,因此气量较大。
转鼓式干燥器的干燥依靠热对流,因此气量的大小必须满足携带热量的全部需要;
流化床系统也是以热对流为主要换热手段的工艺,由于流化态的形成要求工艺气体具有更高的速度,因此总的气量需求更高;
圆盘式工艺以热传导为主要手段,理论上仅需抽取蒸发量。
但是由于蒸汽在上部易于形成饱和,而下部易于形成高温、高粉尘浓度,因此,气体的流量决定了工艺的安全性和粉尘分布。
涡轮薄层干燥器是采用热对流和热传导两者并重的一种特殊工艺,气量小于纯热对流系统,大约是一个标准热对流系统的1/2-1/3。
转碟式是纯粹的热传导型干燥器,依靠碟片、主轴或热壁的热量与污泥颗粒的接触、搅拌进行换热,其中的热量来自填充在其中的导热油。
这一工艺无需气体。
为什么干燥系统必须抽取气体形成微负压?
抽取微负压的目的有两个:
1)由于干燥系统必须是闭环,在干燥过程中,污泥中携带的某些物质被热解,形成不可凝气体,这些气体无法被冷却水冷凝,因此不断在回路中积聚,最终可能形成饱和。
不可凝气体具有可燃性,这将降低系统内粉尘爆炸下限,给干燥系统带来危险,因此,避免不可凝气体在回路中的饱和是安全性的重要内容之一;
2)大量工艺气体在系统内的流动依靠引风机进行,不可凝气体的积聚,将使得系统内形成超过环境压力的正压,此时,工艺气体可能提供各种可能的缝隙、出口离开回路,形成臭气泄漏,这在安全性和卫生性方面是不可接受的,因此必须通过动力装置(风机)从回路中排出,送往生物过滤器或热源装置处理掉。
干燥机的处理能力是固定的吗?
干燥机的处理能力具有一定的变化区间。
其区别来自两个方面:物料本身性质使得干燥时间延长或缩短;因最终含固率的变化而提高或降低产能。
对于污泥干燥来说,由于污泥的性质决定了大多数干燥工艺必须采用干泥返混,因此,其由于物料本身性质原因而导致的干燥时间变化不大,而凡是采用干泥返混的工艺在最终含固率方面不具有伸缩性,因此,可以说其干燥器的处理能力是“固定”的。
这一点对于无干泥返混的工艺来说就不一样了,最终含固率的改变会导致处理量方面较大的变化。
全干燥和半干燥是怎么划分的?
所谓干燥和半干燥的区别在于干燥产品最终的含水率不同,这一提法是相对的,并没有科学的定义。
“全干燥”指较高含固率的类型,如含固率85%以上;而半干燥则主要指含固率在50-65%之间的类型。
如果说干燥的目的是卫生化,则必须将污泥干燥到较高的含固率,最高可能要求达到90%以上,此时,污泥所含的水分大大低于环境温度下的平均空气湿度,回到环境中时会逐渐吸湿。
如果说干燥的目的仅仅是减量,则会产生不同的含固率要求。
将含固率20%的湿泥干燥到
90%或干燥到60%,其减量比例分别为78%和67%,相差仅11个百分点。
根据最终处置目的的不同,事实上要求不同的含固率。
比如填埋,填埋场的垃圾含固率平均低于60%,要求污泥达到90%意义不大。
将污泥干燥到该处置环境下的平衡稳定湿度,即周围空气中的水蒸气分压与物料表面上的水蒸气压达到平衡,应该是最经济合理的要求。
半干燥时的产能为什么高于全干燥?
有些污泥干燥工艺可以将湿泥处理至含固率50-65%,而这时的处理量明显高于全干燥时的处理量。
其原因有两个:
首先,对于干燥系统来说,干燥时间决定了干燥器的处理量。
当物料的最终含水率较高(所谓半干燥)时,蒸发相同水量的时间要少于最终含水率高的情况(所谓全干燥),单位处理时间内可以有更高的处理量。
其次,污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。