电力电子技术

合集下载

电力电子技术

电力电子技术

图7.32 电压型交直交系统再生制动时的等值电路
38
电力电子技术 PWM整流器在可再生能源中的应用
– 可再生能源(风能、太阳能、潮汐发电、水 力发电等)不可控 ,不能直接并入电网 。
– 太阳能发电并网系统
TD1 TD3 TD5
L C
Salor Array
VDC
Lf
Cf
TD4
TD6
TD2
图7.36 太阳能发电并网系统原理图
18
电力电子技术
其它方面的应用
• 常规电源:不停电电源、开关电源、微机及仪器 仪表电源、航空电源、通信电源等。 • 专用电源:电化学电源、蓄电池充电放电、电子 模拟负载、电解水电源、交流电子稳 压电源、脉冲功率电源等; • 新型能源:如太阳能电池,风力发电等; • 节能: 如利用变频器调节电动机转速
30
电力电子技术
三、整流电路基本工作原理
• 整流——交流到直流的变换
– 不控整流(二极管) – 相控整流(晶闸管) – PWM整流(IGBT)
31
电力电子技术
相控整流电路的一般结构
• 主电路: -交流电源:工频电网或整流变压器
-滤波器:为保证电流连续
-负载:阻性负载、阻感负载、反电势负载等 • 控制电路:模拟控制、数字控制、单片机、DSP
32
电力电子技术
单相桥式全控整流电路
• 工作原理(正半周)
ud
0 π
2 π
-ωt=:发脉冲,T1T4导通
-ωt=π:iT1=iT4=Id,T1T4仍然 导通,T2T3承受正电压
Ud
ωt
a
i2
u2 u2
i2 Id
u2
-ωt =π+:T2T3导通,T1T4

电力电子技术课件

电力电子技术课件
电力电子学 (Power Electronics)名称60年代 出现; 1974年,美国的W. Newell用图1的倒三角形 对电力电子学进行了描 述,被全世界普遍接受;
电子学 电力 电子学
连续、离散
电力学
控制 理论
图1 描述电力电子学的倒三角形 7
与电子学(信息电子学)的关系 电子学(信息电子学)
3
1.1
信息电子技术
电力电子与信息电子
电力电子技术---电力电子技术----使用电 ----使用电 力电子器件对电能进行变换
电力电子技术
电子技术
和控制的技术,包括电压、 频率、电流、波形等电量的 变换技术。即用于电力领域 的电子技术。
模拟电子技术
数字电子技术
信息电子技术——信息处理 信息电子技术——信息处理 电力电子技术——电力变换 电力电子技术——电力变换 电子技术一般即指信息 电子技术,广义而言,也包 括电力电子技术。
目前电力电子器件均用半 导体制成,也称电力半导体 器件。 电力电子技术变换的“电 力”,可大到数百MW甚至 力”,可大到数百MW甚至 GW,也可小到数W甚至 GW,也可小到数W mW级。 mW级。 4
1.2
两大分支
电力电子器件制造技术 电力电子技术的基础, 电力电子技术的基础,理论基础是半导体物理 变流技术(电力电子器件应用技术) 变流技术(电力电子器件应用技术) 用电力电子器件构成电力变换电路和对其 进行控制的技术, 进行控制的技术,以及构成电力电子装置 和电力电子系统的技术。 和电力电子系统的技术。 电力电子技术的核心, 电力电子技术的核心,理论基础是电路理 论。
8
与电力学(电气工程)的关系 电力学(电气工程)
•电力电子技术广泛用于电气工程中

电力电子技术_基础知识

电力电子技术_基础知识

电力电子系统集成化研ቤተ መጻሕፍቲ ባይዱ成为热点,目前主要集中
于电力电子器件与控制电路的集成、磁性元件的集 成两大块。
三、电力电子技术的应用
电源
弧焊电源 电解、电镀电源 不停电电源(UPS) 恒频恒压电源 直流开关电源 充电电源 感应加热电源 脉冲电源、激光电源 。。。
数码产品广泛应用各类开关电源
新能源应用
风能、太阳能、潮汐能、地热能等应用
电网电源常见问题波形示意图
未来电力系统将大量应用电力电子 技术以提高电力品质和供电效率
风力、太阳能发电系统
风力发电
太阳能发电
三、电力电子技术的应用
照明
各类气体放电灯 电子镇流器 LED照明驱动器
西湖夜景
杭州湾大桥
集中运行中心
面向军事应用领域举例
电力电子技术与电能控制的关系
一、什么是电力电子学
典型的电力电子系统
电流采样
二、电力电子技术的发展与现状
电力电子器件的进步推动电力电子学的变革发展
1957年通用电气公司发明晶闸管,标志着电力电子技术的 诞生,相控变换技术广泛应用;
20世纪70年代后期,GTO、GTR、P-MOSFET迅速发
展,PWM控制技术推广应用; 20世纪80年代后期,IGBT开始推广应用,大功率变换进
入以IGBT+PWM技术为主流的时代;
20世纪90年代,为降低器件开关损耗,软开关技术开始推 广应用;
二、电力电子技术的发展与现状
进入21世纪以后
为了实现高频和低 EMI 的大功率变换,多电平变换 技术逐步推广应用;
船用操作变流器模块
配电模块
燃料电池

《电力电子技术》学习资料

《电力电子技术》学习资料

《电力电子技术》学习资料概述本文档旨在提供关于电力电子技术的研究资料,帮助读者了解该领域的基本概念和原理。

1. 电力电子技术简介- 电力电子技术是指利用电子器件和电力技术,将电能进行控制、变换和传输的技术领域。

- 电力电子技术广泛应用于电力系统、工业控制、电动车辆、电力传输等领域。

2. 电力电子技术的重要原理与器件2.1 可控硅器件- 可控硅器件是电力电子技术中最基本的器件之一。

- 可控硅器件可以实现对电能的方向、大小以及周期进行控制,广泛应用于电动机控制、电能变换等领域。

2.2 逆变器与变频器- 逆变器用于将直流电转换为交流电,常用于太阳能发电系统、UPS系统等。

- 变频器用于控制交流电机的转速和转矩,广泛应用于变频空调、工业驱动等领域。

2.3 共模电路- 共模电路用于电力系统的滤波和隔离。

- 共模电路能够有效抑制电力系统中的干扰信号和电磁波。

2.4 光伏逆变器- 光伏逆变器是将光伏电池所产生的直流电转换为交流电的装置。

- 光伏逆变器广泛应用于太阳能发电系统,为电网注入可再生能源。

3. 电力电子技术的应用3.1 电力系统- 电力电子技术在电力系统中起到重要作用,可以实现电力的传输、分配和控制。

- 电力电子技术能够提高电力系统的稳定性和效率。

3.2 工业控制- 电力电子技术在工业控制中应用广泛,如电动机控制、自动化生产线等。

- 电力电子技术可以实现对电力的精确控制和调节。

3.3 电动车辆- 电力电子技术是电动车辆关键技术之一。

- 电力电子技术可以实现电动车辆的电能转换和控制,提高能源利用效率。

3.4 可再生能源- 电力电子技术在可再生能源的应用中起到重要作用。

- 电力电子技术可以将风能、光能等可再生能源转换为可用的电能,推动可再生能源的开发利用。

总结本文档介绍了电力电子技术的基本概念、重要原理与器件,以及其在电力系统、工业控制、电动车辆和可再生能源中的应用。

通过学习电力电子技术,读者可以更深入了解和应用这一领域的知识。

电力电子技术学习培训教程

电力电子技术学习培训教程

电力电子技术学习培训教程一、电力电子技术概述电力电子技术是一门通过电子器件(如晶体管、整流器、逆变器等)控制电能的技术,以提高能源利用率、降低能源消耗和污染,进一步推动工业化、城市化和信息化进程。

电力电子技术主要包括直流调制、交流调制、功率控制、脉宽调制等方面的内容,涉及电力电子器件的工作原理、性能参数、应用范围等。

二、电力电子技术学习培训内容1.基础知识(1)电力电子器件的分类和工作原理常见的电力电子器件包括整流管、晶闸管、场效应管、双极晶体管、可控硅等,学员需了解这些器件的工作原理、特性参数、应用范围等。

(2)电力电子电路的基本结构和原理学员需了解电力电子电路的基本结构、工作原理和常见的控制方法,如PWM调制、频率调制、谐波抑制等。

(3)电力电子系统的应用领域和发展趋势学员需了解电力电子技术在新能源发电系统、电力传输、工业控制等领域的应用情况和未来发展趋势。

2.实践技能(1)电力电子器件的选型与应用学员需要学习如何根据具体的应用需求选择合适的电力电子器件,并掌握相关的电路设计和调试技能。

(2)电力电子系统的设计与控制学员需要学习如何设计和控制电力电子系统,包括功率电子变换器、逆变器、整流器等。

(3)电力电子系统的故障诊断与维护学员需要学习如何进行电力电子系统的故障诊断和维护,掌握相关的故障排除方法和维护技能。

3.案例分析通过实际的电力电子系统案例分析,学员能够更深入地了解电力电子技术的应用和发展,并从中获取设计和应用技巧。

4.实验训练学员需要进行一定数量的实验训练,通过实际操作来掌握电力电子技术的相关知识和技能。

三、电力电子技术学习培训的要求和方法1.学员要求学员需要具有一定的电子技术和电路基础知识,具备一定的电子器件和电路设计能力,对电力电子技术感兴趣并有一定的实践动手能力。

2.培训方法(1)理论讲授通过讲师的系统讲解、理论课件、实例分析等方式向学员传授电力电子技术的基础知识和相关理论。

(2)实践操作通过实验室实践、实际案例分析、项目设计等方式,让学员进行一定数量的实际操作和应用训练。

电力电子技术在电气工程中的应用

电力电子技术在电气工程中的应用

电力电子技术在电气工程中的应用电力电子技术是指利用电子技术处理和控制电能的技术。

在电气工程中,电力电子技术广泛应用于能量的转换、控制和调节等方面。

下面将从电力电子器件、电力电子系统和电力电子应用领域三个方面来介绍电力电子技术在电气工程中的应用。

一、电力电子器件电力电子器件是电力电子技术的基础,主要包括整流器、逆变器、功率变压器等。

整流器可以将交流电转换为直流电,逆变器则可以将直流电转换为交流电,功率变压器则可以实现电能的调节和变换。

这些电力电子器件在电气工程中广泛应用于电网输电、电力变频调速、电源供应等领域。

二、电力电子系统电力电子系统是由多个电力电子器件组成的系统,主要用于电能质量控制、环境保护和能源利用等方面。

柔性交流输电系统利用逆变器和换流器实现电能在不同的电网之间的转换,实现电能的有效输送;电动车充电系统利用整流器和逆变器控制电流和电压,实现电动车的快速充电。

这些电力电子系统在电气工程中起到了重要的作用。

三、电力电子应用领域电力电子技术在电气工程中的应用领域非常广泛。

以下是一些典型的应用领域:1. 可再生能源利用:太阳能发电和风能发电利用逆变器将直流电转换为交流电,并将电能输送到电网上。

电力电子还用于控制和调节光伏电池组、风力发电机等设备,提高可再生能源的利用效率。

2. 电机驱动控制:电力电子技术广泛应用于电机驱动系统中,例如交流传动、直流传动和步进电机驱动等。

电机驱动控制系统能够实现电机的高效率运行和精确控制,大大提高了电机的使用效率。

3. 电力调节:电力电子技术可以实现对电能的调节和控制,例如电力变频调速、电力调压和电力调相等。

这些调节控制能力可以使电能适应不同的负载和电网条件,提高能源的利用效率。

4. 电力传输和配电:电力电子器件和系统在电力传输和配电中起到了关键作用。

高压直流输电系统利用逆变器和换流器实现电能的长距离传输;变频调速系统用于工业生产中的电动机控制。

这些应用能够提高电力传输的效率和稳定性。

电力电子技术的研究内容

电力电子技术的研究内容
电力电子技术
高 压 直 流 输 电
静 止 无 功 补 偿
电 力 机 车 牵 引
交 直 流 电 力 传 动
电 解
电 镀
电 加 热
高 性 能 交 直 流 电 源
9Байду номын сангаас
3、PE和控制理论
控制理论
电力电子装置 是自动化的
电力电子技术
实 现
基础 元件
支撑 技术
弱电和强电接口
弱电控制强电
10
4、地位和未来
电力电子技术 控制技术
3、电力系统
无功补偿装置
晶闸管变流装置
20
4、电子装置用电源
电子装置
程控交换机
微型计算机
5、家用电器
变频空调控制器
交流变频控制器的原理框图
直流变频空调的电路原理图
22
6、其他
大型计算机的UPS
航天技术
YJ32双绕组双速异步风力发电机
新型能源
四、电力电子技术的发展概况
史前期 (黎明期) 晶闸管问 世,(“公元 元年”)
25
都分为器件与应用
电子器件 制造技术 电力电子 器件制造技术
理论基础、材料、制造工艺
电子电路 电力电子 电路
分析方法、分析软件
7
电力电子电路——电力变化和控制 电子电路——信息处理
功率输出
电子电路
电力电子电路
电力电子 电路器件
功率放大
信息电子电路器件
开关状态
放大状态
开关状 态
8
2、PE和电力学
电气工程 电力电子学和电力学关系 电力电子技术广泛用于电气工程
电 力 电 子 技 术
中国石油大学信控学院 电气工程系 主讲:冯兴田

电力电子技术

电力电子技术

拓扑结构
常见的升降压型DC/DC变换器拓 扑结构包括Buck-Boost电路、
Zeta电路等。
应用领域
升降压型DC/DC变换器在需要宽 范围电压输入的场合中得到了广 泛应用,如电动汽车充电桩、工
业自动化设备、通信设备等。
2024/1/28
19
05交流-Leabharlann 流变换技术2024/1/28
20
交流调压电路原理及分类
分类
根据控制信号的性质,交流调功电路可分为 模拟控制交流调功电路和数字控制交流调功 电路。
2024/1/28
22
交流电力电子开关及应用
交流电力电子开关
是一种能够控制交流电通断的开关器件,具 有快速、可靠、节能等优点。常见的交流电 力电子开关有晶闸管、双向晶闸管、可关断 晶闸管等。
2024/1/28
拓扑结构
应用领域
升压型DC/DC变换器在太阳能发电、 风力发电等新能源领域,以及电动汽 车、电动自行车等交通工具中得到了 广泛应用。
常见的升压型DC/DC变换器拓扑结构 包括Boost电路、Sepic电路等。
2024/1/28
18
升降压型DC/DC变换器
工作原理
升降压型DC/DC变换器结合了降 压型和升压型变换器的特点,可 以实现输入电压的升降压转换。
电力电子技术
2024/1/28
1
目录 CONTENTS
• 电力电子技术概述 • 电力电子器件 • 整流与逆变技术 • 直流-直流变换技术 • 交流-交流变换技术 • 电力电子技术应用实例分析
2024/1/28
2
01
电力电子技术概述
2024/1/28
3
定义与发展历程

电力电子技术概述

电力电子技术概述

电力电子技术概述电力电子技术是指在电力系统中应用电子元器件和电子技术,从而实现对电能的调节、变换和控制的一门技术。

它在现代电力系统中扮演着重要的角色,对于提高电力传输、转换和利用效率起到至关重要的作用。

本文将概述电力电子技术的基本原理、应用领域和未来发展趋势。

一、基本原理电力电子技术的基本原理是通过应用晶体管、二极管、开关等电子元件,实现对电能的调节和控制。

通过改变电压、电流的形状、频率和幅值来实现对电能的变换。

电力电子技术的核心是开关技术和变换技术。

1. 开关技术:开关技术是指通过控制开关的通断状态,来控制电流和电压的变化。

常见的开关元件有晶体管、功率开关管等。

通过合理的开关控制,可以实现电流的调节、电压的变换等功能。

2. 变换技术:变换技术是指通过变换电流和电压的形状、频率和幅值,将电能从一种形式转换为另一种形式。

常见的变换技术有直流-直流变换、直流-交流变换等。

通过变换技术,可以将电能从电网中提取出来,或者将直流电能转换为交流电能。

二、应用领域电力电子技术在多个领域广泛应用,其中包括能源转换、电力传输和利用、电动汽车等。

1. 能源转换:电力电子技术在可再生能源领域发挥着重要作用。

通过电力电子技术,可以将太阳能、风能等可再生能源转换为电能,从而实现清洁能源的利用。

2. 电力传输和利用:电力电子技术在电力系统中的传输和利用环节起着关键作用。

通过电力电子技术,可以实现高压交流输电与变频无级调速控制,提高电力传输效率和系统稳定性。

3. 电动汽车:电力电子技术在电动汽车领域的应用不断增加。

通过电力电子技术,可以实现电动汽车的充电与放电控制、能量回馈、效率提升等功能,推动电动汽车的发展与普及。

三、未来发展趋势随着能源需求的不断增长和环境问题的日益突出,电力电子技术将在未来得到更广泛的应用和发展。

1. 高效能源转换:未来电力电子技术将更加注重能源转换的高效率。

通过研究和改进电力电子器件的性能,提高能源转换效率,减少能源损失,从而推动清洁能源的大规模利用。

电力电子技术第5版pdf-2024鲜版

电力电子技术第5版pdf-2024鲜版
应用领域
无源逆变电路常用于一些对输出波形要求不高的场合,如小功率电源 、照明等。
2024/3/28
23
逆变电路的应用与特点
应用领域:逆变电路在新能源发电、电动汽车、UPS、 电力拖动等领域有着广泛的应用,是实现电能高效转换 和利用的关键技术之一。 能够实现直流电能与交流电能之间的转换;
具有较高的转换效率和功率因数;
UPS主要由整流器、逆变器、蓄电池组和静态开关等组成,根据工作方式可分为在 线式、后备式和在线互动式三种类型。
2024/3/28
UPS广泛应用于计算机、通信、数据中心、医疗设备等领域,保障关键负载在市电 异常时的正常运行。
35
变频调速器
变频调速器是一种通过改变电机供电频率来实现电机速度调节的装置,广泛应用于风机、水泵、压缩 机等负载的节能控制。
晶闸管
一种具有三个PN结的四层结构的大功率半导体器件,可以承受高电压和大电流,具有开 关速度快、寿命长等优点。在交流电力电子开关中广泛应用。
可关断晶闸管(GTO)
具有自关断能力的一种晶闸管,可以通过门极负脉冲或阳极电流下降来实现关断。GTO具 有高电压、大电流、高开关速度等优点,适用于高压、大功率的交流电力电子开关。
环保意识的提高将推动电力电子技术向绿色化方向发展,减少对环境 的影响,提高能源利用效率。
集成化
随着集成电路技术的不断发展,电力电子技术的集成度将不断提高, 实现更小的体积和更高的可靠性。
6
02
电力电子器件
2024/3/28
7
不可控器件
工作原理
利用PN结的单向导电性
特点
结构简单、价格低廉、工作可靠
源的转换、储存和并网等功能。
5
电力电子技术的未来趋势

2024版《电力电子技术》PPT课件

2024版《电力电子技术》PPT课件

电力电子技术的定义与发展01020304定义晶闸管时代可控硅时代现代电力电子时代用于高压直流输电、无功补偿、有源滤波等,提高电力系统的稳定性和效率。

用于电动汽车、电动自行车、电梯等电机驱动系统,实现高效、节能的电机控制。

用于太阳能、风能等新能源发电系统,实现能源的高效利用和转换。

用于自动化生产线、机器人等工业设备,实现设备的精确控制和高效运行。

电力系统电机驱动新能源工业自动化数字化与智能化随着计算机技术和人工智能的发展,电力电子技术将实现数字化和智能化,提高系统的自适应能力和智能化水平。

高频化与高效化随着半导体材料和器件的发展,电力电子技术将实现更高频率和更高效率的电能转换。

绿色化与环保化随着环保意识的提高,电力电子技术将更加注重绿色、环保的设计理念,降低能耗和减少对环境的影响。

工作原理特点应用整流电路、续流电路等工作原理通过门极触发导通,无法自行关断特点耐压高、电流大、开关速度快应用直流电机调速、交流调压等工作原理特点应用工作原理特点应用逆变器、斩波器、电机驱动等工作原理特点应用工作原理开关速度快、耐压高、电流大、热稳定性好应用逆变器、斩波器、电机驱动等高端应用领域特点VS整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用整流电路逆变电路逆变电路的作用逆变电路的分类逆变电路的工作原理逆变电路的应用直流-直流变流电路直流-直流变流电路的作用直流-直流变流电路的分类直流-直流变流电路的工作原理直流-直流变流电路的应用交流-交流变流电路交流-交流变流电路的作用交流-交流变流电路的工作原理A B C D交流-交流变流电路的分类交流-交流变流电路的应用电机驱动照明控制加热与焊接030201一般工业应用交通运输应用电动汽车驱动轨道交通牵引航空电源电力系统应用高压直流输电柔性交流输电通过电力电子技术可实现高压直流输电,减少输电损耗和占地面积。

智能电网风能发电通过电力电子技术可实现风能发电系统的变速恒频控制和并网运行。

电力电子技术

电力电子技术

交直流电流变换器
功率调节器
返回 上页 下页 第十三页,共五十二页。
变流技术
第一章电力电子技术的发展
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池得到 的是直流。
电力变换四大类
交流变直流、直流变交流、直流变直流、交流变交流
输入
表1 电力变换的种类
输出
直流
交流
整流
交流
交流电力控制 变频、变相
返回 上页 下页 第三页,共五十二页。
第一章电力电子技术的发展
电力电子类似于微电子学技术,都是基于硅材料应用 科学的一个分支,采用硅分子渗透技术。
交流电 脉冲
电磁辐射
电能量 激光束
直流电
返回 下 页 第四页,共五十二页。
第一章电力电子技术的发展
电力电子技术市场取决于它的成本、可靠性,以及电力应 用中新技术有效性。
二者同根同源。
返回 上页 下页 第九页,共五十二页。
第一章电力电子技术的发展
※ 与相关学科的关系
与电力学(电气工程)的关系
电力电子技术广泛用于电气工程中
高压直流输电 静止无功补偿 电力机车牵引 交直流电力传动 电解、电镀、电加热、高性能交直流电源
国内外均把电力电子技术归为电气工程的一个
分支。
电力电子技术是电气工程学科中最为活跃的一个
返回 上页 下页 第三十三页,共五十二页。
第一章电力电子技术的发展
静电感应式晶体管(SIT) 静电感应式晶闸管(SITH) MOS晶闸管(MCT)
开关频率高
耐压性高 电流容量大
可以构成大功率、高频的电力电子电路。
IGBT开关频率比BJT高很多,在正向偏置安全工作 区内可以不需要缓冲器。

电力电子技术_基础知识

电力电子技术_基础知识

电力电子技术_基础知识一、内容简述本文将阐述电力电子技术的定义与发展历程,及其在现代能源系统中的地位和作用。

我们将让读者理解电力电子技术是如何通过半导体器件将电能从源头转换到最终用户的过程。

此外还将介绍电力电子技术在可再生能源、工业控制、交通运输等领域的应用及其发展趋势。

本节将介绍电力电子系统中的主要组成部分——电力电子转换器与变换器。

这些设备是电力电子技术中的核心部件,用于实现交流(AC)和直流(DC)之间的转换,电压和电流的控制以及调整。

本部分将介绍不同类型转换器的工作原理和特性,并探讨其在各种应用场景中的应用。

本节将详细介绍在电力电子系统中使用的半导体器件和功率模块。

包括二极管、晶体管(如IGBT)、场效应晶体管(MOSFET)等的基本工作原理及其在电力转换和控制中的应用。

此外还将探讨这些器件的性能参数、特点及其在高性能电力系统中的应用挑战。

本部分将介绍电力电子系统中的控制技术和调制策略,通过适当的控制方法,可以实现电力电子系统的稳定运行和精确控制。

本部分将讨论不同类型的控制方法(如PWM调制、空间矢量调制等)以及它们在电力电子系统中的应用和实现。

电力电子系统的安全和稳定运行至关重要,本部分将介绍在电力电子系统中使用的保护和故障诊断技术。

这些技术可以确保系统在异常情况下安全运行并避免损坏,本部分将探讨不同类型的保护措施(如过流保护、过电压保护等)以及现代故障诊断技术的应用和发展趋势。

1. 介绍电力电子技术的概念及其在现代社会的重要性电力电子技术是一种结合了电力工程与电子工程的理论和技术的跨学科领域。

它主要研究利用半导体器件进行电能转换、控制和优化的技术。

简单来说电力电子技术就是研究如何将电能从一种形式转换为另一种形式,以满足不同设备和系统的需求。

这种技术在现代社会中扮演着至关重要的角色,涉及到我们日常生活中的方方面面。

随着科技的快速发展,电力电子技术的重要性日益凸显。

在现代社会的各个领域,从工业制造、交通运输、通讯设备,到家庭生活、数据中心以及可再生能源系统,几乎无处不在都需要电力电子技术的支持。

电力电子技术总结

电力电子技术总结

电力电子技术总结1. 引言电力电子技术是应用于能量转换、控制与调节的一门关键技术。

随着能源需求的不断增加和环境保护意识的增强,电力电子技术在电力系统、可再生能源和电动汽车等领域中的应用越来越广泛。

本文将对电力电子技术的基本原理、应用领域以及未来发展趋势进行总结和分析。

2. 电力电子技术概述电力电子技术是利用半导体器件和电磁元器件将电能转化为所需的形式,并进行各种功能的控制和调节的技术。

它包括直流/交流变换、能量调节、频率调节、电力质量改善等方面。

电力电子技术广泛应用于电力系统、工业控制和电动交通等领域。

主要的电力电子器件有晶闸管、功率场效应管、不可控硅、可控硅等。

这些器件通过电压和电流的控制来实现电能的转换和调节。

同时,电力电子技术也离不开控制电路、滤波电路和保护电路等配套技术。

3. 电力电子技术的应用3.1 电力系统电力电子技术在电力系统中的应用非常广泛。

它可以提供稳定的电压和频率,并对电力质量进行改善。

使用电力电子技术的设备,如交流输电系统、变压器和静止无功补偿装置,可以提高电力系统的稳定性、效率和可靠性。

3.2 可再生能源随着可再生能源的快速发展,电力电子技术在太阳能光伏、风能和潮汐能等领域的应用越来越重要。

通过电力电子转换器,可以将不稳定的可再生能源转化为稳定的电能,以满足电网的需求。

此外,电力电子技术还可以实现能量回馈和储能,提高可再生能源的利用效率。

3.3 电动交通电动汽车作为一种清洁能源车辆,正逐渐成为未来交通运输的主流。

电力电子技术在电动汽车中起到关键作用,包括电池充电器、电机驱动器和能量回馈装置等。

借助电力电子技术,电动汽车可以实现高效、安全和可持续的能源利用。

4. 电力电子技术的发展趋势4.1 高效能量转换未来的电力电子技术将更加注重能量转换的效率,以减少能源浪费和减少对自然资源的依赖。

高效能量转换器件的研发,如功率场效应管和新型半导体材料,将成为发展的重点。

4.2 多能源互联随着多能源系统的普及,电力电子技术也将面临更多的挑战。

电力电子技术

电力电子技术

电力电子技术第一部分一、电力电子技术的定义电力电子技术是一门利用电力电子器件、电路理论和控制技术对电能进行处理、控制和变换的学科,是现代电子学的一个重要分支,也是电工技术的分支之一。

电力电子技术是应用于电力领域的电子技术。

具体地说,就是使用电力电子器件对电能进行变换和控制的技术。

二、电力电子技术的研究内容电力电子技术的研究内容:1、电力电子器件2、变流技术3、控制技术或者说,电力电子技术的研究内容:电子学、电力学、控制理论三、与其它学科的关系1、与微电子学的关系三个相同点:(1)都分为电子器件和电子电路两大分支,二者同根同源(2)两类器件制造技术的理论基础相同;(3)制造工艺也基本相同。

两个不同点:(1)应用目的不同——前者用于电力变换,后者用于信息处理;(2)工作状态不同——在微电子技术中,器件既可以处于放大状态,也可以处于开关状态;而在电力电子技术中为避免功率损耗过大,电力电子器件总是工作在开关状态。

2、与电力学(电气工程)的关系(1)电力电子技术广泛用于电气工程中;(2)国内外均把电力电子技术归为电气工程的一个分支;(3)电力电子技术是电气工程学科中最为活跃的一个分支。

3、与控制理论的关系(1)控制理论广泛用于电力电子系统中;(2)电力电子技术是弱电控制强电的技术,是弱电和强电的接口,控制理论是这种接口的有力纽带;(3)电力电子装置是自动化技术的基础元件和重要支撑技术。

四、电力电子技术的发展历史美国通用电气公司研制出第一个工业用的普通晶闸管,标志电力电子技术的诞生1、传统电力电子技术电力电子器件以半控型的晶闸管为主,变流电路以相控电路为主,控制电路以模拟电路为主。

2、现代电力电子技术现代电力电子技术在器件、电路及其控制技术方面与传统电力电子技术相比主要有如下特点:A、集成化B、高频化C、全控化D、控制电路弱电化E、控制技术数字化3、电力电子技术的发展展望科学家预言,电力电子技术和运动控制一起,将和计算机技术共同成为未来科学技术的两大支柱。

电力电子技术与应用

电力电子技术与应用

电力电子技术与应用电力电子技术是指利用半导体器件和电磁元件等电子器件,对电力进行高效、稳定的转换与控制的技术领域。

它在现代电力系统和电力设备中扮演着至关重要的角色。

本文将从电力电子技术的定义、应用、发展趋势等方面进行探讨。

一、电力电子技术的定义电力电子技术是指利用电子器件对电能进行调节、变换、控制的技术。

电力电子器件一般具有高功率、高频率、高唯一性和高可靠性等特点,主要包括晶体管、可控硅、IGBT等。

电力电子技术通过改变电路的开关状态和电源工作方式,实现电能的调整和转换,从而满足电力系统对不同形式电能的需求。

二、电力电子技术的应用1. 高压直流输电技术高压直流输电是电力电子技术的一项重要应用。

通过将交流电能转换为直流电能,再进行输送,可以有效降低输电损耗,提高电网稳定性。

高压直流输电技术在远距离、大容量输电方面具有明显优势,已广泛应用于长距离跨区域输电工程。

2. 可再生能源发电技术电力电子技术在可再生能源发电中起到了关键作用。

风力发电、光伏发电等可再生能源具有不稳定性和间歇性,而电力电子技术可以实现对可再生能源的有效调节和控制,使其能够稳定地并入电力系统。

此外,电力电子技术还可以实现电能的质量改善和功率因数校正。

3. 变频调速技术变频调速技术是电力电子技术在电机控制领域的应用。

通过电力电子器件对电机进行调节,可以实现电机转速的连续调整和转矩的精确控制。

变频调速技术广泛应用于电力、化工、交通等行业,可以实现能量的高效利用和运行的平稳可靠。

4. 无功补偿技术无功补偿是电力电子技术在电力系统中的重要应用之一。

通过电力电子器件对无功功率的生成和吸收进行调节,可以实现电网的无功功率平衡和电压稳定控制。

无功补偿技术对提高电力系统的电能质量和稳定性具有重要意义。

三、电力电子技术的发展趋势1. 高功率、高可靠性随着电力需求的增长和电力器件技术的不断进步,电力电子技术将朝着高功率、高可靠性方向发展。

电力电子器件的集成化和可靠性的提升将进一步推动电力电子技术的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、从晶闸管开始承受正向电压的到晶闸管导通时刻的电度角称为( )。

1. 控制角2. 延迟角3. 滞后角4.重叠角2、当晶闸管承受反向阳极电压时,不论门极加何种极性触发电压,管子都将工作在( )1. 导通状态2. 关断状态3. 饱和状态4.不定3、如某晶闸管的正向阻断重复峰值电压为745V ,反向重复峰值电压为825V ,则该晶闸管的额定电压应为 。

1. 700V2. 750V3. 800V4.850V4、快速熔断器可以用于过电流保护的电力电子器件是 。

1. 功率晶体管2. IGBT3. 功率MOSFET4.晶闸管5、三相半波可控整流电路的自然换相点是 。

1. 交流相电压的过零点2. 本相相电压与相邻相电压正、负半周的交点处3. 比三相不控整流电路的自然换相点超前30°4.比三相不控整流电路的自然换相点滞后60°6、在一般可逆电路中,最小逆变角βmin 选在下面那一种围合理 。

1. 30o -35o2. 0o -15o3. 0o-10o4.0o7、可实现有源逆变的电路为 。

1. 三相半波可控整流电路2. 三相半控桥整流桥电路3.单相全控桥接续流二极管电路4.单相半控桥整流电路8、晶闸管触发电路中,若改变 的大小,则输出脉冲产生相位移动,达到移相控制的目的。

1. 同步电压2. 控制电压3. 脉冲变压器变比4.控制电流9、α为 时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 0度2. 30度3. 60度4.90度10、单相全控桥式有源逆变电路,控制角为a ,则输出电压的平均值为( )1. Ud=1.17U2cosa2. Ud=0.9U 2cosa3. Ud=-2.34U 2cosa4.Ud=0.45U 2cosa11、压敏电阻在晶闸管整流电路中主要是用来( )1. 分流2. 降压3. 过电压保护4.过电流保护12、在PWM 逆变电路的相电压正弦波调制信号中叠加适当的3次谐波,使之成为鞍形波的目的在于( )1. 消除谐波分量2. 包含幅值更大的基波分量3. 减少开关次数4.削弱直流分量13、下列全控器件中,属于电流控制型的器件是( )。

1. P-MOSFET2. SIT3. GTR4.IGBT14、若晶闸管电流有效值是157A ,则其额定电流为 ( )1. 157A2.100A4.246.5A15、在PWM 斩波方式的开关信号形成电路中,比较器反相输入端加三角波信号,同相端加( )1. 正弦信号2. 方波信号3. 锯齿波信号4.直流信号16、可在第一和第四象限工作的变流电路是( )1. 三相半波可控变流电路2. 单相半控桥3. 接有续流二极管的三相半控桥4.接有续流二极管的单相半波可控变流电路17、IGBT 是一个复合型的器件,它是( )1. GTR 驱动的MOSFET2. MOSFET 驱动的GTR&"160;3. MOSFET 驱动的晶闸管4.MOSFET 驱动的GTO18、对于电阻负载单相交流调压电路,下列说法错误的是( )1. 输出负载电压与输出负载电流同相2. α的移项围为00<α<18003. 输出负载电压UO 的最大值为U14.以上说法均是错误的19、降压斩波电路中,已知电源电压Ud=16V ,负载电压Uo=12V ,斩波周期T=4ms ,则开通时Ton=1. 1ms2. 2ms3. 3ms4.4ms20、有源逆变发生的条件为( )1. 要有直流电动势2. 要求晶闸管的控制角大于90度3. 直流电动势极性须和晶闸管导通方向一致4.以上说法都是对的21、单相全控桥式整流电路电阻性负载中,控制角的最大移相围是( )2. 120° &"1603. 150°4.180°22、逆变电路是一种( )变换电路1. AC/AC2. DC/AC3. DC/DC4.AC/DC23、直流斩波电路是一种( )变换电路。

1. AC/AC2. DC/AC3. DC/DC4.AC/DC24、已经导通的晶闸管的可被关断的条件是流过晶闸管的电流( )1. 减小至维持电流以下2. 减小至擎住电流以下3. 减小至门极触发电流以下4.减小至5A 以下25、在型号KP10-12G 中,数字10表示( )1. 额定电压10V2. 额定电流10A3. 额定电压1000V4.额定电流100A26、触发电路中的触发信号应具有( )1. 足够大的触发功率2. 足够小的触发功率3. 尽可能缓的前沿4.尽可能窄的宽度27、有源逆变发生的条件为( )1. 要有直流电动势2. 要求晶闸管的控制角大于9003. 直流电动势极性须和晶闸管导通方向一致4.以上说法都是对的28、三相半波可控整流电路在换相时,换相重叠角γ的大小与哪几个参数有关( )。

1. α、Id 、 X L 、U22. α、Id3. α、U24.α、U2、X L29、变流装置的功率因数总是 ( )。

1. 大于12. 等于13. 小于1大于04.为负30、IGBT 属于( )控制型元件。

1. 电流2. 电压3. 电阻4.频率31、晶闸管的伏安特性是指( )1. 阳极电压与阳极电流的关系2. 门极电压与阳极电流的关系3. 阳极电压与门极电流的关系4.门极电压与门极电流的关系32、降压斩波电路中,已知电源电压Ud=16V ,导通比0.75,则负载电压U0=( )1. 64V2. 12V3. 21V4.4V33、电流型三相桥式逆变电路,120°导通型,则在任一时刻开关管导通的个数是不同相的上、下桥臂( )1. 各一只2. 各二只3. 共三只4.共四只34、具有自关断能力的电力半导体器件称为( )1.全控型器件2.半控型器件3. 不控型器件4.触发型器件35、α为( )度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 02. 603. 304.12036、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差( )度。

1. 1802. 603. 3604.12037、一般认为交交变频输出的上限频率( ) 。

1. 与电网有相同的频率2. 高于电网频率3. 可达电网频率的80%4.约为电网频率的1/2~1/338、在一般可逆电路中,最小逆变角βmin 选在下面那一种围合理( )。

1. 30°-35°2. 10°-15°3. 0°-10°4.0°39、α为( )时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 0°2. 60°3. 30°4.120°40、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差( )度。

1. 1802. 603. 3604.12041、在三相三线交流调压电路中,输出电压的波形如图所示,在t2~t3时间段,有( )晶闸管导通。

<="" span="" style="box-sizing: border-box;1. 1个2. 2个3. 3个4. 4个42、对于单相交交变频电路如下图,在t2~t3时间段,P组晶闸管变流装置与N组晶闸管变流装置的工作状态是()<="" span="" style="box-sizing: border-box; border: 0px; vertical-a1. P组阻断,N组整流2. P组阻断,N组逆变3. N组阻断,P组整流4. N组阻断,P组逆变43、降压斩波电路中,已知电源电压Ud=16V,负载电压Uo=12V,斩波周期T=4ms,则开通时Ton=()1. 1ms2. 2ms3.3ms4. 4ms44、三相半波可控整流电路中,晶闸管可能承受的反向峰值电压为()1.2.3.4.45、若增大SPWM逆变器的输出电压基波频率,可采用的控制方法是()1.增大三角波幅度2.增大三角波频率3.增大正弦调制波频率4.增大正弦调制波幅度46、三相半波可控整流电路的自然换相点是()1.交流相电压的过零点2.本相相电压与相邻相电压正半周的交点处3.比三相不控整流电路的自然换相点超前30°4.比三相不控整流电路的自然换相点滞后60°47、晶闸管稳定导通的条件()1.晶闸管阳极电流大于晶闸管的擎住电流2.晶闸管阳极电流小于晶闸管的擎住电流3.晶闸管阳极电流大于晶闸管的维持电流4.晶闸管阳极电流小于晶闸管的维持电流48、下列电路中,不可以实现有源逆变的有()。

1.三相桥式全控整流电路2.三相半波可控整流电路3.单相桥式可控整流电路4.单相全波可控整流电路外接续流二极管判断题49、三相桥式半控整流电路,带大电感性负载,有续流二极管时,当电路出故障时会发生失控现象。

1. A.√2. B.×50、并联与串联谐振式逆变器属于负载换流方式,无需专门换流关断电路。

1. A.√2. B.×51、大功率晶体管的放大倍数β都比较低。

1. A.√2. B.×52、在触发电路中采用脉冲变压器可保障人员和设备的安全。

1. A.√2. B.×53、晶闸管投切电容器选择晶闸管投入时刻的原则是:该时刻交流电源电压应和电容器预先充电电压相等。

1. A.√2. B.×54、斩波电路用于拖动直流电动机时,降压斩波电路能使电动机工作于第2象限,升压斩波电路能使电动机工作于第2象限,电流可逆斩波电路能使电动机工作于第1和第2象限。

1. A.√2. B.×55、单结晶体管组成的触发电路也可以用在双向晶闸管电路中。

1. A.√2. B.×56、对低电压大电流的负载供电,应该用带平衡电抗器的双反星型可控整流装置。

1. A.√2. B.×57、应急电源中将直流电变为交流电供灯照明,其电路中发生的“逆变”称有源逆变。

1. A.√2. B.×58、绝缘栅双极型晶体管具有电力场效应晶体管和电力晶体管的优点。

1. A.√2. B.×59、工作温度升高,会导致GTR的寿命减短。

1. A.√2. B.×60、设置补偿电容可以提高变流装置的功率因数。

1. A.√2. B.×61、用稳压管削波的梯形波给单结晶体管自激振荡电路供电,目的是为了使触发脉冲与晶闸管主电路实现同步。

1. A.√2. B.×62、双向晶闸管额定电流的定义,与普通晶闸管的定义相同。

1. A.√2. B.×63、有源逆变装置是把逆变后的交流能量送回电网。

相关文档
最新文档