高中物理动能与动能定理解题技巧及练习题
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
;
由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析
高中物理动能定理的综合应用解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试动能定理的综合应用1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。
设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:(1)汽车所能达到的最大速度;(2)汽车从启动至到达最大速度的过程中运动的位移。
【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】(1)汽车匀加速结束时的速度11120m /s v a t ==由P=Fv 可知,匀加速结束时汽车的牵引力11F Pv ==1×104N 由牛顿第二定律得11F f ma -=解得f =5000N汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力F=f =5000N由P Fv =可知,汽车的最大速度:v=P PF f==40m/s (2)汽车匀加速运动的位移x 1=1140m 2v t = 对汽车,由动能定理得2112102F x Pt fs mv =--+解得s =480m2.如图所示,倾斜轨道AB 的倾角为37°,CD 、EF 轨道水平,AB 与CD 通过光滑圆弧管道BC 连接,CD 右端与竖直光滑圆周轨道相连.小球可以从D 进入该轨道,沿轨道内侧运动,从E 滑出该轨道进入EF 水平轨道.小球由静止从A 点释放,已知AB 长为5R ,CD 长为R ,重力加速度为g ,小球与斜轨AB 及水平轨道CD 、EF 的动摩擦因数均为0.5,sin37°=0.6,cos37°=0.8,圆弧管道BC 入口B 与出口C 的高度差为l.8R .求:(在运算中,根号中的数值无需算出)(1)小球滑到斜面底端C 时速度的大小. (2)小球刚到C 时对轨道的作用力.(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R /应该满足什么条件? 【答案】(1285gR(2)6.6mg ,竖直向下(3)0.92R R '≤ 【解析】试题分析:(1)设小球到达C 点时速度为v ,a 球从A 运动至C 过程,由动能定理有0021(5sin 37 1.8)cos3752c mg R R mg R mv μ+-⋅=(2分) 可得 5.6c v gR 1分)(2)小球沿BC 轨道做圆周运动,设在C 点时轨道对球的作用力为N ,由牛顿第二定律2c v N mg m r-=, (2分) 其中r 满足 r+r·sin530=1.8R (1分) 联立上式可得:N=6.6mg (1分)由牛顿第三定律可得,球对轨道的作用力为6.6mg ,方向竖直向下. (1分) (3)要使小球不脱离轨道,有两种情况:情况一:小球能滑过圆周轨道最高点,进入EF 轨道.则小球b 在最高点P 应满足2P v m mg R'≥(1分)小球从C 直到P 点过程,由动能定理,有2211222P c mgR mg R mv mv μ--'⋅=-(1分) 可得230.9225R R R ='≤(1分) 情况二:小球上滑至四分之一圆轨道的Q 点时,速度减为零,然后滑回D .则由动能定理有2102c mgR mg R mv μ--⋅='-(1分)2.3R R '≥(1分)若 2.5R R '=,由上面分析可知,小球必定滑回D ,设其能向左滑过DC 轨道,并沿CB 运动到达B 点,在B 点的速度为v B ,,则由能量守恒定律有22111.8222c B mv mv mg R mgR μ=+⋅+(1分) 由⑤⑨式,可得0B v =(1分)故知,小球不能滑回倾斜轨道AB ,小球将在两圆轨道之间做往返运动,小球将停在CD 轨道上的某处.设小球在CD 轨道上运动的总路程为S ,则由能量守恒定律,有212c mv mgS μ=(1分) 由⑤⑩两式,可得 S=5.6R (1分)所以知,b 球将停在D 点左侧,距D 点0.6R 处. (1分)考点:本题考查圆周运动、动能定理的应用,意在考查学生的综合能力.3.如图所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 的长度l BC =1.10 m ,CD 为光滑的14圆弧,半径R =0.60 m .一个质量m =2.0 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC 间的动摩擦因数μ=0.20.轨道在B ,C 两点光滑连接.当物体到达D 点时,继续竖直向上运动,最高点距离D 点的高度h =0.20 m ,sin 53°=0.8,cos 53°=0.6.g 取10 m/s 2.求:(1)物体运动到C 点时速度大小v C (2)A 点距离水平面的高度H(3)物体最终停止的位置到C 点的距离s . 【答案】(1)4 m/s (2)1.02 m (3)0.4 m 【解析】 【详解】(1)物体由C 点到最高点,根据机械能守恒得:()212c mg R h mv += 代入数据解得:4/C v m s =(2)物体由A 点到C 点,根据动能定理得:2102BC c mgH mgl mv μ-=- 代入数据解得: 1.02H m =(3)从物体开始下滑到停下,根据能量守恒得:mgx mgH μ= 代入数据,解得: 5.1x m =由于40.7BC x l m =+所以,物体最终停止的位置到C 点的距离为:0.4s m =. 【点睛】本题综合考查功能关系、动能定理等;在处理该类问题时,要注意认真分析能量关系,正确选择物理规律求解.4.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .5.如图所示,ABC 是一条长L =10m 的绝缘水平轨道,固定在离水平地面高h =1.25m 处,A 、C 为端点,B 为中点,轨道BC 处在方向竖直向上,大小E =5×105N/C 的匀强电场中,一质量m =0.5kg ,电荷量q =+1.0×10-5C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经B 点进入电场,从C 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,g 取10m/s 2。
高考物理动能与动能定理试题经典及解析
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
高中物理动能与动能定理的技巧及练习题及练习题(含答案)
高中物理动能与动能定理的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
取重力加速度g =10m/s 2。
求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为2.53.5 3.511035N F mg mg mg =+==⨯⨯=向(2)在C 点,由2=c v F r向代入数据得21 3.5J 2c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有0kx mg =解得00.1m mgx k== 设最大速度位置为零势能面,由机械能守恒定律有201()2c km p mg r x mv E E ++=+得201()3 3.50.56J 2km c p E mg r x mv E =++-=+-=(3)滑块从A 点运动到C 点过程,由动能定理得2132c mg r mgs mv μ⋅-=解得BC 间距离0.5m s =小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ',由动能定理有212c mgs mv μ-=-'解得0.7m s '=故最终小滑动距离B 为0.70.5m 0.2m -=处停下. 【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
高中物理动能与动能定理技巧和方法完整版及练习题
高中物理动能与动能定理技巧和方法完整版及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,竖直平面内有一固定的光滑轨道ABCD,其中AB是足够长的水平轨道,B端与半径为R的光滑半圆轨道BCD平滑相切连接,半圆的直径BD竖直,C点与圆心O等高.现有一质量为m的小球Q静止在B点,另一质量为2m的小球P沿轨道AB向右匀速运动并与Q发生对心碰撞,碰撞后瞬间小球Q对半圆轨道B点的压力大小为自身重力的7倍,碰撞后小球P恰好到达C点.重力加速度为g.(1)求碰撞前小球P的速度大小;(2)求小球Q离开半圆轨道后落回水平面上的位置与B点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q离开半圆轨道D点后落回水平面上的位置与B点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【解析】【分析】【详解】设小球Q在B处的支持力为;碰后小球Q的速度为,小球P的速度为;碰前小球P 的速度为;小球Q到达D点的速度为.(1)由牛顿第三定律得小球Q在B点碰后小球Q在B点由牛顿第二定律得:碰后小球P恰好到C点,由动能定理得:P、Q对心碰撞,由动量守恒得:联立解得:(2)小球Q从B到D的过程中,由动能定理得:解得,所以小球Q能够到达D点由平抛运动规律有:联立解得(3)联立解得:当时x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.2.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
可以看成质点的物块从斜面顶点A 处由静止释放,沿斜面AB 和水平面BC 运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B 点的速度大小变化,最终物块停在 水平面上C 点。
已知物块与斜面和水平面间的滑动摩擦系数均为μ。
请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A 点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C 点。
高考物理动能与动能定理试题(有答案和解析)
高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。
某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。
已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。
小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。
只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。
已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。
人教版高中物理必修第二册同步练习动能和动能定理(含答案)
人教版(2019)物理必修第二册同步练习8.3动能和动能定理一、单选题1.下列对功和动能等关系的理解正确的是( )A.所有外力做功的代数和为负值,物体的动能就减少B.物体的动能保持不变,则该物体所受合外力一定为零C.如果一个物体所受的合外力不为零,则合外力对物体必做功,物体的动能一定要变化D.只要物体克服阻力做功,它的动能就减少2.一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。
取2,g m s10/关于力对小孩做的功,以下结果正确的是( )A.支持力做功50JB.阻力做功500JC.重力做功500JD.合外力做功50J3.质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用,设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A. 14mgR B.13mgR C.12mgR D. mgR4.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做负功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功二、多选题5.一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2 N的水平外力作用,第2 s内受到同方向的1 N的外力作用。
下列判断正确的是( )A.0~2 s内外力的平均功率是94WB.第2 s内外力所做的功是54JC.第2 s末外力的瞬时功率最大D.第1 s内与第2 s内质点动能增加量的比值是456.人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示。
则在此过程中( )A.物体所受的合外力做功为212mgh mv + B.物体所受的合外力做功为212mv C.人对物体做的功为mgh D.人对物体做的功大于mgh 三、计算题7.如图所示,质量10m kg =的物体放在水平地面上,物体与地面间的动摩擦因数0.4μ=,g 取102/? m s ,今用50F N =的水平恒力作用于物体上,使物体由静止开始做匀加速直线运动,经时间8t s =后,撤去F .求:1.力所做的功;2.8s 末物体的动能;3.物体从开始运动到最终静止的过程中克服摩擦力所做的功.8.如图所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小物块(可看做质点)以初速度06v gR,从A点开始向右运动,并进入半圆形轨道,若小物块恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A点,重力加速度为g,求:1.小物块落到水平轨道上的A点时速度的大小v A;2.水平轨道与小物块间的动摩擦因数μ。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='-联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1Rg 2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.4.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:6m/s B v ===;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:6m/s C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=- 解得22.5D v =-即小车无法到达D 点.设小车恰能到D 点时对应发动机开启的时间为2t ,则有:()20Pt f l s -+=,解得20.35s t =.6.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D ,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O 点,已知斜面OD 部分光滑,PO 部分粗糙且长度L =8m 。
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。
用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
完整版)高中物理动能定理典型练习题(含答案)
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
高中物理动能与动能定理及其解题技巧及练习题(含答案)
高中物理动能与动能定理及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫4.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。
高考物理动能与动能定理解题技巧分析及练习题(含答案)
高考物理动能与动能定理解题技巧分析及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得: -μ1mgL =12mv 2-1220mv解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:2sin3721030.6m/s 6m/s B AB v gs =︒=⨯⨯⨯=;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.6.如图所示,水平轨道的左端与固定的光滑竖直圆轨道相切于点,右端与一倾角为的光滑斜面轨道在点平滑连接(即物体经过点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为的滑块从圆弧轨道的顶端点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至点,已知光滑圆轨道的半径,水平轨道长为,其动摩擦因数,光滑斜面轨道上长为,取,求(1)滑块第一次经过圆轨道上点时对轨道的压力大小;(2)整个过程中弹簧具有最大的弹性势能;(3)滑块在水平轨道上运动的总时间及滑块几次经过点.【答案】(1) (2) (3) 3次【解析】本题考查机械能与曲线运动相结合的问题,需运用动能定理、牛顿运动定律、运动学公式、功能关系等知识。
高考物理动能与动能定理技巧(很有用)及练习题
高考物理动能与动能定理技巧(很有用)及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用2.如图所示,竖直平面内有一固定的光滑轨道ABCD,其中AB是足够长的水平轨道,B端与半径为R的光滑半圆轨道BCD平滑相切连接,半圆的直径BD竖直,C点与圆心O等高.现有一质量为m的小球Q静止在B点,另一质量为2m的小球P沿轨道AB向右匀速运动并与Q发生对心碰撞,碰撞后瞬间小球Q对半圆轨道B点的压力大小为自身重力的7倍,碰撞后小球P恰好到达C点.重力加速度为g.(1)求碰撞前小球P的速度大小;(2)求小球Q离开半圆轨道后落回水平面上的位置与B点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q离开半圆轨道D点后落回水平面上的位置与B点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【解析】【分析】【详解】设小球Q在B处的支持力为;碰后小球Q的速度为,小球P的速度为;碰前小球P 的速度为;小球Q到达D点的速度为.(1)由牛顿第三定律得小球Q在B点碰后小球Q在B点由牛顿第二定律得:碰后小球P恰好到C点,由动能定理得:P、Q对心碰撞,由动量守恒得:联立解得:(2)小球Q从B到D的过程中,由动能定理得:解得,所以小球Q能够到达D点由平抛运动规律有:联立解得(3)联立解得:当时x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功.【答案】(1)Rg(2)6mg(3)12 mgR【解析】【分析】【详解】(1)小滑块从C点飞出来做平抛运动,水平速度为v0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D到最低点过程中,设DB过程中克服摩擦力做功W1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.45m的圆环剪去左上角127°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P 点到桌面右侧边缘的水平距离为1.5R.若用质量m1=0.4kg的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=4t﹣2t2,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道.g=10m/s2,求:(1)质量为m2的物块在D点的速度;(2)判断质量为m2=0.2kg的物块能否沿圆轨道到达M点:(3)质量为m2=0.2kg的物块释放后在桌面上运动的过程中克服摩擦力做的功.【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:vy =m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 2==m/s 物块到达P 的速度:P v ===3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .6.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:6m/s C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=- 解得22.5D v =-即小车无法到达D 点.设小车恰能到D 点时对应发动机开启的时间为2t ,则有:()20Pt f l s -+=,解得20.35s t =.7.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅=解得4214μ-=8.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关,雨滴间无相互作用且雨滴质量不变,重力加速度为g ;(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中空气阻力所做的功W .(2)研究小组同学观察发现,下雨时雨滴的速度跟雨滴大小有关,较大的雨滴落地速度较快,若将雨滴看作密度为ρ的球体,设其竖直落向地面的过程中所受空气阻力大小为f =kr 2v 2,其中v 是雨滴的速度,k 是比例常数,r 是球体半径.a. 某次下雨时,研究小组成员测得雨滴落地时的速度约为v 0,试计算本场雨中雨滴半径r 的大小;b. 如果不受空气阻力,雨滴自由落向地面时的速度会非常大,其v -t 图线如图所示,请在图中画出雨滴受空气阻力无初速下落的v -t 图线.(3)为进一步研究这个问题,研究小组同学提出下述想法:将空气中的气体分子看成是空间中均匀分布的、静止的弹性质点,将雨滴的下落看成是一个面积为S 的水平圆盘在上述弹性质点中竖直向下运动的过程.已知空气的密度为ρ0,试求出以速度v 运动的雨滴所受空气阻力f 的大小.(最后结果用本问中的字母表示)【答案】(1)212W mu mgh =- (2)2034kv r g πρ=,(3)22f Sv ρ=【解析】 【详解】(1)由动能定理:212mgh W mu +=解得:212W mu mgh =- (2)a. 雨滴匀速运动时满足:322043r g kr v ρπ⋅=, 解得2034kv r gπρ= b. 雨滴下落时,做加速度逐渐减小的加速运动,最后匀速下落,图像如图.(3)设空气分子与圆盘发生弹性碰撞.在极短时间∆t 内,圆盘迎面碰上的气体质点总质量为:m S v t ρ∆=⋅⋅∆以F 表示圆盘对气体分子的作用力,对气体根据动量定理有:F·t ∆=∆m·2v 解得:22F Sv ρ=由牛顿第三定律可知,圆盘所受空气阻力22F F Sv ρ=='9.如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量1m kg =套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数02μ=.,CD 部分为一段光滑的竖直半圆轨道.小物块在外力作用下压缩弹簧至B 点由静止释放,小物块恰好运动到半圆轨道最高点D ,5BC m =,小物块刚经过C 点速度4v m s =/,g 取210/m s ,不计空气阻力,求:(1)半圆轨道的半径R ;(2)小物块刚经过C 点时对轨道的压力;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能p E .【答案】⑴0.4m ⑵50N 方向垂直向下(3)18J【解析】【分析】【详解】(1)物块由C 点运动到D 点,根据机械能守恒定律2122mgR mv =R=0.4m ⑵小物块刚过C 点时F N -mg = m 2v R所以250N v F mg m N R=+= 根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:50N F F N ==方向垂直向下(3)小物块由B 点运动到C 点过程中,根据动能定理212BC W mgL mv μ-=弹 带入数据解得:=18W J 弹 所以18p E J =.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高中物理动能定理练习题及讲解
高中物理动能定理练习题及讲解### 高中物理动能定理练习题及讲解动能定理是物理学中描述物体动能变化的重要定理,它表明物体动能的变化等于作用在物体上的外力所做的功。
以下是几道关于动能定理的练习题,以及相应的讲解。
#### 练习题一一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车,经过10秒后速度减为0。
求汽车受到的平均阻力。
解答:设汽车受到的平均阻力为 \( F \) 。
根据动能定理,汽车动能的变化等于阻力做的功,即:\[ \Delta E_k = -W = -F \cdot s \]其中 \( \Delta E_k \) 为动能的变化量,\( W \) 为阻力做的功,\( s \) 为汽车的位移。
汽车的初始动能为 \( \frac{1}{2}mv^2 \),其中 \( m \) 为质量,\( v \) 为速度。
因此,动能的变化量为:\[ \Delta E_k = \frac{1}{2}m(0^2 - v^2) = -\frac{1}{2}mv^2 \]由于汽车速度从 \( v \) 减为0,所以 \( \Delta E_k = -\frac{1}{2} \times 1000 \times 20^2 \) J。
根据动能定理,我们有:\[ -\frac{1}{2} \times 1000 \times 20^2 = -F \cdot s \]汽车的位移 \( s \) 可以通过速度-时间公式 \( v = at \) 计算,其中 \( a \) 为加速度。
由于汽车做匀减速运动,\( a =\frac{\Delta v}{\Delta t} = \frac{0 - 20}{10} = -2 \) m/s²。
因此,\( s = \frac{1}{2}at^2 = \frac{1}{2} \times (-2) \times 10^2 \) m。
将 \( s \) 的值代入动能定理的公式中,我们可以求得 \( F \)。
高中物理动能与动能定理解题技巧及练习题(含答案)
根据牛顿第二定律得:
解得:
,方向向下
根据牛顿第三定律得,小球对轨道最高点的压力大小为 20N,方向向上.
【点睛】
本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运
动,综合性较强,关键要理清过程,选择合适的规律进行求解.
7.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
减速运动;根据动能定理有:
⑥
解得:
⑦
(3)设滑块在传送带上运动的时间为 t,则 t 时间内传送带的位移:s=v0t
由机械能守恒有:
⑧
⑨ 滑块相对传送带滑动的位移 相对滑动生成的热量
⑫
⑩ ⑪
4.如图所示,在娱乐节目中,一质量为 m=60 kg 的选手以 v0=7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角 θ=37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为 L=6 m,传 送带两端点 A、B 间的距离 s=7 m,选手与传送带间的动摩擦因数为 μ=0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
高考物理动能与动能定理解题技巧(超强)及练习题(含答案)
高考物理动能与动能定理解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。
匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
高中物理精品试题: 动能定理常见考法
专题4 动能定理常见考法一、动能定理的理解1.甲乙两个物体质量相等,若他们的速度之比为1:3,则它们的动能之比为( ) A .1:3 B .3:1 C .1:9 D .9:12.下列说法正确的是( )A .合外力做功是物体动能变化的原因B .如果物体所受合外力不为零,那么合外力的功也一定不为零C .物体的动能不变就是物体的速度不变D .物体在合外力作用下做变速运动,动能一定变化3.下列关于动能定理的说法正确的是( )A .合外力对物体做多少正功,动能就增加多少B .合外力对物体做多少负功,动能就增加多少C .合外力对物体做正功,动能也可能保持不变D .不管合外力对物体做多少正功,动能均保持不变二、动能定理解决多过程问题4.如图所示,将一物体分别沿着AB 、ACB 两条斜面轨道从静止开始运动到B 端。
已知物体与两条斜面轨道的动摩擦因数相同,不计在轨道处的能量损失。
则物体两次运动( ) A .位移不同B .到达B 端的速度相同C .到达B 端的动能相同D .克服摩擦力做的功不同52R5.如图所示,质量为m 的滑块从高h 处的a 点,沿斜面轨道ab 滑入水平轨道bc 。
在经过b 点时无能量损失,滑块与每个轨道的动摩擦因数都相同。
滑块在a 、c 两点的速度大小均为v ,ab 与bc 长度相等,空气阻力不计,则从a 到c 的运动过程中( )A .滑块从a 到b 的时间与b 到c 的时间不相等B .滑块从b 到c 运动的过程阻力做的功为2mgh -C .滑块经b 点时的速度等于22gh v +D .滑块经b 点时的速度大于2gh v +6.某跳台滑雪赛道简化为如图所示模型,AB 为直道,BCD 为半径为R 的圆弧道,两滑道在B 点平滑连接,圆弧道与水平地面相切于C 点,CD 段圆弧所对的圆心角为θ=60°,不计一切摩擦,一个小球从直道上离地面高为H 处由静止释放,小球从D 点飞出后上升到的最高点离地面的高度为( )A .3148H R + B .3144H R +C .1128H R +D .1124H R + 7.半径分别为R 和2R 的两个半圆,分别组成如图甲、乙所示的两个圆弧轨道,一小球从某一高度下落,分别从甲、乙所示开口向上的半圆轨道的右侧边缘进入轨道,都沿着轨道内侧运动并恰好能从开口向下的半圆轨道的最高点通过,则下列说法正确的是 ( )A .小球开始下落的高度甲图比乙图小B .小球开始下落的高度甲图和乙图一样大C .小球对轨道最低点压力甲图大于乙图D .小球对轨道最低点压力甲图和乙图一样大8.如图所示,一倾角为45︒的斜面和半圆竖直轨道分别与水平面平滑连接于P 、B 两点,PB 的距离为R ,半圆轨道的圆心为O ,半径为R ,C 为其最高点。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ;(2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处【解析】【分析】【详解】(1)在B 点时有v B =0cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
高考物理动能定理的综合应用(一)解题方法和技巧及练习题含解析
高考物理动能定理的综合应用(一)解题方法和技巧及练习题含解析一、高中物理精讲专题测试动能定理的综合应用1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。
赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。
比赛用车采用最新材料制成,质量为9kg 。
已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。
求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大;(2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大;(3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。
(只在赛道直线段给自行车施加动力)。
【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】(1)运动员和自行车整体的向心力F n =2(m)M v R+解得F n =700N(2)自行车所受支持力为()cos45NM m g F +=︒解得F N 2N根据牛顿第三定律可知F 压=F N 2N(3)从出发点到进入内侧赛道运用动能定理可得W F -W f 克+mgh =212mv W F =2FL h =1cos 452d o =1.9m W f 克=521J2.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s 的初速度沿曲面冲上高0.8m 、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW 行驶,经过1.2s 到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A 点切入光滑竖直圆弧轨道,并沿轨道下滑.A 、B 为圆弧两端点,其连线水平.已知圆弧半径为R =1.0m ,人和车的总质量为180kg ,特技表演的全过程中不计一切阻力(计算中取g =10m/s2,sin53°=0.8,cos53°=0.6).求:(1)人和车到达顶部平台的速度v ;(2)从平台飞出到A 点,人和车运动的水平距离x ; (3)圆弧对应圆心角θ;(4)人和车运动到圆弧轨道最低点O 时对轨道的压力. 【答案】(1)3m/s (2)1.2m (3)106°(4)7.74×103N 【解析】 【分析】 【详解】(1)由动能定理可知:221011Pt mgH mv 22mv -=- v =3m/s (2)由2221H gt ,s vt 2==可得:2H s v 1.2m g== (3)摩托车落至A 点时,其竖直方向的分速度y 2v gt 4m /s ==设摩托车落地时速度方向与水平方向的夹角为α,则4tan 3y v vα==,即α=53°所以θ=2α=106°(4)在摩托车由最高点飞出落至O 点的过程中,由机械能守恒定律可得:2211mg[H R(1cos )]mv mv 22α'+-=-在O 点:2v N mg m R-= 所以N =7740N由牛顿第三定律可知,人和车在最低点O 时对轨道的压力为7740N3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f =144N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有 mgh+W=12mv C 2-12mv B 2 设运动员在C 点所受的支持力为F N ,由牛顿第二定律得 F N ﹣mg=m 2Cv R由运动员能承受的最大压力为其所受重力的6倍,即有 F N =6mg 联立解得 R=12.5m 考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.如图所示,位于竖直平面内的轨道BCDE ,由一半径为R=2m 的14光滑圆弧轨道BC 和光滑斜直轨道DE 分别与粗糙水平面相切连接而成.现从B 点正上方H=1.2m 的A 点由静止释放一质量m=1kg 的物块,物块刚好从B 点进入14圆弧轨道.已知CD 的距离L=4m ,物块与水平面的动摩擦因数μ=0.25,重力加速度g 取10m/s 2,不计空气阻力.求:(1)物块第一次滑到C 点时的速度; (2)物块第一次滑上斜直轨道DE 的最大高度; (3)物块最终停在距离D 点多远的位置. 【答案】(1) 8m/s (2) 2.2m (3) 0.8m 【解析】 【分析】根据动能定理可求物块第一次滑到C 点时的速度;物块由A 到斜直轨道最高点的过程,由动能定理求出物块第一次滑上斜直轨道DE 的最大高度;物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,根据动能定理求出. 【详解】解:(1)根据动能定理可得21()2mg H R mv += 解得8/v m s =(2)物块由A 到斜直轨道最高点的过程,由动能定理有:()0mg H R mgL mgh μ+--=解得: 2.2h m =(3)物块将在轨道BCDE 上做往返运动,直至停下,设物块在水平轨道CD 上通过的总路程为S ,则:()0mg H R mgS μ+-= 解得:12.8S m =因: 30.8S L m =+,故物块最终将停在距离D 点0.8m 处的位置.5.如图所示,在水平路段AB 上有一质量为2kg 的玩具汽车,正以10m/s 的速度向右匀速运动,玩具汽车前方的水平路段AB 、BC 所受阻力不同,玩具汽车通过整个ABC 路段的v-t 图象如图所示(在t =15s 处水平虚线与曲线相切),运动过程中玩具汽车电机的输出功率保持20W 不变,假设玩具汽车在两个路段上受到的阻力分别有恒定的大小.(解题时将玩具汽车看成质点)(1)求汽车在AB路段上运动时所受的阻力f1;(2)求汽车刚好开过B点时的加速度a(3)求BC路段的长度.【答案】(1)f1=5N (2) a=1.5 m/s2 (3)x=58m【解析】【分析】根据“汽车电机的输出功率保持20W不变”可知,本题考查机车的启动问题,根据图象知汽车在AB段匀速直线运动,牵引力等于阻力,而牵引力大小可由瞬时功率表达式求出;由图知,汽车到达B位置将做减速运动,瞬时牵引力大小不变,但阻力大小未知,考虑在t=15s处水平虚线与曲线相切,则汽车又瞬间做匀速直线运动,牵引力的大小与BC 段阻力再次相等,有瞬时功率表达式求得此时的牵引力数值即为阻力数值,由牛顿第二定律可得汽车刚好到达B点时的加速度;BC段汽车做变加速运动,但功率保持不变,需由动能定理求得位移大小.【详解】(1)汽车在AB路段时,有F1=f1P=F1v1联立解得:f1=5N(2)t=15 s时汽车处于平衡态,有F2=f2P=F2v2联立解得:f2=2Nt=5s时汽车开始加速运动,有F1-f2=ma解得a=1.5m/s2(3)对于汽车在BC段运动,由动能定理得:解得:x=58m【点睛】抓住汽车保持功率不变这一条件,利用瞬时功率表达式求解牵引力,同时注意隐含条件汽车匀速运动时牵引力等于阻力;对于变力做功,汽车非匀变速运动的情况,只能从能量的角度求解.6.如图所示,一倾角θ=37°的斜面底端与一传送带左端相连于B点,传送带以v=6m/s的速度顺时针转动,有一小物块从斜面顶端点以υ0=4m/s的初速度沿斜面下滑,当物块滑到斜面的底端点时速度恰好为零,然后在传送带的带动下,从传送带右端的C点水平抛出,最后落到地面上的D点,已知斜面长度L1=8m,传送带长度L2=18m,物块与传送带之间的动摩擦因数μ2=0.3,(sin37°=0.6,cos37°=0.8,g=10m/s2).(1)求物块与斜而之间的动摩擦因数μl;(2)求物块在传送带上运动时间;(3)若物块在D点的速度方向与地面夹角为a=53°,求C点到地面的高度和C、D两点间的水平距离.【答案】(1)(2)4s;(3)4.8m.【解析】试题分析:(1)从A到B由动能定理即可求得摩擦因数(2)由牛顿第二定律求的在传送带上的加速度,判断出在传送带上的运动过程,由运动学公式即可求的时间;(3)物体做平抛运动,在竖直方向自由落体运动,解:(1)从A到B由动能定理可知代入数据解得(2)物块在传送带上由牛顿第二定律:μ2mg=maa=达到传送带速度所需时间为t=s加速前进位移为<18m滑块在传送带上再匀速运动匀速运动时间为故经历总时间为t总=t+t′=4s(3)设高度为h,则竖直方向获得速度为联立解得h=3.2m下落所需时间为水平位移为x CD=vt″=6×0.8s=4.8m答:(1)求物块与斜而之间的动摩擦因数μl为(2)求物块在传送带上运动时间为4s;(3)若物块在D点的速度方向与地面夹角为a=53°,C点到地面的高度为3.2m和C、D两点间的水平距离为4.8m.【点评】本题主要考查了动能定理、平抛运动的基本规律,运动学基本公式的应用,要注意传动带顺时针转动时,要分析物体的运动情况,再根据运动学基本公式求解.7.滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气.当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的“气垫”,从而大大减小雪地对滑雪板的摩擦.然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大.假设滑雪者的速度超过4 m/s 时,滑雪板与雪地间的动摩擦因数就会由μ1=0.25变为μ2=0.125.一滑雪者从倾角为θ=37°的坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示.不计空气阻力,坡长为l=26 m,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2)滑雪者到达B处的速度;(3)滑雪者在水平雪地上运动的最大距离.【答案】1s99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度、位移和时间.【详解】(1)由牛顿第二定律得滑雪者在斜坡的加速度:a1==4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t==1s(2)由静止到动摩擦因素发生变化的位移:x1=a1t2=2m动摩擦因数变化后,由牛顿第二定律得加速度:a 2==5m/s 2由v B 2-v 2=2a 2(L-x 1)解得滑雪者到达B 处时的速度:v B =16m/s(3)设滑雪者速度由v B =16m/s 减速到v 1=4m/s 期间运动的位移为x 3,则由动能定理有:;解得x 3=96m速度由v 1=4m/s 减速到零期间运动的位移为x 4,则由动能定理有:;解得 x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为x=x 3+x 4=96+ 3.2=99.2m8.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R ,一个质量为m 的物体 (可以看做质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,求:(1)物体做往返运动的整个过程中,在AB 轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点E 时,物体对轨道压力的大小和方向. 【答案】(1)RL μ=(2)(32cos )NN F F mg θ'==-,方向竖直向下 【解析】试题分析:(1)物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为v ,由动能定理 有21(1cos )2mgR mv θ-=在E 点,由牛顿第二定律有2N mv F mg R-=得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )NN F F mg θ'==-,方向竖直向下.考点:考查了动能定理,牛顿运动定律,圆周运动等应用点评:在使用动能定理分析多过程问题时非常方便,关键是对物体受力做功情况以及过程的始末状态非常清楚9.如图所示,在E=103 V/m的竖直匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MN在N点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,P为QN圆弧的中点,一带负电q=10-4 C的小滑块质量m=10 g,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧1.5 m的M处,g取10 m/s2,求:(1)小滑块从M点到Q点电场力做的功(2)要使小滑块恰能运动到半圆形轨道的最高点Q,则小滑块应以多大的初速度v0向左运动?(3)这样运动的小滑块通过P点时对轨道的压力是多大?【答案】(1) - 0.08J(2) 7 m/s(3)0.6 N【解析】【分析】【详解】(1)W=-qE·2R W= - 0.08J(2)设小滑块到达Q点时速度为v,由牛顿第二定律得mg+qE=m2 v R小滑块从开始运动至到达Q点过程中,由动能定理得-mg·2R-qE·2R-μ(mg+qE)x=12mv2-12mv联立方程组,解得:v0=7m/s.(3)设小滑块到达P点时速度为v′,则从开始运动至到达P点过程中,由动能定理得-(mg+qE)R-μ(qE+mg)x=12mv′2-12mv又在P点时,由牛顿第二定律得F N=m2 v R代入数据,解得:F N=0.6N由牛顿第三定律得,小滑块通过P点时对轨道的压力F N′=F N=0.6N.【点睛】(1)根据电场力做功的公式求出电场力所做的功;(2)根据小滑块在Q 点受的力求出在Q 点的速度,根据动能定理求出滑块的初速度; (3)根据动能定理求出滑块到达P 点的速度,由牛顿第二定律求出滑块对轨道的压力,由牛顿第三定律得,小滑块通过P 点时对轨道的压力.10.如图所示,半圆轨道的半径为R=10m ,AB 的距离为S=40m ,滑块质量m=1kg ,滑块在恒定外力F 的作用下从光滑水平轨道上的A 点由静止开始运动到B 点,然后撤去外力,又沿竖直面内的光滑半圆形轨道运动,且滑块通过最高点C 后又刚好落到原出发点A ;g=10m/s 2求:(1)滑块在C 点的速度大小v c (2) 在C 点时,轨道对滑块的作用力N C (3)恒定外力F 的大小【答案】(1)v c =20m/s (2)Nc=30N ,方向竖直向下(3)F="10N" 【解析】试题分析:(1) C 点飞出后正好做平抛运动,则212{2R gt x vt== 联立上述方程则v c =20m/s(2)根据向心力知识则2N v mg F m r+=FN=30N ,方向竖直向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动能与动能定理解题技巧及练习题一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。
【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
3.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。
匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==4.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.5.如图所示,光滑水平轨道距地面高h=0.8m ,其左端固定有半径R=0.6m 的内壁光滑的半圆管形轨道,轨道的最低点和水平轨道平滑连接.质量m 1=1.0kg 的小球A 以v 0=9m/s 的速度与静止在水平轨道上的质量m 2=2.0kg 的小球B 发生对心碰撞,碰撞时间极短,小球A 被反向弹回并从水平轨道右侧边缘飞出,落地点到轨道右边缘的水平距离s=1.2m .重力加速度g=10m/s 2.求:(1)碰后小球B 的速度大小v B ;(2)小球B 运动到半圆管形轨道最高点C 时对轨道的压力. 【答案】(1)6m/s (2)20N ,向下 【解析】 【详解】 (1)根据得: 则规定A 的初速度方向为正方向,AB 碰撞过程中,系统动量守恒,以A 运动的方向为正方向,有:m 1v 0=m 2v B -m 1v A , 代入数据解得:v B =6m/s . (2)根据动能定理得:代入数据解得:根据牛顿第二定律得:解得:,方向向下根据牛顿第三定律得,小球对轨道最高点的压力大小为20N ,方向向上.【点睛】本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运动,综合性较强,关键要理清过程,选择合适的规律进行求解.6.如图所示,质量m =2kg 的小物块从倾角θ=37°的光滑斜面上的A 点由静止开始下滑,经过B 点后进入粗糙水平面,已知AB 长度为3m ,斜面末端B 处与粗糙水平面平滑连接.试求:(1)小物块滑到B 点时的速度大小.(2)若小物块从A 点开始运动到C 点停下,一共经历时间t =2.5s ,求BC 的距离. (3)上问中,小物块与水平面的动摩擦因数μ多大?(4)若在小物块上始终施加一个水平向左的恒力F ,小物块从A 点由静止出发,沿ABC 路径运动到C 点左侧3.1m 处的D 点停下.求F 的大小.(sin37°=0.6,cos37°=0.8 ) 【答案】(1)6m/s (2)1.5s (3)0.4μ=(4) 2.48N F = 【解析】 【详解】(1)根据机械能守恒得:21sin 372AB B mgs mv ︒=解得:6m/s B v ===;(2)物块在斜面上的加速度为:21sin 6m/s a g θ==在斜面上有:2112AB s a t =代入数据解得:11s t =物块在BC 段的运动时间为:21 1.5s t t t =-=BC 段的位移为:21(0) 4.5m 2BC B s v t =+=(3)在水平面上,有:220B v a t =﹣解得:2224m/s Bv a t -==-. 根据牛顿第二定律有:2mg ma μ=﹣代入数据解得:0.4μ=.(4)从A 到D 的过程,根据动能定理得:()sin cos 0AB BD AB BD mgs F s s mgs θθμ++-=代入数据解得:2.48N F = 【点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力.7.如图甲所示,长为4 m 的水平轨道AB 与半径为R =0.6 m 的竖直半圆弧轨道BC 在B 处相连接。