阻抗匹配COUPLING.ppt
合集下载
微波技术传输线阻抗匹配课件
02
卫星通信:微波技术传输线阻抗匹配在卫星通信中的应用将更加深入
03
雷达技术:微波技术传输线阻抗匹配在雷达技术中的应用将更加广泛
04
医疗设备:微波技术传输线阻抗匹配在医疗设备中的应用将更加广泛
微波技术传输线阻抗匹配的挑战和机遇
挑战:微波技术的不断发展, 对传输线阻抗匹配的要求越 来越高
机遇:随着新材料、新技术 的不断涌现,传输线阻抗匹 配的技术水平不断提高
微波技术传输线阻抗匹 配课件
演讲人
目录
01. 微波技术传输线阻抗匹配原 理
02. 微波技术传输线阻抗匹配实 例
03. 微波技术传输线阻抗匹配实 验
04. 微波技术传输线阻抗匹配发 展趋势
微波技术传输线 阻抗匹配原理
传输线阻抗匹配的重要性
01
保证信号传输的稳定 性:阻抗匹配可以降 低信号传输过程中的 损耗和反射,提高信
阻抗匹配的目的是使信号在传输过 程中损失最小,提高传输效率。
阻抗匹配的方法包括串联、并联、 变压器等。
阻抗匹配的应用包括天线、电缆、 电路板等。
阻抗匹配的方法
串联匹配:通过串联电感或电容, 使传输线阻抗与负载阻抗匹配
变压器匹配:通过变压器,使传输 线阻抗与负载阻抗匹配
并联匹配:通过并联电感或电容, 使传输线阻抗与负载阻抗匹配
挑战:微波技术的广泛应用, 对传输线阻抗匹配的稳定性 和可靠性提出了更高的要求
机遇:随着微波技术的普及, 传输线阻抗匹配的市场需求 不断扩大,为相关企业提供 了更多的发展机会。
谢谢
06
设定实验参数:设 定信号源的频率、 功率等参数
07
分析实验结果:分 析信号波形的变化, 得出阻抗匹配的效 果和影响因素
阻抗匹配示例ppt课件
电流为每步时间间隔从脚底流出注入到每个电容上的电量:电容乘以其两端的电压;
每步之间的时间间隔,等于单位步长除以信号的速度。电流的求解公式如下:
I
Q t
CV x
CLxvV x
CLvV
v
其中:I 表示信号电流;Q 表示每步的电量;C 表示每步的电容;t 表示从一个电容跨到另一个
电容的时间;CL 为单位长度的电容量;x 表示步长;v 表示信号的速度;V 表示信号的电压。
2-4GHz
阻抗失配的示例
1. 振铃效应
2. 功率损耗
输出端功率较输入端有较大的损耗
传输线及传输线理论
当信号的波长可于分立电路元件的几何尺寸相比拟时,电压和电流不再保持空间 不变,必须把它们看做传输的波。信号采用传输线理论进行分析。
常用的传输线:双线传输线,同轴线,微带线。
特征阻抗
电磁场理论:特征阻抗 在自由空间,向正z方向传播的平面电磁波可写成典型的正弦波的形式:
反弹图
源端阻抗匹配
源端串联40欧电阻,源端和终端的电压图
阻抗匹配方法
Smith图
等电阻圆,等电抗圆 等电导圆,等电纳圆
阻抗变换方法: 串联:使用阻抗圆 并联:使用安导圆
阻抗匹配Байду номын сангаас法
双元件:L形匹配
三元件:T形/ 形匹配
阻抗匹配方法
使用ADS软件进行阻抗匹配
ADS软件简介:ADS电子设计自动化(EDA软件全称为 Advanced Design System,是美国
进入传输线的初始电压为:1V×50/(10+50)=0.84V。 1ns后,0.84V的电压到达传输线末端,产生0.84V反射信号返回端。终端电压为1.68V; 再经过1ns后,0.84V反射波到达源端,又一次遇到阻抗突变,源端的反射系数为(10-50)/(10+50) = -0.67, 这时将有0.84V×(-0.67)=-0.56V反射回线远端。线远端开路处将同时测得4个行波:从一次行波中得到 2×0.84=1.68V,从二次反射中得到2×(-0.56)=-1.12V,故总电压为0.56V。
第六节传输线的阻抗匹配课件
传输线的参数
01
02
03
特性阻抗
传输线上的电压与电流之 比,是传输线的重要参数 。
电容和电感
传输线上的分布电容和分 布电感会影响信号的传输 。
传播速度
信号在传输线上的传播速 度与介质的介电常数有关 。
传输线的应用场景
通信系统
传输线在通信系统中用于 信号的传输,如电话线、 同轴电缆等。
测量仪器
传输线用于测量设备的信 号传输,如示波器、频谱 分析仪等。
通过改变传输线的长度,实现阻抗匹配。
选择合适的传输线类型
根据信号频率和传输距离的要求,选择合适的传输线类型,如同轴 线、双绞线等。
使用阻抗匹配网络
在传输线两端添加阻抗匹配网络,以实现信号的完整传输。
优化阻抗匹配的实例分析
50欧姆系统
在50欧姆系统中,通常采用特性阻抗为50欧姆的传输线进行 阻抗匹配。
微带线设计
在微带线设计中,通过精确计算线宽和间距,实现阻抗匹配 ,提高信号传输质量。
05
CATALOGUE
阻抗匹配的测试与验证
测试设备与测试方法
信号发生器
用于产生测试所需的信 号,具有稳定的频率和
幅度输出。
功率放大器
用于放大信号源输出的 信号,提高测试信号的
功率。
阻抗匹配测试仪
用于测量传输线的阻抗 ,判断是否与负载阻抗
电子设备
传输线用于电子设备内部 各部分之间的信号传输, 如电脑、手机等。
03
CATALOGUE
阻抗匹配的实现方法
通过变换元件实现阻抗匹配
电阻变换
电感变换
通过串联或并联电阻,改变传输线的 阻抗,实现阻抗匹配。
通过串联或并联电感,改变传输线的 阻抗,实现阻抗匹配。
微波技术1章阻抗匹配.ppt
-1
00..3322 00..3333 00..3344 00..3355 00..3366 00..3377 00..338 0.39 0.40 0.41 0.42 0.43
传输线的阻抗匹配
阻抗匹配器
2、单支节匹配器
单支节匹配器又叫短截线匹配器。它是在主传输线上并联一个分支线(终端 短路线或开路线),使在匹配器所在处向负载看过去的输入导纳正好等于特性 导纳,从而实现了负载阻抗匹配。
双支节匹配器是由固定在主线上的两个彼此 相隔一定距离而自身长度可以调节的短路支节 构成。距离一般取 λ/8, λ/4, 3λ/8。下面取λ/4讨 论其匹配原理
A
BL
Zc
Zl
A
B
l2
l1
Double Stub Matching
0.01 0.02 0W.0a3ve0l.0e4n0g.t05hs0.0t6ow
单支节匹配器的匹配原理:非匹配负载产生 反射,沿传输线移动的导纳如右图所示。一 般情况下等|Γ|圆与G=1的等G圆总有交
.48
.47
.45.46 .04Fra bibliotek.03
.02
.49 .01
.00 .01 .02
.00 .49 .48
.03 .04
0
.47 .46
.05
.44 .05
.45 .06
点S与T,其读数为1±jB。若于ST点在
-0.2
10
1
2 3 4 5 10
double stub matching
A
λ/8 B L
Zc
1±jB
ZL
Y2 A
B
L 2
L
Y2 =+jB
1
00..3322 00..3333 00..3344 00..3355 00..3366 00..3377 00..338 0.39 0.40 0.41 0.42 0.43
传输线的阻抗匹配
阻抗匹配器
2、单支节匹配器
单支节匹配器又叫短截线匹配器。它是在主传输线上并联一个分支线(终端 短路线或开路线),使在匹配器所在处向负载看过去的输入导纳正好等于特性 导纳,从而实现了负载阻抗匹配。
双支节匹配器是由固定在主线上的两个彼此 相隔一定距离而自身长度可以调节的短路支节 构成。距离一般取 λ/8, λ/4, 3λ/8。下面取λ/4讨 论其匹配原理
A
BL
Zc
Zl
A
B
l2
l1
Double Stub Matching
0.01 0.02 0W.0a3ve0l.0e4n0g.t05hs0.0t6ow
单支节匹配器的匹配原理:非匹配负载产生 反射,沿传输线移动的导纳如右图所示。一 般情况下等|Γ|圆与G=1的等G圆总有交
.48
.47
.45.46 .04Fra bibliotek.03
.02
.49 .01
.00 .01 .02
.00 .49 .48
.03 .04
0
.47 .46
.05
.44 .05
.45 .06
点S与T,其读数为1±jB。若于ST点在
-0.2
10
1
2 3 4 5 10
double stub matching
A
λ/8 B L
Zc
1±jB
ZL
Y2 A
B
L 2
L
Y2 =+jB
1
射频技术-阻抗变换与匹配.ppt
•例
•计算三节二项式变换器,匹配50Ω的负载到100Ω
传输线。计算Гm=0.05时带宽。
•解: A 2N ZL Z0 23 50 100 0.04167
ZL Z0
50 100
f f0
2
4
arccos
1 2
0.05 0.0417
1/
l2 0.405
3.频率依赖性
以2GHz为中心频率
0
-10
dB(S(1,1))
-20
-30
-40
-50
-60
1.0
1.5
2.0
2.5
3.0
3.5
4.0
freq, GHz
*串联短截线的实例可参考 《微波工程》p199-201.
例*
•将负载阻抗ZL=60-j45Ω用单短截线并联匹配电路变 换到Zin=75+j90Ω, 微带线特征阻抗选择75Ω. •解
-12
-14
-16
-18
-20
1.0
1.5
2.0
2.5
3.0
3.5
4.0
freq, GHz
三、单短截线匹配电路
•基本电路形式
(a)并联短截线 (b)串联短截线
基本思路:负载经一段长为d 的传输线,阻抗变换到实部为 特征阻抗,再并(或串)一共 轭电抗,抵消虚部,则在端口 与特征阻抗完全匹配。
例*
•将负载阻抗ZL=60-j80Ω 用单短截线并联匹配电路 匹配到50Ω特征阻抗上。 •解 1.阻抗归一化:
四、四分之一波长变换器
•形式
λ/4
简单而有用;窄带电路;只能匹配实数负载; •匹配段阻抗要求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3-1.阻抗匹配 ( COUPLING )
终端阻抗 ( TERMINAL ) 一般通讯信号或阻抗设计为 50Ohm 的电路 ( 信号产生器 ),正常使用应该搭配同轴电线 ( BNC ) ,不 须使用探头。
以下图例为直流电源分析:
信号阻抗
2Vs
Rs=50ohm 输出电压为Vs
示波器内阻等于信号内阻
1
3-1.阻抗匹配( COUPLING )
COUPLING 设定为 低输入电阻 50Ohm 终端电阻 50Ohm 的设计 ( BNC+50Ohm ) 无源低压探头 ( 500Ohm ) 无源低压探头 ( 5KOhm )
COUPLING 设定为高输入阻抗 1MOhm 无源电压探头 ( 10MOhm ) 无源高压探头 ( 100MOhm ) 有源差动电压探头 ( 1MOhm )
步骤 1:
➢ 将探头的示波器输入端连 接波道 1 / 2 / 3 / 4 任选一输 入端。
步骤 2:
➢ 将探头正极端通过转接头
连接示波器最右侧 BNC 校
正信号源输出端。
1
步骤 3:
➢ 选择自动设定,自动设定触 发、位准、水平时基与垂直 电压档位。
3 2
15
3-2.校正探头 ( PROBE CALIBRATION )
以下图例为交流电源分析:
探头内阻Rp=9Mohm
Vs ~
信号阻抗 Rs
系统电容
接地电感 示波器内阻必须远大于信号阻抗
示波器内阻 Ro=1Mohm
7
3-1.阻抗匹配 ( COUPLING )
无源电压探头 ( PASSIVE PROBE ) 确认探头的输入阻抗规格。 衰减倍率由示波器自动匹配。 设定示波器输入阻抗为 50Ohm 或 1MOhm 条件。
调整波形显示在屏幕上的位置。 频宽限制设定能够将高频信号滤波或排除杂波。 搭配与 LECROY 相容的探头则自动侦测衰减倍数。
8
3-1.阻抗匹配 ( COUPLING )
有源电压探头 ( ACTIVE FET PROBE ) 电源由示波器供应,不需要再外接电源。 设定阻抗匹配为DC或AC条件。 设定阻抗匹配条件: DC:观测直流信号+交流信号。 AC:观测交流信号,而直流信号被滤波。
以下图例为直流电源分析:
探头内阻 Io Rp=9Mohm
信号阻抗
Vs
Rs
量测端电压为Vs
Is
示波器内阻 Ro=1Mohm
示波器内阻必须远大于信号阻抗
6
3-1.阻抗匹配 ( COUPLING )
负载效应 ( LOAD EFFECT ) 示波器与信号源分别为不同独立回路,因此示波器量测造成信号源的损坏,依负载的大小影响程度 不同,通常搭配探头提高示波器阻抗降低负载效应。 量测系统的量测品质受电容及接地电感影响。
10
3-1.阻抗匹配 ( COUPLING )
差动式探头 ( DIFFERENTIAL PROBE ) 电源由示波器供应,不需要再外接电源。 阻抗匹配之初始设定值为 DC,转接头连结于探头前端后即为 AC。
差动式探头的自动校正设定功能。 增益倍率的选择设定。 电压偏置的调整设定。
11
3-1.阻抗匹配 ( COUPLING )
输出电压为Vs
系统电容
接地电感 示波器内阻等于信号内阻
示波器内阻 Ro=50ohm
5
3-1.阻抗匹配 ( COUPLING )
负载效应 ( LOAD EFFECT ) 示波器与信号源分别为不同独立回路,因此示波器量测造成信号源的损坏,依负载的大小影响程度 不同,通常搭配探头提高示波器阻抗降低负载效应。 探头增加量测系统阻抗,降低负载效应。
示波器自动感应有源探头 AP020。
9
3-1.阻抗匹配 ( COUPLING )
电流探头 ( CURRENT PROBE ) 电源由示波器供应,不需要再外接电源。 设定阻抗匹配为DC或AC条件。
示波器自动感应电流探头 AP015。 电流探头使用霍尔元件感应转换成电量,使用前 勿放置导线于探头上,先执行消磁的动作后再放 入导线,示波器的电压档位将变成电流档位。
COUPLING 自动设定输入电阻 有源电压探头 ( 1MOhm ) 有源差动电压探头 ( 1MOhm ) 有源电流探头 ( 1MOhm )
2
3-1.阻抗匹配 ( COUPLING )
示波器内阻设定分为 1MOhm 及 50Ohm,两种阻抗的设计源自于不同的应用。 终端阻抗应用请设定为50Ohm。 负载效应方式请设定为1MOhm,这是示波器传统的量测方式。 选择阻抗。 指定电路特性。 频宽衰减设定。 探头倍率自动选择。
DC COUPLING 与 AC COUPLING 的差异 阻抗匹配之设定为 DC1MOhm:观测直流信号+交流信号。 阻抗匹配之设定为 AC1MOhm:观测交流信号,而直流信号被滤波。 阻抗匹配交直流設定。
12
3-1.阻抗匹配 ( COUPLING )
交直流信号 ( DIRECT+ALTERNATING CURRENT )
无源探头 ( 标准配备 ) 无源探头必须作校正 ( 电容补偿 ),以确保电压量测值之准确性。
示波器输入端
导线
探头前端
移去探头钩头及接地线
调整探头补偿电容
探头转接头接于示波器的CAL BNC输出端
14
3-2.校正探头( PROBE CALIBRATION )
如果探头在波道 1 使用,则使用 前必须校正,如欲拿下并更换至波 道 2 使用,则必须从新校正探头。
示波器内阻 Ro=50ohm
4
3-1.阻抗匹配 ( COUPLING )
终端阻抗 ( TERMINAL ) 一般通讯信号或阻抗设计为 50Ohm 的电路 ( 信号产生器 ),正常使用应该搭配同轴电线 ( BNC ) ,不 须使用探头。
以下图例为交流电源分析:
Vs ~
信号阻抗 Rs=50ohm
信号源包括直流及交流信号。
+2.5V
电压(V) +2.5V
+1.5V
+0.5V 0
+1.5V
交
+0.5V
Байду номын сангаас
流
0
直
阻抗匹配为 DC1MOhm:直流信号+交流信号。
流
+1V
时间(t) 表示方式 AC2V+DC1.5V
+0V
-1V 阻抗匹配为 AC1MOhm:直流信号被滤波。
13
3-2.校正探头( PROBE CALIBRATION )
3-1.阻抗匹配 ( COUPLING )
终端阻抗 ( TERMINAL ) 一般通讯信号或阻抗设计为 50Ohm 的电路 ( 信号产生器 ),正常使用应该搭配同轴电线 ( BNC ) ,不 须使用探头。
以下图例为直流电源分析:
信号阻抗
2Vs
Rs=50ohm 输出电压为Vs
示波器内阻等于信号内阻
1
3-1.阻抗匹配( COUPLING )
COUPLING 设定为 低输入电阻 50Ohm 终端电阻 50Ohm 的设计 ( BNC+50Ohm ) 无源低压探头 ( 500Ohm ) 无源低压探头 ( 5KOhm )
COUPLING 设定为高输入阻抗 1MOhm 无源电压探头 ( 10MOhm ) 无源高压探头 ( 100MOhm ) 有源差动电压探头 ( 1MOhm )
步骤 1:
➢ 将探头的示波器输入端连 接波道 1 / 2 / 3 / 4 任选一输 入端。
步骤 2:
➢ 将探头正极端通过转接头
连接示波器最右侧 BNC 校
正信号源输出端。
1
步骤 3:
➢ 选择自动设定,自动设定触 发、位准、水平时基与垂直 电压档位。
3 2
15
3-2.校正探头 ( PROBE CALIBRATION )
以下图例为交流电源分析:
探头内阻Rp=9Mohm
Vs ~
信号阻抗 Rs
系统电容
接地电感 示波器内阻必须远大于信号阻抗
示波器内阻 Ro=1Mohm
7
3-1.阻抗匹配 ( COUPLING )
无源电压探头 ( PASSIVE PROBE ) 确认探头的输入阻抗规格。 衰减倍率由示波器自动匹配。 设定示波器输入阻抗为 50Ohm 或 1MOhm 条件。
调整波形显示在屏幕上的位置。 频宽限制设定能够将高频信号滤波或排除杂波。 搭配与 LECROY 相容的探头则自动侦测衰减倍数。
8
3-1.阻抗匹配 ( COUPLING )
有源电压探头 ( ACTIVE FET PROBE ) 电源由示波器供应,不需要再外接电源。 设定阻抗匹配为DC或AC条件。 设定阻抗匹配条件: DC:观测直流信号+交流信号。 AC:观测交流信号,而直流信号被滤波。
以下图例为直流电源分析:
探头内阻 Io Rp=9Mohm
信号阻抗
Vs
Rs
量测端电压为Vs
Is
示波器内阻 Ro=1Mohm
示波器内阻必须远大于信号阻抗
6
3-1.阻抗匹配 ( COUPLING )
负载效应 ( LOAD EFFECT ) 示波器与信号源分别为不同独立回路,因此示波器量测造成信号源的损坏,依负载的大小影响程度 不同,通常搭配探头提高示波器阻抗降低负载效应。 量测系统的量测品质受电容及接地电感影响。
10
3-1.阻抗匹配 ( COUPLING )
差动式探头 ( DIFFERENTIAL PROBE ) 电源由示波器供应,不需要再外接电源。 阻抗匹配之初始设定值为 DC,转接头连结于探头前端后即为 AC。
差动式探头的自动校正设定功能。 增益倍率的选择设定。 电压偏置的调整设定。
11
3-1.阻抗匹配 ( COUPLING )
输出电压为Vs
系统电容
接地电感 示波器内阻等于信号内阻
示波器内阻 Ro=50ohm
5
3-1.阻抗匹配 ( COUPLING )
负载效应 ( LOAD EFFECT ) 示波器与信号源分别为不同独立回路,因此示波器量测造成信号源的损坏,依负载的大小影响程度 不同,通常搭配探头提高示波器阻抗降低负载效应。 探头增加量测系统阻抗,降低负载效应。
示波器自动感应有源探头 AP020。
9
3-1.阻抗匹配 ( COUPLING )
电流探头 ( CURRENT PROBE ) 电源由示波器供应,不需要再外接电源。 设定阻抗匹配为DC或AC条件。
示波器自动感应电流探头 AP015。 电流探头使用霍尔元件感应转换成电量,使用前 勿放置导线于探头上,先执行消磁的动作后再放 入导线,示波器的电压档位将变成电流档位。
COUPLING 自动设定输入电阻 有源电压探头 ( 1MOhm ) 有源差动电压探头 ( 1MOhm ) 有源电流探头 ( 1MOhm )
2
3-1.阻抗匹配 ( COUPLING )
示波器内阻设定分为 1MOhm 及 50Ohm,两种阻抗的设计源自于不同的应用。 终端阻抗应用请设定为50Ohm。 负载效应方式请设定为1MOhm,这是示波器传统的量测方式。 选择阻抗。 指定电路特性。 频宽衰减设定。 探头倍率自动选择。
DC COUPLING 与 AC COUPLING 的差异 阻抗匹配之设定为 DC1MOhm:观测直流信号+交流信号。 阻抗匹配之设定为 AC1MOhm:观测交流信号,而直流信号被滤波。 阻抗匹配交直流設定。
12
3-1.阻抗匹配 ( COUPLING )
交直流信号 ( DIRECT+ALTERNATING CURRENT )
无源探头 ( 标准配备 ) 无源探头必须作校正 ( 电容补偿 ),以确保电压量测值之准确性。
示波器输入端
导线
探头前端
移去探头钩头及接地线
调整探头补偿电容
探头转接头接于示波器的CAL BNC输出端
14
3-2.校正探头( PROBE CALIBRATION )
如果探头在波道 1 使用,则使用 前必须校正,如欲拿下并更换至波 道 2 使用,则必须从新校正探头。
示波器内阻 Ro=50ohm
4
3-1.阻抗匹配 ( COUPLING )
终端阻抗 ( TERMINAL ) 一般通讯信号或阻抗设计为 50Ohm 的电路 ( 信号产生器 ),正常使用应该搭配同轴电线 ( BNC ) ,不 须使用探头。
以下图例为交流电源分析:
Vs ~
信号阻抗 Rs=50ohm
信号源包括直流及交流信号。
+2.5V
电压(V) +2.5V
+1.5V
+0.5V 0
+1.5V
交
+0.5V
Байду номын сангаас
流
0
直
阻抗匹配为 DC1MOhm:直流信号+交流信号。
流
+1V
时间(t) 表示方式 AC2V+DC1.5V
+0V
-1V 阻抗匹配为 AC1MOhm:直流信号被滤波。
13
3-2.校正探头( PROBE CALIBRATION )