正弦波产生电路的设计
lm358正弦波方波三角波产生电路
《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。
LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。
本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。
二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。
通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)RC滤波电路。
在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。
3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。
三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
(2)反相输入和正向输入。
通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。
3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。
四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。
2. 电路设计(1)LM358引脚连接。
将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。
2.1 文氏桥RC正弦波产生电路设计
• •
正反馈网络: 选频网络:
RC串并联网络
构成桥路
• 稳幅环节:二极管
实验原理
2.RC串并联选频网络
1
R
R //
F Uf Uo R
1
j C R//
1
1
1 j RC j RC
R
j C
jC jC 1 j RC
1
j3
j RC RC (
RC
)2
3
1 j( RC
1
)
RC
令f0
1 ,F 2πRC
• 计算最大可振荡频率 f M A X • 设计振荡频率,满足 f 0 f M A X
• 电源电压: 1 2 v
取 fMAX
S Rmin 2 V cc
实验内容
10K
1K
1K
0.01mF 10K
10K
0.01mF
实验内容
注意事项
1、需要注意双电源的连接方法; 2、需要注意上电的顺序。
预习要求
下次实验内容: 实验2.2 电压比较器电路设计
UESTC
常合二为一
• 选频网络:确定正弦波振荡频率
• 稳幅环节:稳定输出信号幅值(非线性环节)
分类:
放大电路自激振荡的平衡条件是: • RC正弦波振荡电路:1兆赫以下
• LC正弦波振荡电路:几百千赫~几百兆赫 • 石英晶体正弦波振荡电路:频率稳定
实验原理
1. 文氏桥RC正弦波产生电路
• 放大电路:同相比例运算放大器
3 j(
1 f
f0 )
当f
f
,
0
ቤተ መጻሕፍቲ ባይዱ
F
=
1
,
实验四波形发生与变换电路设计
实验四波形发生与变换电路设计实验目的:1.了解波形发生电路的基本原理和设计方法。
2.了解电位器在波形发生电路中的应用。
3.掌握使用运算放大器实现波形发生电路的方法。
4.学会使用双稳态多谐振荡电路。
实验仪器:1.AD623全差动放大器芯片。
2.电位器。
3.电容器。
4.电阻器。
5.示波器。
6.功放芯片。
7.函数发生器。
8.蓝色草图记录纸。
实验原理:1.正弦波发生电路设计:正弦波发生电路是由运算放大器构成的,其主要由一个反相输入端,一个非反相输入端,以及一个输出端组成。
当输入端应用一定的正弦波信号时,通过运算放大器放大后,输出端可以得到相应的正弦波信号。
通过调节反相输入端和非反相输入端之间的电阻比例,可以改变输出端的幅度。
2.方波发生电路设计:方波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。
电容的充放电过程可以实现方波的产生。
当电容放电时,输出端输出低电平,当电容充电时,输出端输出高电平。
通过改变电容的充放电时间和电压比例,可以改变输出端的频率和占空比。
3.三角波发生电路设计:三角波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。
根据电容充放电的特性,可以通过改变电容充放电的时间常数,来实现产生三角波信号。
通过改变电容充放电的时间常数,可以改变输出端的频率。
实验步骤:1.正弦波发生电路设计:(2) 通过一个蓄电池连接 AD623 的 Vref 引脚来为芯片供电。
(3)将正弦波输入电压连接到AD623的非反相输入端。
(4)通过调节电位器的阻值,改变反相输入端和非反相输入端之间的电阻比例。
(5)连接示波器,观察并记录输出端的正弦波形状和幅度。
2.方波发生电路设计:(1)连接运放芯片。
(2)连接电位器,将其接入运放的非反相输入端。
(3)连接一个电容器。
(4)连接电阻器,用于调节电容充电和放电时间。
(5)连接示波器,观察并记录输出端的方波形状和频率。
3.三角波发生电路设计:(1)连接运放芯片。
正弦波发生电路
在电子乐器中,RC正弦波发生电路可以用于合成器、效果器和采样器 等设备,产生音符和音效。
04
在科学实验中,RC正弦波发生电路可以用于模拟地震、潮汐等自然现 象,进行相关研究。
LC正弦波发生电路的应用实例
01 02 03 04
LC正弦波发生电路常用于产生高频信号,如无线电广播和电视信号。
在通信领域,LC正弦波发生电路可以作为载波信号,用于调制解调器 和无线传输系统。
晶体振荡器的工作原理
总结词
晶体振荡器是一种利用晶体元件的压电 效应产生振荡的电路。
VS
详细描述
晶体振荡器由一个晶体元件和两个电容组 成,通过调节电容的大小,可以改变振荡 频率。当晶体元件受到外力作用时,会产 生形变,进而产生交变电场,形成正弦波 。晶体振荡器的优点是输出信号的频率稳 定度高、精度高,但价格较高。
正弦波发生电路
目录 CONTENT
• 正弦波发生电路概述 • 正弦波发生电路的工作原理 • 正弦波发生电路的设计与实现 • 正弦波发生电路的性能指标与测
试方法 • 正弦波发生电路的应用实例
01
正弦波发生电路概述
正弦波的定义与特性
正弦波是一种周期性变化的波形,其幅度和频率均随时间变 化。在数学上,正弦波可以用三角函数表示,其波形呈正弦 曲线形状。
选择合适的晶体振荡器型号,根据晶 体振荡器的频率计算输出频率,选择 合适的运放配置以获得理想的输出波 形。
实现方法
根据设计步骤搭建电路,将晶体振荡 器接入电路中,通过运放进行信号放 大和缓冲,输出理想的正弦波信号。
数字信号发生器正弦波发生电路的设计与实现
设计步骤
选择合适的数字信号发生器芯片,根据芯片的规格和功能编写程序以生成正弦波信号, 选择合适的DAC配置以获得理想的输出波形。
正弦波有效电路
正弦波有效电路
正弦波有效电路可以采用多种不同的配置,其中一种常用的设计是使用运算放大器和RC电路。
这种电路利用运算放大器作为放大器,将一个通过RC电路的信号进行放大,从而产生正弦波输出。
RC电路由一个电阻R和一个电容C组成,它们以特定的方式连接在一起。
这个电路可以作为正弦波发生器,因为它能够将输入的直流信号转换为交流信号。
在RC电路中,电阻和电容值的特定比值决定了输出信号的频率。
通过改变电阻或电容的值,可以调整输出信号的频率。
另外,还可以通过将多个RC电路串联或并联来提高输出信号的幅度或改变其频率特性。
通过这些方式,可以设计出适合特定需求的正弦波有效电路。
需要注意的是,由于电路中的元件值会受到温度、湿度等环境因素的影响,因此产生的正弦波可能会存在一定的失真。
为了获得更好的输出信号质量,可以选择具有高精度、低温度系数等特性的元件,并在电路设计中进行适当的调整和补偿。
方波三角波正弦波产生电路
运放正弦波发生电路
运放正弦波发生电路
运放正弦波发生电路是一种使用运放(操作放大器)构建的电路,可以产生稳定的正弦波信号。
以下是一种常见的运放正弦波发生电路,称为综合反馈振荡器(也称为Wien桥振荡器):
首先,将一个运放作为放大器使用。
将运放的非反相输入端(+)和反相输入端(-)通过两个相等的电阻连接,并与一个电容并联,形成一个反馈网络。
然后,将输出端与反相输入端通过一个电容连接。
接下来,在反馈网络的输出端与非反相输入端之间添加一个可变电阻,用于调节振荡频率。
最后,通过电源为运放提供正负电压供电。
当电路开始工作时,由于反馈网络的存在,运放会放大信号,并将其输出到反馈网络。
通过适当选择电阻和电容的值,可以实现正反馈和负反馈之间的平衡,从而产生稳定的正弦波输出。
需要注意的是,为了使运放正弦波发生电路产生稳定的正弦波输出,需要正确选择电阻、电容和电源电压等参数,并保持适当的反馈网络的连接方式。
此外,一些调整和校准可能需要在实际搭建电路时进行,以确保输出的正弦波信号质量和稳定性。
RC正弦波产生电路
Vi
Vo
通道耦合方式如何选择?
Vo2= -(Vo1+Vi)
4、电压传输特性---测量方法!
Vo
如何确定坐 标原点?
示波器的XY方式设置: 按钮Display菜单 (将“格式”置XY方 式) 此时CH1通道变为X通 道,CH2通道为Y通道。 调整灵敏度和位移旋钮, 显示合适的曲线。 Vi
电压传输特性即输出Vo与输入Vi的关系,可以用“逐点法” 取不同的Vi时测量Vo,逐点描出曲线。也可以用示波器 的“XY”显示方式直接显示传输特性曲线。
V
o
R1 R C
ቤተ መጻሕፍቲ ባይዱ 实验内容
• 调节Rp,观察负反馈强弱对输出波形Vo的影响 • 调节Rp,使振荡稳定且输出幅度最大不失真的情况下, 测量输出信号VoPP • 测量开环幅频特性和相频特性
• 用波形发生器调节出Vi • Vi幅值设为与上一步骤实测的Vo值 • 保持Vi幅值不变,调节频率 • 测量各个频率时输出的峰峰值 • 测量各个频率时与Vi的Vo相位差 填写P100表4.9.1
常见故障排查-正弦波产生电路
• 电路不起振
• 电路参数? • 电位器先调整到起振点附近(或用相应大小的固定电阻代替) • 电路连接?
• 运放供电方式?
调节Rp,观察Rp大小对输出波形的影响
2、记录不失真情况下Vo波形
稳定振荡时测量峰峰值和频率
3、测量开环幅频和相频特性,记录到p100表4.9.1
断开a点,调节输入信号的频率 此时输入的信号幅度保持和步骤2测量结果一致
用cursor功能测量时间差,换算为相差
4.
思考题
实验11报告要求
P106 用分压法输入直流电压,逐点测量传输特性( p105表4.11.1) 输入正弦波Vipp=4V、f=1kHz,观察并记录Vi、 Vo1、Vo波形 利用示波器的XY方式,观察并记录电路的电压传 输特性曲线。 思考题
02-正弦波产生电路
2005-6-20
3
一、正弦波产生电路
1、按右图组装电路,调整Rp, R D1
使输出波形最大不失真。
5.1k
C
测量Vopp、fo。 画出输出波形,标明周
0.033u
P
期和幅值。
R
C
5.1k
测量VN、 VP ,计算正、 负反馈系数F+、F-。
0.033u
注意:由于运放输入阻抗很高,测量 VN、 VP 时,须使用高阻探头,高阻 探头用运放自制,原理图如右:
输入
2005-6-20
1
R2 10k D2
RP 100k
Rf
+12V
N –
O
A
+
R1 16 k -12V
输出
– A
+
一、正弦波产生电路
2、对以上测量数据进行处理,完成下面的表格。
fO VN /HZ
VP
VO
F
VN VO
F
VP VO
AVf
VO VP
对fO进行误差分析。
2005-6-20
2
一、正弦波产生电路
3、观察负反馈强弱对输
R2
出波形的影响。R来自D15.1k10k D2 Rf RP
调节RP,使RP 最大和
C
最小,分别画出两种情 0.033u
100k
N –
O
况下,vO的波形。
P
A +
4、说明电路中正、负反
R 5.1k
C
0.033u
馈网络分别由哪些元件
R1 16 k
组成。
5、RP不同时,产生的vO波形不同,为什么?
正弦波电路设计实验
运算放大器单电源供电电路
1
Rf2
VCC_CIRCLE Vcc
1
R
Vi
2
+2
1
2
CLE + C1
R1
3
1
+ R
C2
7V0
C3
VCC_CIRCLE
+ + -
Rf
1
2
Vcc
1
C1 +1 R1 2
VCC_CIRCLE Vi
2
R VCC_CIRCLE
4
A
2
V0
6
3
2
R2 1M
7
VCC_CIRCLE
1
1
R+ C2
2
2
(a)
(b)
如何选用反相和同相放大器
• 反相放大器的优点是:运放不管有无输入信号, 其两输入端电位始终近似为零,两输入端之间 仅有低于微伏级的差动信号(或亦称差模信 号)。而同相输入放大器的两个输入端之间除 有极小的差模信号外,同时还存在较大的共模 电压。虽然运放有较大的共模抑制比,但多少 也会因共模电压带来一些误差。如果要求输出 信号与输入信号反相,则采用反相放大器。
特性(Features):
• 内部频率补偿 • · 直流电压增益高(约100dB) • · 单位增益频带宽(约1MHz) • · 电源电压范围宽:单电源(3—30V);双电源
(±1.5 一±15V) • · 低功耗电流,适合于电池供电 • · 低输入偏流 • · 低输入失调电压和失调电流 • · 共模输入电压范围宽,包括接地 • · 差模输入电压范围宽,等于电源电压范围 • · 输出电压摆幅大(0 至Vcc-1.5V)
555定时器产生正弦波电路
555定时器产生正弦波电路
555定时器本身无法直接产生正弦波,但可以通过一些电路设计实现这一目标。
以下是使用555定时器产生正弦波的一种方法:
1.由555定时器组成的多谐振荡器产生方波。
当电容C1被充电时,2和6引脚的电压都上升,此时二极管D1导通,接通+12V电源后,电容C1被充电,Vc上升,当Vc上升到2Vcc/3时,触发器被复位,同时放电BJT T导通,此时输出电平Vo为低电平,电容C1通过R2和T放电,使Vc下降。
当Vc下降到Vcc/3时,触发器又被置位,Vo翻转为高电平。
2.然后,通过积分电路将方波转化为三角波。
3.最后,使用另一个积分器将三角波进一步转化为正弦波。
请注意,这种方法产生的正弦波可能并不完美,可能需要进行一些调整和优化以达到所需的效果。
同时,电路的具体设计和元件参数的选择也会影响到最终产生的正弦波的质量。
正弦波产生电路
正弦波产生电路
正弦波产生电路
在科学研究、工业生产、医学、通讯、自控和广播技术等领域里,常常需要某一频率的正弦波作为信号源。
例如,在实验室,人们常用正弦作为信号源,测量放大器的放大倍数,观察波形的失真情况。
在工业生产和医疗仪器中,利用超声波可以探测金属内的缺陷、人体内器官的病变,应用高频信号可以进行感应加热。
在通讯和广播中更离不开正弦波。
可见,正弦波应用非常广泛,只是应用场合不同,对正弦波的频率、功率等的要求不同而已。
正弦波产生电路又称为正弦振荡器。
1产生正弦振荡的条件
正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般是在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。
正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。
其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。
因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路。
RC正弦波振荡电路设计
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
正弦波信号发生器的设计及电路图
正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。
很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。
电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。
1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。
在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。
2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。
由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。
课题一:正弦信号产生电路的设计与制作
南京师范大学电气与自动化工程学院课程设计报告(2018—2019学年第二学期)题目:正弦信号产生电路的设计与制作学号:181802008姓名:刘事成指导教师:陈余寿专业:电气工程及其自动化设计时间: 2019年4月16日目录一、设计任务与功能要求 (1)1.任务 (1)2.要求 (1)二.设计原理概述 (1)三.方案论证 (1)1.正弦波发生器 (1)2.调压单元 (2)3.功率放大器 (3)四.电路参数计算 (5)1.正弦信号振荡电路 (5)2.调压电路 (5)五.电路系统总图 (6)六.元件清单 (6)七.测试结果 (7)1.测试结果对比 (7)2.误差分析 (7)八.参考文献 (7)课题一:正弦信号产生电路的设计与制作一、设计任务与功能要求1.任务选择合适的集成运放设计、制作一个正弦信号产生电路。
2.要求1. 正弦信号产生电路输出正弦信号V o的频率f0 =1kHz、幅值V P=2V~8V连续可调;要求电路在带负载R L=100Ω状态下工作稳定;2. 仿真电路,给出仿真结果;3. 焊接、制作所设计电路;4. 调试、测试电路,记录输出波形V o,测量其最大不失真输出信号幅值;5. 撰写完整报告(含理论设计和实践制作两部分)。
二.设计原理概述图2-1 总设计结构框图如图2-1所示,由正弦波发生电路产生1kHz的正弦波并由调压单元转化为幅值为2V~8V连续可调的正弦波,由功率放大器提高信号的带负载能力。
所有运放和三极管的电源都由直流稳压电源将220V交流电转化为±12V的直流电源供电。
三.方案论证1.正弦波发生器方案1:如图3-1.1所示,LC变压器式正弦振荡电路。
其LC变压器式振荡电路主要用来产生高频信号,其工作频率降低时,要求增大振荡回路的电感量和电容量。
大电感和大电容的体积大、笨重,因此LC振荡电路不适合用于低频一般在1MHz以,并且会产生高次谐波。
图3-1.1 LC变压器式正弦振荡电路方案2:如图3-1.2所示,RC串并联正弦振荡电路(文氏桥振荡电路)。
正弦波电路设计
正弦波电路设计
我们并不指望采用一个5V 低功率运放来产生一个具–100dBc 失真的正弦波。
虽然如此,采用LTC6258 的带通滤波器仍然能够与一个易用型低功率振荡器相组合,以在低成本、低电压和极低功耗的情况下产生实用正弦波。
LTC6258 为何如此“神奇”呢?有源滤波器图 1 所示的带通滤波器是AC 耦合至一个输入。
因此,LTC6258 输入并没有给前一个电路级施加负担来生成一个特定的绝对共模电压。
一个由RA1 和RA2 构成的简单电阻分压器负责为LTC6258 带通滤波器提供偏置。
把运放输入规定在一个固定的电压有助于减小可能由于共模的移动而出现的失真。
该滤波器的中心频率为10kHz。
确切的电阻和电容值可以向上或向下微调,这取决于最重要的是实现最低的电阻噪声还是最小的总电源电流。
该实施方案通过减小反馈环路中的电流以为低功耗实现优化。
电容器C2 和C3 最初为 4.7nF 或更高,并采用较低的电阻器阻值。
最后,为实现较低的功耗采用了1nF 电容器和较高阻值的电阻器。
除了功耗之外,反馈阻抗第二个同样重要的方面是运放轨至轨输出级的负载。
较重的负载(例如:介于1K 和10K之间的阻抗) 显着地降低开环增益,这反过来又影响着带通滤波器的准确度。
产品手册建议把AVOL 降低 5 倍(阻抗从100kΩ至10kΩ)。
采用较低的C2 和C3 可能是可行的,但是这样R6 会变得更大,从而在输出端。
实验2.11 正弦波发生电路
应略大于3,以保证可靠起振。
电路稳幅振荡时,振幅与相位平衡 AF =1。 =1。
正 反 馈 与 选 频 网 络 二极管自动稳幅 负反馈振荡电路
同轴电位器
运放反相加法器实现调直流偏置。 uO3
off 0
t
直流偏置off>0 流偏置off>0
步骤: 步骤:
1.判断运放好坏(参见运放线性应用1) 2. RC串并联网络幅频特性的测量:
3.去除信号发生器,连接二极管自 动稳幅负反馈振荡电路,调节Rf1、Rf2使
4.接入运放反相比例运算电路, 记录当输出幅度在5V~10V之间变化时,
可调电位器的阻值。
5.接入运放反相加法器电路, 记录正弦波的直流偏置在1V~3V之
间变化时,可调电位器的阻值。
五、实验报告要求
1. 设计和说明实验电路和参数,简要写出实验的
步骤。
2. 记录当f0 在100Hz~1KHz变化时,同轴电位器的 ,
阻值和输出u01波形。
3. 记录当输出幅度在5V~10V之间变化时,可调
电位器的阻值和输出u02波形。
4. 记录正弦波的直流偏置在1V~3V之间变化时, 可调电位器的阻值和输出u03和off波形。 5.根据测试数据,得出结论。完成思考题。
六、注意事项
注意±12V电源接入运放4、7脚时不要接反,否则会 烧坏运算放大器。 测量电阻要做到“两断”。 观察uo3和off波形时,一定要把示波器的的耦合方 式置“DC 。 DC”
加入正弦信号,调节 信号发生器的频率,用示波 器监测到uA和uB波形,当他 们达到同相时,即可得到 该RC串并联网络振荡频率 (其满足 其中R1为同 轴电位器)。
uA
uB
+ 其满足起振条件:Af=1+ Rf 1R2Rf 2 略大于3。 用示波器观察运放输出端。记录当f0 在 100Hz~1KHz变化时,同轴电位器的阻值。 ,
lm358正弦波方波三角波产生电路
lm358正弦波方波三角波产生电路LM358是一种双通道运算放大器,具有低功耗和宽电源电压范围等特点,非常适合用于信号处理、滤波以及波形生成电路。
在本文中,我们将针对LM358正弦波、方波和三角波产生电路展开探讨,并提供详细的电路设计原理和实现步骤。
1. LM358正弦波产生电路正弦波产生电路是一种基本的波形生成电路,能够产生具有稳定幅值和频率的正弦波信号。
使用LM358运算放大器和一些基本的无源元件,我们可以设计出简单而稳定的正弦波产生电路。
我们需要通过一个RC 网络将运算放大器配置为反馈振荡电路。
通过调整RC网络的参数,可以实现所需频率的正弦波输出。
需要注意的是,为了稳定输出的幅值和频率,我们需要精心选择和调整电阻和电容的数值。
2. LM358方波产生电路方波产生电路是一种能够生成具有固定占空比和频率的方波信号的电路。
使用LM358运算放大器和几个简单的元件,我们可以设计出稳定的方波产生电路。
我们可以将LM358配置为比较器,通过设置阈值电压和反馈电阻,可以实现所需频率和占空比的方波输出。
需要注意的是,选择合适的电阻和电容数值,可以使得方波输出的上升和下降沿更加陡峭。
3. LM358三角波产生电路与正弦波和方波不同,三角波产生电路能够生成具有线性变化斜率的三角波信号。
同样地,我们可以利用LM358运算放大器和几个简单的元件设计出稳定的三角波产生电路。
我们可以将LM358配置为积分放大器,通过输入一个方波信号,并将其积分,可以得到具有线性变化斜率的三角波输出。
调整输入方波的频率和幅值,可以进一步调整三角波输出的频率和幅值。
总结回顾通过对LM358正弦波、方波和三角波产生电路的探讨,我们可以看到LM358作为运算放大器在波形生成电路中的灵活性和高性能。
通过精心设计和调整,我们可以实现稳定、精确和灵活的波形输出。
值得一提的是,LM358产生的波形信号可以应用于各种信号处理和波形调制电路中,具有广泛的应用前景。
正弦波振荡电路
噪声和干扰问题
可能是由于电路布局不合理或外部 干扰所致。解决方案包括优化电路 布局、增加滤波器或采取电磁屏蔽 措施。
感谢观看
THANKS
在设计时考虑到未来可能的调试需求,预 留适当的调整空间,以便在必要时调整电 路参数。
调试方法与技巧
观察与测试
通过示波器等测试设备观察振荡波形, 检查频率、幅度等参数是否符合预期。
逐步调试
从电路的输入端开始,逐步测试并调 整每个元件的参数,以确保整个电路 的稳定性和性能。
分块测试
将电路分成若干个模块进行测试,以 确定问题所在并进行针对性的调整。
记录与总结
在调试过程中,记录每次调整的参数 和结果,以便于问题分析和总结经验。
常见问题与解决方案
振荡波形失真
可能是由于元件参数不匹配或电路 布局不合理所致。解决方案包括重 新选择元件或优化电路布局。
频率不准确
可能是由于元件精度不够或计 算误差。解决方案包括使用高 精度元件或重新计算频率。
无法起振或振荡不稳定
并联型晶体振荡电路的优点是频率稳 定性高、输出波形好,但电路设计较 为复杂,调试难度较大。
串联型晶体振荡电路
串联型晶体振荡电路的特点是石英晶体与电容、电感等元件串联,通过反馈电路 和输出滤波器实现正弦波输出。
串联型晶体振荡电路的优点是电路设计相对简单,调试方便,但频率稳定性略低 于并联型晶体振荡电路。
正弦波振荡电路的应用
01
02
03
信号源
正弦波振荡电路可作为信 号源,为电子设备和系统 提供稳定的正弦波信号。
通信
在无线通信中,正弦波振 荡电路用于生成载波信号, 实现信号的传输。
正弦波-方波-三角波发生电路设计
东华理工大学长江学院课程设计报告正弦波-方波-三角波发生电路设计学生姓名:专业:班级:指导教师:正弦波-方波-三角波发生电路设计函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生正弦波,再将正弦波变成方波-三角波或将方波变成三角波等等。
本课题采用先产生正弦波,再将方波变换成三角波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成正弦波产生电路,比较器输出的方波经积分器得到三角波,目录1、正弦波发生器 (3)2、方波发生器 (4)3、三角波发生器 (7)4、正弦波-方波-三角波发生器 (9)5、总电路图、元器件清单 (10)6、心得体会及参考文献 (11)简述:方波、正弦波、三角波是电子电路中经常用到的信号,设计一个正弦波-方波-三角波发生电路。
具体技术要求如下:(1)正弦波-方波-三角波的频率在100Hz-20KHz范围内连续可调;(2)正弦波和方波的信输出幅度为6V,三角波的输出幅度在0-2V之间连续可调;正弦波的失真度r5%;(4)设计上述电路工作所需的直流稳压电源电路。
使用仪器及测量仪表:选用元器件(1).集成运放F007(a741);(2)稳压及开关二极管;(3)电阻、电容、电位器若干。
测量仪表(1)直流稳压电源;(2)示波器;(3)万用表(4)频率计(5)交流电压表一、正弦波发生器其振荡频率为1kHz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子系统综合设计实验报告
正弦波产生电路设计报告
一、实验设计目的和作用
1. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的
识别、测量、熟练运用的能力,掌握设计资料、手册、标准
和规范以及使用仿真软件、实验设备进行调试和数据处理
等。
2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数
字电路等知识解决电子信息方面常见实际问题的能力,由学
生自行设计、自行制作和自行调试。
3. 培养理论联系实际的正确设计思想,训练综合运用已学过的
理论和生产实际知识去分析和解决工程实际问题的能力。
4.通过学员的独立思考和解决实际问题的过程,培养学员的创
新能力
二、设计的具体实现
实验要求用TL084设计正弦波产生电路。
正弦波产生方式有多种,本次试验采用较为简单的文氏桥振荡电路。
通过图书馆和上网查阅有关资料,确定如下电路。
Multisim原理图:
sch图
调节w1使电路起振,w2调节幅度
仿真结果:频率162Hz,幅度范围0.8—10V
三、实际制作调试和结果分析
频率:133.33Hz
幅度范围:1~9V
四、总结
第一次进行电路设计,遇到了很多麻烦。
Multisim、Protel等软件不熟悉,第一次焊电路焊工也不行。
通过实验,基本学会了这些软件的操作,制作过程中,自己的焊工有了很大进步。
虽然做了好几次才把电路调出来,但还是很满意。
五、参考文献
1.于红珍.通信电子电路【M】.北京:清华大学出版社,2005
2.康华光,陈大钦.电子技术基础模拟部分(第四版). 北京:高等教育出版社,1999.6
3.黄智伟.全国大学生电子设计竞赛【M】.北京:北京航空航天大学出版社,2006。