线性代数讲义 (11)

合集下载

线性代数教材讲解ppt课件

线性代数教材讲解ppt课件

a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
0
0
单位阵.
0 0 1
线性变换
x1 y1
cosx siny, sinx cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P1 x1, y1
Px, y
O
X
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
且对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
(8)线性变换与矩阵之间关系:
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之
间的关系式
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
13 2
6 2
2i 2
是一个
33
复矩阵,
2 2 2
1 2 是一个 3 1 矩阵,
4
2 3 5 9
4
是一个 1 4 矩阵,
是一个 11 矩阵.
矩阵与行列式有本质的区别, 行列式是一个算式, 其行数和列数相同,一个数字行列式经过计算 可求得其值, 而矩阵仅仅是一个数表, 它的行数和 列数可以不同.

《线性代数讲义》课件

《线性代数讲义》课件

在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。

线性代数总复习讲义

线性代数总复习讲义
上页 下页 返回
线性代数总复习
r(A) r(A,b)无解
r(A)=r(A,b)=n 有唯一解
克拉默法则, xj
Dj D
Ax=b
b=0 b≠0
d1 d 2 d n T 初等变换,
齐次方程的基础解系
r(A)=r(A,b)<n 有无穷多解
非齐次方程的一个特解
非齐次方程的通解
上页 下页 返回
0 1 1
1 1 0 0 0 0
r3 r2 r4 3r1

0 1 1 2 r4 r3 0 0 0 0 2 4 2 2
0 1 1
1 ( 1) ( 2) ( 2) 4
上页 下页 返回
线性代数总复习
(2) 利用行列式展开计算
定理 行列式等于它的任一行(列)的各元素 与其对应的代数余子式乘积之和,即
r2 5r3
32 2 1 0 10 1 3 r2 ( 2) 3 5 3 5 1 A 1 3 3 . 0 0 2 2 2 r3 ( 1) 2 11 1 0 0 11 1
上页 下页 返回
上页 下页 返回
线性代数总复习
r1 r2
r3 r2
r1 2r3
1 0 2 1 1 0 r 2r 3 1 0 2 5 2 1 0 0 0 1 1 1 1 r2 5r3 1 0 0 1 3 2 r 2 ( 2) 0 2 0 3 6 5 ( 1) 0 0 1 1 1 1 r3
上页 下页 返回
线性代数总复习
2、n阶行列式的计算 (1) 利用行列式的性质计算 (化为三角形) 性质1 行列式与它的转置行列式相等.

线性代数11n阶行列式PPT课件

线性代数11n阶行列式PPT课件
(1). a13a24a31a42 + (2). a21a32a43a14 - (3). a12a23a34a43
25
第25页/共38页
n阶行列式的等价定义
视情况灵活选用定义
(1)行、列下标任意排列
a11 a12 a1n
Dn
a21
a22
a2n
an1 an2 ann
(1) a a a (i1i2in ) ( j1 j2 jn )
21
第21页/共38页
22
三、 n阶行列式
先分析三阶行列式的计算
a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32.
归纳每项内容及符号的规律
(1)每项都是位于不同行不同列的三个元素的乘积.
32 x 1
1 1 2x 1
求 x3 的 系 数.
32
第32页/共38页
解 含 x3 的项有两项,即
x1 1 2
f x 1 x 1 1
32 x 1
对应于
1 1 2x 1
1 a a a a 1 a a a a (1234) 11 22 33 44
1243
11 22 34 43
1
i1 j1 i2 j2
in jn
(2)列按自然序排列
Dn
(1) (i1i2in ) ai11 ai2 2 ainn
(i1i2 in )
26
第26页/共38页
例2:计算下三角形行列式
a11 0 0 D a21 a22 0
解:
an1 an2 ann 主对角线

线性代数第十一讲

线性代数第十一讲
第三节 矩阵的秩
矩阵秩的概念 矩阵秩的求法 例题 矩阵的秩的性质 小结
作业
返回
矩阵的秩的性质
(1) 0 ≤ R( Am×n ) ≤ min {m , n} (2) R( AT ) = R( A) (3) If A ~ B , then R( A) = R( B ) (4)若P,Q可逆,则 R( PAQ ) = R( A) 若 可逆, 可逆 (5) max{R( A), R( B)} ≤ R( A, B) ≤ R( A) + R( B),
设解为

λ1i λ2 i xi = ( i = 1, 2,L , l ) M λ ni
对矩阵(A, B )= ( a1 , a2 ,L , an , b1 , b2 ,L , bl ) 作初等列变换 cn+ i − λ1i c1 − λ2 i c2 − L − λni cn ( i = 1, 2,L , l ),
(8) If Am ×n Bn×l = O , then R( A) + R( B ) ≤ n 例 阶方阵, 的值. 设A为3阶方阵,且R(A)=1,则求 为 阶方阵 ,则求R(A*)的值 的值 的值. 若R(A)=2,则求 ,则求R(A*)的值 的值
返回
(7) R( AB ) ≤ min { R( A), R( B )}
1 0 −1 −1 1 2 c2 ↔ c3 0 1 0 −2 1 2 0 0 0 0 0
~
作业
返回
(1)若 R( A) < R( B ), 则 d r + 1 = 1, 对应矛盾方程: = 1, 对应矛盾方程: 0 所以方程组无解 ;
1 0 L 0 0 1 L 0 L L L L r B → B1 = 0 0 L 1 0 0 L 0 L L L L 0 0 L 0 d1 ( 2)若R( A) = R( B ) = r = n, d 2 则d r +1 = 0或不出现 , 且bij 都 L 不出现 , x1 = d1 dr M , 对应方程组: 0 对应方程组: xn = d n L 所以方程组解唯一. 0 所以方程组解唯一.

高数第11章 线性代数PPT课件

高数第11章 线性代数PPT课件

• 本章重点:
1. 利用行列式的性质计算n阶行列式的方法 2.利用克莱姆法则解线性方程 3.矩阵各种运算,矩阵的初等变换 4.矩阵秩的求法,用初等变换求逆矩阵的方法
5.高斯消元法解线性方程组 6. 层次分析法
• 本章难点:
1. 利用行列式的性质计算n阶行列式的方法
2.用矩阵的初等变换求矩阵的秩,逆矩阵
1111213215321213132111163631316??????????????按第一行展开1612106?????21111226121111111111112111126120211211226120261200313100212????????????1111200011111111111112102110211224261200310031????????????11111111211123001212031031???????按第一行展开211111134131124??????????按第二行展开例例2用行列式的性质计算下列行列式
3.高斯消元法解线性方程组
4.层次分析法
第一节 二、三阶行列式的概念与计算方法
1.引理:
对于二元线性方程组
aa2111xx11
a12x2 a22x2
b1 b2
解得
x1
x
2
b1a 22 b2 a12 a11a22 a12a21 b2 a11 b1a 21 a11a22 a12a21
河北机电职业技术学院
线 性代数课件
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第十一章 线性代数

线性代数第11讲

线性代数第11讲

的线性组合, 或者称b可由向量组
a1,a2,,an线性表示.
15
例如, b=(2,-1,1), a1=(1,0,0), a2=(0,1,0), a3=(0,0,1), 显然b=2a1-a2+a3. 即b是 a1,a2,a3的线性组合, 或者说b可由 a1,a2,a3线性表示.
16
b1
a1 j
记号, 例如
b1
β
b2
bn
可写成 b=(b1,b2,,bn)T
5
a11 a12
矩阵
A
a21
a22
am1
am 2
a1n
a2n
中的每一行(ai1,
amn
ai2, , ain)(i=1,2,,m)都是 n 维行向量, 每一
a1 j

a2
j
(
j
1,
2,
, n)都是 m 维列向量.
8
定义3.3 n维向量a=(a1,a2,,an)的各个分
量都乘以k(k为一实数)所组成的向量, 称
为数k与向量a的乘积, 记作ka, 即 ka=(ka1,ka2,,kan).
向量的加, 减及数乘运算统称为向量的线 性运算.
9
定义3.4 所有n维实向量的集合记为Rn, 我
们称Rn为实n维向量空间, 它是指在
定理
3.3
设向量
β
b2
,
向量αi
a2
j
(j=1,
bm
amj
2, , n), 则向量b可由向量组a1,a2,,an 线
性表示的充分必要条件是以a1,a2,,an 为列
向量的矩阵与以a1,a2,,an,b为列向量的矩

线性代数的考研讲义完整版

线性代数的考研讲义完整版

考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12…a1n a11 a12…a1n b1A= a21 a22…a2n 和(A|)= a21 a22…a2n b2…………………a m1 a m2…a mn a m1 a m2…a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或a2,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,,⋯ ,n时(它们都是表示为列的形式!)可记A=(1,2,⋯ ,n).2矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:①(A T)T=A.②(A+B)T=A T+B T.③(c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时,T表示行向量,当是行向量时,T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c11+c22+…+c s s为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n 阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1)a21 a22 (2)……… .a n1 a n2…a nn如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2…a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a Λ2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a Λ2121所乘的是.)1()(21n j j j Λτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a ΛΛΛτ-∑ … … …a n1 a n2 … a nn这里∑n j j j Λ21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n阶行列式的第i行和第j列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij.称A ij=(-1)i+j M ij为元素a ij的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2…… … … a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)→(E|η),η就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1 ③1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x 例8 设4阶矩阵A =(,1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑L L .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a n b 1 c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏L L . … … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i ii a b a b a b ++-=-=-∑(当a ≠b 时). 0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.②x3(x+4). ③a3(a+10). 例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB.AB 的行数和A相等,列数和B相等.AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设a11 a12...a1n b11 b12...b1s c11 c12 (1)A= a21 a22...a2n B= b21 b22...b2s C=AB=c21 c (2)………………………a m1 a m2…a mn ,b n1 b n2…b ns ,c m1 c m2…c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质(c A)B=c(AB).③结合律(AB)C= A(BC).④(AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E. 显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.②(A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法:形如A10 0A= 0 A2 0………0 0 …A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A10 ...0 B10 0A= 0 A2 ...0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2 …0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m⨯n矩阵B是n⨯s矩阵.A的列向量组为1,2,…,n,B的列向量组为1,,…,s, AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块2法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).②=(b1,b2,…,b n)T,则A= b11+b22+…+b n n.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则=A I=b1i1+b2i2+…+b ni n.i即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵. 此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A| 0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A| 0. (并且|A-1|=|A|-1.) “⇐”因为|A| 0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c 0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E) (E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21…A n1A*= A12 A22…A n2 =(A ij)T.………A1n A2n…A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc 0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.②|A*|=|A|n-1.③(A T)*=(A*)T.④(c A)*=c n-1A*.⑤(AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A=T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T, A=E-T, B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+4+93),求|B|.(05)2例6 3维向量1,2,3,1,2,3满足+3+21-2=0,31-2+1-3=0,2+3-2+3=0,1已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A -2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A1=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)3 3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) ||A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T=1.(2)T=1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 11 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量,2,…,t可以用1,2,…,s线性表示.1判别“是否可以用1,2,…,s线性表示? 表示方式是否唯一?”就是问:向量方程x11+x22+…+x s s=是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个。

《线性代数》部分讲义(Word版)

《线性代数》部分讲义(Word版)

《线性代数》部分讲义(Word版)GCT 线性代数辅导第一讲行列式一. 行列式的定义● 一阶行列式定义为1111a a =● 二阶行列式定义为2112221122211211a a a a a a a a -=● 在n 阶行列式中,划去元素ij a 所在的第i 行第j 列,剩余元素构成1-n 阶行列式,称为元素ij a 的余子式,记作ij M .● 令ij j i ij M A +-=)1(,称ij A 为ij a 的代数余子式.●n 阶行列式定义为n n nnn n nn A a A a A a a a a a a a a a a 1112121111212222111211+++=.二. 行列式的性质1.行列式中行列互换,其值不变.=333231232221131211a a a a a a a a a 332313322212312111a a a a a a a a a 2.行列式中两行对换,其值变号.=333231232221131211a a a a a a a a a –333231131211232221a a a a a a a a a 3.行列式中如果某行元素有公因子,可以将公因子提到行列式外.=333231232221131211a a a ka ka ka a a a 333231232221131211a a a a a a a a a k4.行列式中如果有一行每个元素都由两个数之和组成,行列式可以拆成两个行列式的和.=+++333231232322222121131211a a a b a b a b a a a a +333231232221131211a a a a a a a a a 333231232221131211a a a b b b a a a 由以上四条性质,还能推出下面几条性质5.行列式中如果有两行元素对应相等,则行列式的值为0.6.行列式中如果有两行元素对应成比例,则行列式的值为0.7.行列式中如果有一行元素全为0,则行列式的值为0.8.行列式中某行元素的k 倍加到另一行,其值不变.=333231232221131211a a a a a a a a a 133312321131232221131211ka a ka a ka a a a a a a a +++三.n 阶行列式展开性质nnn n nn a a a a a a a a a D212222111211= 等于它的任意一行的各元素与其对应代数余子式的乘积的和,即in in i i i i A a A a A a D +++= 2211 n i ,,2,1 = ● 按列展开定理nj nj j j j j A a A a A a D +++= 2211 n j ,,2,1 =●n 阶行列式D 的某一行的各元素与另一行对应元素的代数余子式的乘积的和等于零.即02211=+++jn in j i j i A a A a A a j i ≠ ● 按列展开的性质02211=+++nj ni j i j i A a A a A a j i ≠四.特殊行列式●nn nna a a a a a22112211=;()11212)1(11211n n n n n n n na a a a a a ----=● 上(下)三角行列式和上面的对角行列式的结果相同.五.计算行列式● 消零降阶法.● 消为特殊行列式(上(下)三角行列式或和对角行列式)..典型习题1. =3D xx x 121332=()。

线性代数讲义

线性代数讲义

1 0 矩阵,可以经过进一步初等行变换,化为: 0 0
7 0 − 6 5 1 −1 0 − 矩阵的行最 6 ,这种形式的矩阵,称为原矩阵的行最 1 0 0 1 3 0 0 0 0 0 1
简形。 简形 (注意观察与原阶梯型矩阵的差别。并思考为什么可以直接看出来方程组的一般解?) 我们已经说明,齐次线性方程组一定有一组零解,而且例 3 表明,齐次线性方程组有自由未知量的时 候,一定有无穷组解(因为自由未知量随便取定一组值都可以得到一组解) ,此时称齐次线性方程组是有 非零解的。 那么,齐次线性方程组什么时候会有自由未知量呢?观察矩阵可知,最终矩阵经初等行变换化阶梯型 (或行最简形)后,台阶数如果比未知量个数少,就一定有自由未知量,从而就一定有非零解。 因为矩阵化阶梯型后,必然一行有一个台阶,所以阶梯数不会多于行数。如果所给的矩阵行数小于未 知量个数,换句话说,已知的方程组方程个数小于未知量个数 方程组方程个数小于未知量个数,那必有阶梯型矩阵的台阶数小于未知量个 方程组方程个数小于未知量个数 数,也就是方程组一定有非零解 方程组一定有非零解。此时方程组是“矮胖”的,也可以这样记此结论“矮胖的齐次线性方程 方程组一定有非零解 “矮胖的齐次线性方程 。 组一定有非零解” 一定有非零解” 三、线性方程组解的一般讨论
1 −3 −1 −2 r1 + r2 1 1 −3 −1 2− r2 4 1 −r +r 1 −2 1 − r11 + r3 0 −1 4 3 − 1 r3 0 4 4 → → 0 0 −4 −4 0 1 1 3 2 −3 3 0 1 −4 0 0
1 −3 −1 1 −4 −3 0 1 1 0 0 3

线性代数总复习讲义PPT课件

线性代数总复习讲义PPT课件
在金融学中,线性代数用于描述资产价格和风险等经济量,以及计算收益 率和波动率等金融指标。
在计算机科学中的应用
01
Байду номын сангаас
02
03
04
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
线性代数在计算机科学中也有 着广泛的应用,如图像处理、 机器学习和数据挖掘等领域。
100%
相似变换法
通过相似变换将矩阵对角化,从 而得到其特征值和特征向量。
80%
数值计算法
对于一些大型稀疏矩阵,可以使 用数值计算方法来计算其特征值 和特征向量。
特征值与特征向量的应用
01
在物理、工程等领域中,特征值和特征向量被广泛 应用于求解振动、波动等问题。
02
在图像处理中,特征值和特征向量被用于图像压缩 和图像识别。
二次型的应用与优化问题
总结词
了解二次型在解决优化问题中的应用
详细描述
二次型的一个重要应用是在解决优化问题中, 特别是在求解二次规划问题时。通过将问题 转化为二次型的形式,可以方便地应用各种 优化算法进行求解,如梯度下降法、牛顿法 等。此外,二次型在统计分析、机器学习等 领域也有着广泛的应用。
06
矩阵的逆与行列式的值
要点一
总结词
矩阵的逆和行列式的值是线性代数中的重要概念,它们在 解决线性方程组、向量空间和特征值等问题中有着广泛的 应用。
要点二
详细描述
矩阵的逆是矩阵运算的一个重要概念,它表示一个矩阵的 逆矩阵与其原矩阵相乘为单位矩阵。逆矩阵的存在条件是 矩阵的行列式值不为零。行列式的值是一个由n阶方阵构 成的代数式,表示n个未知数的n阶线性方程组的解的系数 。行列式的值可以用来判断线性方程组是否有解以及解的 个数。同时,行列式的值也与特征值和特征向量等问题密 切相关。

麻省理工上课讲义 线性代数[第11集]矩阵空间、秩 1 矩阵和小世界图

麻省理工上课讲义 线性代数[第11集]矩阵空间、秩 1 矩阵和小世界图

Differential equations Another example of a vector space that’s not Rn appears in differential equa­ tions. d2 y We can think of the solutions y to 2 + y = 0 as the elements of a nullspace. dx Some solutions are: y = cos x, The complete solution is: y = c1 cos x + c2 sin x, where c1 and c2 can be any complex numbers. This solution space is a two dimensional vector space with basis vectors cos x and sin x. (Even though these don’t “look like” vectors, we can build a vector space from them because they can be added and multiplied by a constant.) Rank 4 matrices Now let M be the space of 5 × 17 matrices. The subset of M containing all rank 4 matrices is not a subspace, even if we include the zero matrix, because the sum of two rank 4 matrices may not have rank 4.

线性代数完整版ppt课件

线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22

线性代数(经管类)讲义

线性代数(经管类)讲义

高数线性代数课堂笔记第一章行列式线性代数学的核心内容是:研究线性方程组的解的存在条件、解的结构以及解的求法。

所用的基本工具是矩阵,而行列式是研究矩阵的很有效的工具之一。

行列式作为一种数学工具不但在本课程中极其重要,而且在其他数学学科、乃至在其他许多学科(例如计算机科学、经济学、管理学等)都是必不可少的。

1.1行列式的定义(一)一阶、二阶、三阶行列式的定义)定义:符号叫一阶行列式,它是一个数,其大小规定为:。

注意:在线性代数中,符号不是绝对值。

例如,且;)定义:符号叫二阶行列式,它也是一个数,其大小规定为:所以二阶行列式的值等于两个对角线上的数的积之差。

例如)符号叫三阶行列式,它也是一个数,其大小规定为例如=0三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆方法是:在已给行列式右边添加已给行列式的第一列、第二列。

我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。

例如:(1)=1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0(2)(3)(2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如例1a为何值时,[答疑编号10010101:针对该题提问]解因为所以8-3a=0,时例2当x取何值时,[答疑编号10010102:针对该题提问]解:解得0<x<9所以当0<x<9时,所给行列式大于0。

(二)n阶行列式符号:它由n行、n列元素(共个元素)组成,称之为n阶行列式。

线性代数相关知识培训教程PPT课件( 93页)

线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6


14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A


A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 对增广矩阵 A进行初等变换
8
1 1 1 1 0 1 1 1 1 0 A 1 1 1 3 1 ~ 0 0 2 4 1
1 1 2 3 1 2 0 0 1 2 1 2
1 ~ 0
1 0
1 1
1 2
0 1 2
由r( A) r( A) 2 < 4,知 方程组有无穷多解. 继续
(其中c1,c2 R)
c2
,
x2 x3 x4
c1
1 0 0
c2
1 2 1 1 2
1 4 0 4
.
12
x1 x2 a1
例3
证明方程组
x2 x3
x3 x4
a2 a3
有解的充要条件
x4
x5
a4
x5 x1 a5
是a1 a2 a3 a4 a5 0. 在有解的情况下,求出它
1
, 2
x3
( 1)2
2
.
(2) 当 2时,方程组无解; (3) 当 1时,方程组有无穷多解,且通解为
x1 1 1 1 x2 c1 1 c2 0 0 x3 0 1 0
(c1, c2 R)
21
三、小结
对非齐次线性方程组 Amn x b, (1) r( A) r( A) n 方程组有唯一解; (2) r( A) r( A) < n 方程组有无穷多解; (3) r( A) r( A) 方程组无解.
1 1 1 1 1 2
A1 1 ~1 1
1
1 2
1
1
1
16
1 1
2
~ 0 1 1 2
0
1
1 2
1
3
1 1
~ 0 1 1
2
2
0
0
2 2
1
2
3
1 1
0 1 1
2
(1 )
0
0
(1 )(2 )
(1
)(1
)2
结论: 为求解非齐次线性方程组 Ax b,只需将增广
矩阵 A 化成行阶梯形矩阵,便可判断其是否有
解.若有解,再将行阶梯形矩阵化成行最简形 矩阵,便可写出其通解。
7
二、线性方程组的解法
例2 求解非齐次方程组的通解
x1 x1
x2 x2
x3 x3
x4 0 3x4 1
x1 x2 2 x3 3 x4 1 2
x3
( 1)2
2
.
19
2) 2时,
1 1
2
A ~ 0 1 1
0
0
(2 )
(1
)2
1 1 2 4 ~ 0 3 3 6
0 0 0 1
由 2 r(A) r(A) 3, 故方程组无解.
20
综上所述,
(1) 当 1,且 2时,方程组有唯一解;
x1
1 2
,
x2
~
0
0
1 1 0
a3
0 0 0 1 1 a4
5
0 0 0 0 0 ai
i1
有解
r(A) r(A)
5
ai 0
i 1
14
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
由此得通解:
x4 x5 a4
这与方程组有解相矛盾. 因此只能是 r( A) r( A).
3
充分性. 设r( A) r( A) r ( n),
则 A 的行阶梯形矩阵中含r 个非零行,
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量,
其余n r个作为自由未知量, 并令 n r个自由未知量任意取值, 即可得方程组的一个解.
2x1 x2 2x3 2 x4 3.
解 对增广矩阵 A 进行初等变换,
5
1 A 3
2 1
3 5
1 3
1 2
r12(3) 1 r13(2) 0
2 5
3 4
1 0
1 1
2 1 2 2 3 r23(1) 0 50 04 0 12
显然,r( A) 2 r( A) 3, 故方程组无解.
证毕
4
推论 矩阵方程 AX B有解的充分必要条件是 r( A) r( A, B)
由上一节,我们知道对线性方程组Ax b的 求解,主要是对增广矩阵A 进行初等行变换而将 其化为行最简形矩阵.
例1 求解非齐次线性方程组
x1 3 x1
2
x2 x2
3x3 5x3
x4 3 x4
1,
2,
17
(1) 当 1时,
1 1 1 1 A ~ 0 0 0 0
0 0 0 0
由r(A) r(A) 1 < 3, 知方程组有无穷多解.
且其通解为
x1 x2
1 x2
x2
x3
x3 x3

x1 1 1 1 x2 c1 1 c2 0 0
(c1, c2 R)
11
例如,在本例中,从增广矩阵A的行最简形矩阵
1 1 0 1 1 2 A ~ 0 0 1 2 1 2
0 0 0 0 0
中也可取 x1, x3作为自由未知量,于是得同解
方程组
x2 x4 x1 1 2x4 x3 1 2
2
x1 1 0 0
若令x1 c1, x3 则得通解为
第三节 非齐次线性方程组
一、非齐次线性方程组有解的判定 二、非齐次线性方程组的解法 三、小结、思考题
1
一、非齐次线性方程组有解的判定条件
问题:如何利用系数矩阵 A 和增广矩阵 A 的秩, 讨论线性方程组 Ax b 的解. 回答 : 与 Ax 0一定有解不同,非齐次线性方程 组
Ax b (b 0) 不一定有解,而是有
定理1更常用的描述是:
此乃第三章的 精华所在
定理1‘ 对n 元非齐次线性方程组 Amn x b ,
(1) r( A) r( A) n 方程组有唯一解;
(2) r( A) r( A) < n 方程组有无穷多解;
(3) r( A) r( A) 方程组无解.
6
容易看出,n个未知数n个方程的线性方程组 时使用的克拉默法则只是定理 1的必要条件. 故 而定理 1是克拉默法则的一个重要推广.
x3 0 1 0
18
(2) 当 1时,
1
A ~ 0
0
1
1
0
1
~ 0
0
2
1
(1 )
(1 )(2 )
(1
)(1
)2
1
2
1 1
0
(2 )
(1
)2
这时又分两种情形:
1) 2时, r(A) r(A) 3,方程组有唯一解:
x1
1 2
,
x2
1
, 2
0 0 0 0 0 化简得
1 1 0 1 1 2 A ~ 0 0 1 2 1 2
0 0 0 0 0
9
而行最简形矩阵矩阵
1 1 0 1 1 2 A ~ 0 0 1 2 1 2
0 0 0 0 0 对应同解方程组
x1 x3
x2 x4 1 2x4 1 2
2
x1 1x2 1x4 1 2
22
思考题
能否利用“行列式”法求下列非齐次线性方程组的解情况
2 x1 x1
2
x2 x2
x3 x3
2
x1 x2 2 x3 2
23
思考题解答
不能!因为其系数矩阵A虽然是个方阵,但
| A | 0!无法展开讨论。所以,本题只能使用 初等行变换法。
24
x2 1x2 0x4 0 x3 0x2 2x4 1 2
x4 0 x2 1x4 0
10
所以方程组的通解为
x1 1 1 1 2
x2 x3 x4
c1
1 0 0
c2
0 2 1
0 12 0
.
(其中c1,c2 R)
注意: 线性方程组 Ax b的通解表达式不唯一!
的一切解.
证 对增广矩阵 A进行初等变换,
方程组的增广矩阵为
13
1 1 0 0 0 a1
0 1 1 0 0 a2
A 0
0
1
1
0
a3
0 0 0 1 1 a4
1 0 0 0 1 a5
将 1,2,3,4各行全 加到第5行,得
1 1 0 0 0 a1
0 1 1 0 0 a2
x1 a1 a2 a3 a4 c
x2 a2 a3 a4 c x3 a3 a4 c
( c 为任意实数).来自x4 a4 c15
例4 设有线性方程组
x1 x2 x1 x2
x3 x3
1
x1 x2 x3 2
问取何值时,有唯一解? 无解?有无穷多个解?
解一 对增广矩阵 A ( A,b) 作初等行变换,
2
定理1 n 元非齐次线性方程组 Amn x b 有解
的充分必要条件是 r( A) r( A);且在有无穷 多解时,其通解表达式中含有n r( A)个任意参数。
证 必要性.设方程组 Ax b 有解, (反证法)
设r (A)< r ( A),
则 A 的行阶梯形矩阵中最后一个非零行对应矛 盾方程0=1,
相关文档
最新文档