传感器课程设计 电感式位移传感器
传感器的课课程设计
![传感器的课课程设计](https://img.taocdn.com/s3/m/3d6e29e170fe910ef12d2af90242a8956becaa3b.png)
传感器的课课程设计一、教学目标本节课的教学目标是使学生掌握传感器的基本概念、原理和应用,能够理解不同类型传感器的特点和作用,并能够运用传感器进行简单的实验和应用设计。
具体来说,知识目标包括:1.了解传感器的基本概念、原理和分类。
2.掌握常见传感器的特点、工作原理和应用领域。
3.理解传感器在现代科技中的重要性及其发展趋势。
技能目标包括:1.能够运用传感器进行简单的实验和应用设计。
2.能够分析传感器输出信号的特点,并进行相应的处理和分析。
3.能够结合其他电子元件,设计简单的传感器应用系统。
情感态度价值观目标包括:1.培养学生对科学探究的兴趣和热情,提高学生的创新意识。
2.培养学生团队合作精神,提高学生解决实际问题的能力。
3.培养学生关注现代科技发展,增强学生的社会责任感和使命感。
二、教学内容本节课的教学内容主要包括传感器的基本概念、原理和分类,以及常见传感器的特点、工作原理和应用领域。
具体安排如下:1.传感器的基本概念、原理和分类:介绍传感器的定义、作用、基本原理和分类方法。
2.常见传感器的特点、工作原理和应用领域:介绍温度传感器、压力传感器、湿度传感器、光传感器等常见传感器的特点、工作原理和应用领域。
3.传感器在现代科技中的重要性及其发展趋势:分析传感器在现代科技中的重要作用,介绍传感器的发展趋势和前景。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法和实验法等。
具体方法如下:1.讲授法:通过讲解传感器的基本概念、原理和分类,使学生掌握传感器的基本知识。
2.讨论法:学生分组讨论常见传感器的特点、工作原理和应用领域,促进学生思考和交流。
3.案例分析法:分析实际应用中的传感器案例,使学生更好地理解传感器的工作原理和应用价值。
4.实验法:安排学生进行传感器实验,培养学生的动手能力,提高学生对传感器应用的深入理解。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用符合教学目标的传感器教材,为学生提供系统、科学的学习材料。
传感器课程设计_电感式位移传感器
![传感器课程设计_电感式位移传感器](https://img.taocdn.com/s3/m/ddcfa76c4b35eefdc8d33362.png)
东北石油大学课程设计2015年7 月 8日任务书课程传感器课程设计题目电感式位移传感器应用电路设计专业测控技术与仪器祖景瑞学号 120601240222主要容:本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。
电路要能够检测一定围位移的测量,并且能够通过LED进行数字显示。
位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。
基本要求:1、能够检测 0~20cm 的位移;2、电压输出为 1~5V;3、电流输出为 4~20mA;主要参考资料:[1] 贾伯年,俞朴.传感器技术[M].:东南大学,2006:68-69.[2]王煜东. 传感器及应用[M].北京:机械工业,2005:5-9.[3] 唐文彦.传感器[M].北京:机械工业,2007: 48-50.[4] 谢志萍.传感器与检测技术[M].北京:高等教育,2002:80-90.完成期限 2015.7.4—2015.7.8指导教师专业负责人2015年 7 月 1 日摘要测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。
位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。
电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。
针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。
电感传感器课程设计
![电感传感器课程设计](https://img.taocdn.com/s3/m/93bc95b6e109581b6bd97f19227916888586b909.png)
电感传感器课程设计一、教学目标本课程的目标是让学生掌握电感传感器的基本原理、结构和应用,培养学生运用电感传感器进行实际测量和分析的能力。
具体分为以下三个维度:1.知识目标:学生能够理解电感传感器的工作原理、主要组成部分及其特性,掌握电感传感器的种类和应用领域。
2.技能目标:学生能够运用电感传感器进行实际测量,分析测量数据,并能针对具体问题提出解决策略。
3.情感态度价值观目标:培养学生对新技术的敏感度和好奇心,增强学生对电子信息技术的认同感,提高学生运用先进技术解决实际问题的意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电感传感器的基本原理:介绍电感传感器的工作原理、特性以及主要组成部分。
2.电感传感器的种类与应用:介绍不同类型的电感传感器及其在各个领域的应用。
3.电感传感器的测量技术:讲解电感传感器的测量原理、测量方法以及数据处理。
4.电感传感器在实际工程中的应用案例:分析实际工程中电感传感器的应用,培养学生运用知识解决实际问题的能力。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:用于讲解电感传感器的基本原理、特性以及测量技术。
2.案例分析法:通过分析实际工程案例,使学生更好地理解电感传感器的应用。
3.实验法:让学生亲自动手进行实验,巩固所学知识,提高实际操作能力。
4.讨论法:鼓励学生积极参与课堂讨论,培养学生的思考能力和团队协作精神。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《电感传感器及其应用》等相关教材,为学生提供理论学习的参考。
2.参考书:提供相关的学术论文和书籍,帮助学生拓展知识面。
3.多媒体资料:制作课件、视频等多媒体资料,提高课堂教学的趣味性。
4.实验设备:准备电感传感器实验装置,让学生能够进行实际操作和测量。
五、教学评估本课程的评估方式将包括以下几个方面,以全面、客观、公正地评价学生的学习成果:1.平时表现:通过课堂参与、提问、讨论等方式评估学生的学习态度和积极性。
传感器课程设计20页
![传感器课程设计20页](https://img.taocdn.com/s3/m/7e8c2ff8f424ccbff121dd36a32d7375a417c6a3.png)
传感器课程设计20页一、教学目标本课程的教学目标是使学生掌握传感器的基本原理、性能和应用方法,培养学生动手能力和创新思维,提高学生对传感器技术的认识和理解。
知识目标:了解传感器的基本概念、分类和特性;掌握传感器的选型、安装和调试方法;了解传感器在自动化系统和智能制造中的应用。
技能目标:能够根据实际需求选择合适的传感器,进行电路设计和系统集成;能够使用传感器进行数据采集和分析,解决实际问题。
情感态度价值观目标:培养学生对科技创新的兴趣和热情,提高学生责任感和社会使命感,使学生认识到传感器技术在现代社会中的重要性。
二、教学内容本课程的教学内容主要包括传感器的基本原理、性能参数和应用领域。
1.传感器的基本原理:电阻式、电容式、电感式、霍尔效应、光电效应等传感器的原理和特点。
2.传感器的性能参数:灵敏度、迟滞、重复性、线性度、分辨力等参数的定义和计算。
3.传感器的应用领域:工业自动化、智能交通、生物医学、环境监测等领域的传感器应用案例。
4.传感器选型、安装和调试:根据实际需求选择合适的传感器,了解传感器的安装和调试方法。
5.传感器与微处理器的接口技术:了解传感器与微处理器的接口方式,掌握接口电路的设计方法。
三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法。
1.讲授法:通过教师讲解,使学生掌握传感器的基本原理和性能参数。
2.讨论法:引导学生参与课堂讨论,提高学生对传感器应用案例的分析和评价能力。
3.案例分析法:分析实际应用案例,使学生了解传感器在各个领域的应用,提高学生的实践能力。
4.实验法:学生进行实验,使学生掌握传感器的选型、安装和调试方法,培养学生的动手能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
1.教材:选用国内权威出版社出版的传感器教材,保证课程内容的科学性和系统性。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作PPT、视频等多媒体资料,提高课堂教学效果。
传感器技术——电感式传感器ppt课件优选全文
![传感器技术——电感式传感器ppt课件优选全文](https://img.taocdn.com/s3/m/1139cea259f5f61fb7360b4c2e3f5727a4e92469.png)
频
励频率应选得较
透
低。频率太高,
射
贯穿深度小于被
式
测厚度,不利于
进展厚度丈量,
通常选鼓励频率
为1kHz左右。
发射线圈L1和接纳线圈L2分置于被测金属板的上下方。由于低频磁场集肤 效应小,浸透深,当低频(音频范围)电压e1加到线圈L1的两端后,所产生 磁力线的一部分透过金属板,使线圈L2产生感应电动势e2。但由于涡流耗 费部分磁场能量,使感应电动势e2减少,当金属板越厚时,损耗的能量越 大,输出电动势e2越小。因此,e2的大小与金属板的厚度及资料的性质有 关。实验阐明e2随资料厚度h的添加按负指数规律减少,因此,假设金属板 资料的性质一定,那么利用e2的变化即可测厚度。
1 234
1 线圈 2 框架 3 衬套 4 支架 5 电缆 6 插头
6
5
型号
线性范围 线圈外径 分辨力
/m
/mm
/m
线性误差 (%)
使用温度 /C
CZF1-1000 1000
7
1
<3
-15+80
CZF1-3000 3000
15
3
<3
-15+80
CZF1-5000 5000
28
5
<3
-15+80
分析上表得出结论: 线圈外径与丈量范围及分辨力之间有何关系?
3 互感式传感器〔差动变压器式传感器〕
任务原理:电磁感应中的互感景象。
e12
M
di1 dt
互感M与两线圈的相对位置及周围介质的导磁才干等要 素有关,阐明两线圈之间的耦合程度。
〔一〕构造原理与等效电路
差动变压器分气隙型和螺管型两种。目前多采用螺管型差动变压器。
电感式位移传感器的设计(9页)
![电感式位移传感器的设计(9页)](https://img.taocdn.com/s3/m/8473bfa20342a8956bec0975f46527d3240ca6eb.png)
电感式位移传感器的设计(第1页)一、设计背景位移传感器在现代工业生产中扮演着重要角色,广泛应用于机械制造、自动化控制、航空航天等领域。
电感式位移传感器作为一种常见的位移检测装置,具有精度高、稳定性好、抗干扰能力强等优点。
本文将详细介绍电感式位移传感器的设计过程。
二、工作原理电感式位移传感器是基于电磁感应原理设计的。
当传感器中的激励线圈通以交流电流时,会在周围产生交变磁场。
当被测物体(通常是金属目标物)进入该磁场并发生位移时,会导致磁路的磁阻发生变化,进而引起线圈感应电动势的变化。
通过检测感应电动势的变化,即可实现对位移量的精确测量。
三、设计目标1. 确保传感器具有较高的测量精度和分辨率;2. 提高传感器的线性度和稳定性;3. 优化传感器结构,使其便于安装和维护;4. 降低成本,提高传感器的性价比。
四、传感器结构设计1. 激励线圈设计(1)线圈的匝数:匝数越多,产生的磁场强度越大,但线圈电阻也会增加,导致功耗增大。
因此,需在磁场强度和功耗之间寻找平衡。
(2)线圈的材料:选择具有较高磁导率和电阻率的材料,以提高线圈的性能。
(3)线圈的形状:根据实际应用场景,设计合适的线圈形状,使其在有限的空间内产生较强的磁场。
2. 检测线圈设计(1)线圈与激励线圈的相对位置:确保检测线圈能充分感应到激励线圈的磁场变化。
(2)线圈的匝数:匝数越多,感应电动势越大,但线圈电阻也会增加。
需在灵敏度与功耗之间进行权衡。
(3)线圈的材料:选择具有较高磁导率和电阻率的材料。
电感式位移传感器的设计(第2页)五、信号处理电路设计1. 激励信号源(1)频率选择:激励信号的频率应适中,频率太低会导致灵敏度下降,频率太高则可能引起电磁干扰。
(2)幅值稳定:确保激励信号幅值稳定,以减少测量误差。
2. 感应电动势检测感应电动势的检测是位移测量的关键步骤。
检测电路设计如下:(1)放大电路:由于感应电动势信号较弱,需通过放大电路对其进行放大,以便后续处理。
传感器测位移课程设计
![传感器测位移课程设计](https://img.taocdn.com/s3/m/71c0b39c09a1284ac850ad02de80d4d8d15a0123.png)
传感器测位移课程设计一、课程目标知识目标:1. 学生能理解并掌握传感器测位移的基本原理和概念;2. 学生能掌握位移传感器的种类、特点及应用场景;3. 学生能了解位移测量在工程实践和日常生活中的重要性。
技能目标:1. 学生能正确操作位移传感器进行位移测量;2. 学生能运用数据处理软件对测量数据进行处理和分析;3. 学生能设计简单的位移测量实验,并解决实际问题。
情感态度价值观目标:1. 学生对传感器测位移产生兴趣,提高探究科学技术的热情;2. 学生认识到位移测量在工程和科技领域的重要性,增强国家科技发展的自豪感;3. 学生通过合作学习,培养团队协作精神和沟通能力。
本课程针对高年级学生,结合物理和工程学科特点,强调理论与实践相结合。
课程设计注重学生动手实践能力和问题解决能力的培养,使学生在掌握基本知识的同时,提高实际操作和创新能力。
通过本课程的学习,学生将能够运用所学知识解决实际问题,并为后续相关专业课程打下坚实基础。
二、教学内容1. 位移传感器原理- 介绍位移传感器的种类(如电位计式、电感式、光电式等);- 阐述不同类型位移传感器的工作原理及优缺点。
2. 位移传感器应用- 分析位移传感器在工程和日常生活中的应用场景;- 案例展示:位移传感器在工业自动化、机器人、汽车制造等领域的应用。
3. 位移测量实验- 实验原理及步骤;- 实验设备操作方法及注意事项;- 实验数据处理与分析。
4. 教学实践与问题解决- 设计并实施简单的位移测量实验;- 结合实际问题,运用所学知识进行分析和解决;- 讨论实验过程中遇到的问题及解决方案。
本教学内容依据课程目标,结合教材章节,确保教学内容科学性和系统性。
教学大纲明确教学内容的安排和进度,注重理论与实践相结合,提高学生的动手实践能力和问题解决能力。
通过以上教学内容的学习,学生将全面掌握位移传感器的基本知识和应用技能。
三、教学方法本课程采用以下多样化的教学方法,旨在激发学生的学习兴趣和主动性:1. 讲授法:- 对位移传感器的基本原理、种类及特点进行系统讲解,使学生掌握必要的理论知识;- 结合实际应用案例,讲解位移传感器在工程实践中的重要性。
电感式位移传感器的设计
![电感式位移传感器的设计](https://img.taocdn.com/s3/m/4e58473af111f18583d05aeb.png)
电感式位移传感器的设计摘要:针对目前电感式位移传感器的应用现状,本文提出了一种新的电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制系统中。
一、引言(一)传感器的定义国家标准 GB7665- 87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
(二)传感器的作用人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。
为适应这种情况,就需要传感器。
因此可以说,传感器是人类五官的延长,又称之为电五官。
新技术革命的到来,世界开始进入信息时代。
在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。
因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。
现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到纳米的粒子世界,纵向上要观察长达数十万年的天体演化,短到秒的瞬间反应。
此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。
显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。
许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。
位移传感器课程设计
![位移传感器课程设计](https://img.taocdn.com/s3/m/fb48c130a88271fe910ef12d2af90242a895abca.png)
位移传感器课程设计一、课程目标知识目标:1. 学生理解位移传感器的基本概念,掌握其工作原理和分类;2. 学生能够运用物理知识,解释位移传感器在实际应用中的功能;3. 学生了解位移传感器在自动化、机器人技术等领域的重要性。
技能目标:1. 学生能够正确操作位移传感器,进行简单的数据采集和信号处理;2. 学生通过实际操作,培养动手能力和问题解决能力;3. 学生学会使用相关软件对位移传感器数据进行处理和分析。
情感态度价值观目标:1. 学生培养对物理科学的兴趣,提高探索未知、创新实践的精神;2. 学生认识到位移传感器在现代科技发展中的重要作用,增强社会责任感和使命感;3. 学生通过小组合作,培养团队协作精神和沟通能力。
课程性质:本课程属于物理学科,结合传感器技术,旨在培养学生的实践能力和创新精神。
学生特点:本年级学生具有一定的物理知识基础,对新兴科技具有好奇心,动手能力较强。
教学要求:结合课程内容,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的综合素养。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 位移传感器基础知识:- 传感器定义、作用及分类;- 位移传感器原理及其在自动化领域的应用。
2. 位移传感器的种类及特点:- 电位计式、光栅式、磁电式等位移传感器的工作原理和性能比较;- 各类位移传感器在实际应用中的优缺点分析。
3. 位移传感器的操作与数据处理:- 位移传感器的安装、调试及使用方法;- 使用相关软件(如Excel、Processing等)对采集到的数据进行处理和分析;- 数据处理过程中常见问题及解决方法。
4. 实践项目:- 设计简单的位移测量实验,培养学生的动手实践能力;- 结合课程内容,开展小组合作项目,提高学生团队协作能力。
教材章节关联:- 《物理》教材中有关传感器的内容;- 《传感器原理与应用》教材中关于位移传感器的章节。
教学内容安排与进度:- 第一课时:位移传感器基础知识及分类;- 第二课时:各类位移传感器的工作原理及特点;- 第三课时:位移传感器的操作与数据处理;- 第四课时:实践项目及小组合作项目展示与总结。
位移传感器原理及应用课程设计[1]
![位移传感器原理及应用课程设计[1]](https://img.taocdn.com/s3/m/11bf3fdad15abe23482f4d47.png)
题目:位移传感器的设计设计人员:学号:班级:指导老师:许晓平、高宏才、陈焰日期:位移传感器—光栅的原理和应用一、概述位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。
小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。
其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。
二、原理计量光栅是利用光栅的莫尔条纹现象来测量位移的。
“莫尔”原出于法文Moire,意思是水波纹。
几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。
一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。
计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。
下面以透射光栅为例加以讨论。
透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。
目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。
光栅的横向莫尔条纹测位移,需要两块光栅。
一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。
为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。
当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。
由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。
如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。
每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。
项目五电感式传感器教案
![项目五电感式传感器教案](https://img.taocdn.com/s3/m/40109191cd22bcd126fff705cc17552706225e49.png)
班级:日期:年月日编号:电感式传感器是利用电磁感应改变线圈的自感系数L或互感系数M达到测量位移、压力、流量、振动、比重等物理参数的目的,自感系数L 和互感系数M 的变化在电路中又转换为电压或电流的变化输出,从而实现非电量到电量的转换;电感式传感器实现信息的远距离转输、记录、显示和控制等方面的要求,广泛应用于工业自动控制系统中;电感式传感器具有结构简单,工作可靠,寿命长,灵敏度和分辨率高,输出信号强,线性度和重复性好,稳定性好等优点;但是存在交流零位信号,不宜快速动态测控等缺点;电感式传感器按其工作原理可分为自感式,变压器式和电涡流式等种类;本项目将重点介绍上述三种传感器,使读者了解电感式传感器的结构、工作原理、测量方法和应用场合;一、自感式传感器1、工作原理变磁阻式传感器是一种常用自感式传感器,其结构原理如图5—1所示,由线圈、铁芯和衔铁三部分组成;铁芯和衔铁由导磁材料坡莫合金或硅钢片制成;活动衔铁与铁芯之间存在气隙,厚度为δ;传感器工作时,衔铁与传感器的运动部分同时连接被测物体连在一起,当被测物体按图示方向产生δ∆±的位移时,气隙厚度δ发生变化,从而使磁路中的磁阻产生相应的变化,进而导致电感线圈的电感量变化,测出这种电感量的变化就可以判别衔铁即被测物体位移量的大小和方向;图5—1 变磁阻式传感器基本结构根据电感定义,线圈中电感量可由下式确定:IN IΦ==ψL 5—1式中: ψ——线圈总磁链;I ——通过线圈的电流; N ——线圈的匝数; Φ——穿过线圈的磁通; 由磁路欧姆定律,得mR IN=Φ 5—2式中:m R ——磁路总磁阻;将式5—2代入5—1得mm R N R IN I N I N I 2L ==Φ==ψ5—3 对于变气隙式传感器, 因为气隙很小,所以可以认为气隙中的磁场是均匀的;若忽略磁路损耗,则磁路总磁阻为SS L S L R R R F m 02221112μδμμδ++=+= 5—4式中:F R ——铁芯磁阻;δR ——空气气隙磁阻;1μ——铁芯材料的磁导率;2μ——衔铁材料的磁导率; 1L ——磁通通过铁芯的长度;S ——气隙的截面积;δ——气隙的厚度;2、自感传感器等效电路电感传感器是利用铁芯线圈中的自感随衔铁位移或空隙面积改变而变化的原理制成的,它通常采用铁磁体作为磁芯,所以线圈不可能呈现为纯电感,电感L 还包含了与L 串联的线圈铜损耗电阻c R ,同时存在与L 并联铁芯祸流损耗电阻Re ;由于线圈和测量设备电缆的接入,存在线圈固有电容和电缆的分布电容,用集中参数C 表示C 与L 和c R 、Re 相并联,因此,电感式传感器可用等效电路表示;它可以用一个复阻抗Z 来等效;二 互感式传感器互感式传感器是把被被测的非电量变化转换为变压器线圈的互感变化;这种传感器是根据变压器的基本原理制成的,变压器初级线圈输入交流电压,次级线圈感应出电势;由于变压器的次级线圈常接成差动形式,故又称为差动变压器式传感器;差动变压器结构形式有变气隙式、变面积式和螺线管式等,其工作原理基本一样;变气隙差动互感传感器由于行程小,且结构复杂,因此目前已很少采用,螺线管式差动变压器广泛用于非电量的测量,它可以测量1~100mm 范围内的机械位移,这种传感器具有测量精度高,灵敏度高,结构简单,性能可靠等优点;1、工作原理差动变压器式传感器的组成元件有衔铁、初级线圈、次级线圈和线圈框架等;初级线圈作为差动变压器激励用,可视为变压器的原边,次级两个对称的线圈反向串接相当于变压器的副边;如图5—10所示螺管形差动变压器传感器的结构;它由初级线圈P 、两个次级线圈1S 、2S 和插入线圈中央的圆柱形铁芯b 组成,结构形式有二段式和三段式等之分;差动变压器线圈连接如图5—10c 所示;次级线圈1S 和2S 反极性串联;当初级线圈P 加上某一频率的正弦交流电压i U .后,次级线圈产生感应电压为1.U 和2.U ,它们的大小与铁芯在线圈内的位置有关;1.U 和2.U 反极性连接使得到输出电压o U .当铁芯位于线圈中心位置时,2.1.U U =,0.=o U ;当铁芯向上移动见图c 时,2.1.U U >,0.>o U ,1M 大,2M 小;当铁芯向下移动见图c 时,1.2.U U >,0.>o U ,1M 小,2M 大;铁芯偏离中心位置时,输出电压o U .随铁芯偏离中心位置;1.U 或2.U 逐渐加大,但相位相差180°,如图5—11所示;实际上,铁芯位于中心位置,输出电压o U .并不是零电位,而是x U ⋅被称为零点残余电压;零点残余电压主要是由传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的; 零点残余电压的波形十分复杂,主要由基波和高次谐波组成;基波产生的主要原因是:传感器的两次级绕组的电气参数和几何尺寸不对称,导致它们产生的感应电势的幅值不等、相位不同,因此不论怎样调整衔铁位置, 两线圈中感应电势都不能完全抵消; 高次谐波中起主要作用的是三次谐波, 产生的原因是由于磁性材料磁化曲线的非线性磁饱和、磁滞; 零点残余电压一般在几十毫伏以下,在实际使用时,应设法减小 x U ⋅, 否则将会影响传感器的测量结果;三 电涡流式传感器电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,该电流的流线呈闭合回线;类似图5—18a 所示的水涡形状,故称之为电涡流;理论分析和实践证明,电涡流的大小是金属导体的电阻率ρ、相对导磁率μ、金属导体厚度H 、线圈激励信号频率ω以及线圈与金属块之间的距离x 等参数的函数;若固定某些参数,就能按涡流的大小测量出另外某一参数;涡流式传感器最大的特点是能对位移、厚度、表面温度、电解质浓度、速度、应力、材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高、频率响应宽等持点,所以应用极其广泛;因为涡流渗透深度与传感器线圈的激励信号频率有关,故传感器可分为高频反射式和低频透射式两类涡流传感器,但从基本工作原理上来说仍是相似的;下面以高频反射式涡流传感器为例说明其原理和特性;1、基本原理电涡流式传感器产生涡流的基本结构形式如图5—18所示;当通有一定交变电流.I 频率为f 的电感线圈L 靠近金属导体时,在金属周围产生交变磁场,在金属表面将产生电涡流1.I ,根据电磁感应理论,电涡流也将形成一个方向相反的磁场;此电涡流的闭合流线的圆心同线圈在金属板上的投影的圆心重合;据有关资料介绍,涡流区和线圈几何尺寸有如下关系:⎩⎨⎧==Dr DR 525.0239.12式中 R 2一—电涡流区外径;r 2——电涡流区内径涡流渗透深度fh r μρ5000= 5—25 式中ρ——导体电阻率cm ⋅Ω;f ——交变磁场的频率;r μ——相对导磁率;四、电感式传感器的应用1、变磁阻式传感器的应用图5—22所示是变隙电感式压力传感器的结构图; 它由膜盒、铁芯、衔铁及线圈等组成,衔铁与膜盒的上端连在一起;当压力进入膜盒时,膜盒的顶端在压力P 的作用下产生与压力P 大小成正比的位移;于是衔铁也发生移动,从而使气隙发生变化,流过线圈的电流也发生相应的变化,电流表指示值就反映了被测压力的大小;图5—22 变隙电感式传感器结构图 5—23 变隙式差动电感压力传感器图5—23所示为变隙式差动电感压力传感器;它主要由C 形弹簧管、衔铁、铁芯和线圈等组成;当被测压力进入C 形弹簧管时,C 形弹簧管产生变形,其自由端发生位移,带动与自由端连接成一体的衔铁运动,使线圈1和线圈 2 中的电感发生大小相等、 符号相反的变化,即一个电感量增大,另一个电感量减小;电感的这种变化通过电桥电路转换成电压输出;由于输出电压与被测压力之间成比例关系,所以只要用检测仪表测量出输出电压, 即可得知被测压力的大小; 2、差动变压式传感器的应用差动变压器式传感器可以直接用于位移测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等;图5—24所示为差动变压器式加速度传感器的结构示意图;它由悬臂梁1和差动变压器2构成;测量时,将悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A 端与被测振动体相连; 当被测体带动衔铁以Δxt 振动时,导致差动变压器的输出电压也按相同规律变化;图5—24 差动变压器式传感器原理图1—悬臂梁 2—差动变压器3、电涡流式传感器的应用 低频透射式涡流厚度传感器图 5—25 所示为透射式涡流厚度传感器结构原理图; 在被测金属的上方设有发射传感器线圈L 1,在被测金属板下方设有接收传感器线圈L 2;当在L 1上加低频电压1.U 时,则L 1上产生交变磁通Φ1,若两线圈间无金属板,则交变磁场直接耦合至L 2中,L 2产生感应电压2.U ; 如果将被测金属板放入两线圈之间,则L 1线圈产生的磁通将导致在金属板中产生电涡流;此时磁场能量受到损耗,到达L 2的磁通将减弱为Φ1′,从而使L 2产生的感应电压2.U 下降;金属板越厚,涡流损失就越大,2.U 电压就越小;因此,可根据2.U 电压的大小得知被测金属板的厚度,透射式涡流厚度传感器检测范围可达1~100mm,分辨率为μm,线性度为 1%;图5—25 透射式涡流厚度传感器结构原理图五、小结:理解自感式、差动变压器式、涡流传感器的工作原理 六、作业1、自感式传感器的工作原理及分类2、互感式传感器的工作原理及分类3、电涡流式传感器的工作原理及应用 七、板书安排黑板分为三个部分:左边为标题,不擦除;中部为具体讲解,更新擦除;右边以图形为主,也可以写临时性内容;。
电感传感器课程设计
![电感传感器课程设计](https://img.taocdn.com/s3/m/0c52fb3cdcccda38376baf1ffc4ffe473368fd9f.png)
电感传感器课程设计一、课程目标知识目标:1. 学生能理解电感传感器的工作原理及其在自动控制中的应用。
2. 学生能够掌握电感传感器的种类、特性及其在工程实践中的选型方法。
3. 学生能够解释电感传感器输出信号的处理与分析方法。
技能目标:1. 学生能够运用所学的电感传感器知识,设计简单的自动控制系统。
2. 学生能够通过实验操作,正确使用电感传感器进行数据采集,并处理数据以得出有效结论。
3. 学生能够运用相关的软件工具对电感传感器的信号进行模拟和仿真。
情感态度价值观目标:1. 学生通过电感传感器课程的学习,培养对物理科学的兴趣和探究精神。
2. 学生在学习过程中,形成团队合作意识,增强解决问题的自信心。
3. 学生能够认识到电感传感器在智能制造中的重要性,激发对工程技术职业的认同和责任感。
课程性质:本课程为高二年级物理选修课程,侧重于传感器技术的应用与实践。
学生特点:高二年级学生对物理现象有较强的好奇心,具备一定的物理基础和实验操作能力。
教学要求:结合学生的认知水平,通过理论讲解与实验操作相结合的方式,使学生在理解电感传感器理论知识的基础上,能够动手实践,解决实际问题。
教学过程中注重培养学生的创新思维和科学探究能力。
二、教学内容1. 电感传感器原理介绍:讲解电感传感器的工作原理,包括自感、互感以及电感变化引起的输出信号变化。
相关教材章节:第二章第三节“电感传感器原理”。
2. 电感传感器种类与特性:介绍常见的电感传感器类型,如变压式、自感式、差动式等,并分析其特性与应用场景。
相关教材章节:第二章第四节“电感传感器的种类与特性”。
3. 电感传感器选型与应用:讲解在实际应用中如何选择合适的电感传感器,并分析其在自动控制、智能制造等领域的具体应用案例。
相关教材章节:第二章第五节“电感传感器的选型与应用”。
4. 信号处理与分析:介绍电感传感器输出信号的处理方法,包括滤波、放大、线性化等,并进行实际案例分析。
相关教材章节:第三章第一节“传感器输出信号的处理与分析”。
传感器课程设计-电感式位移传感器
![传感器课程设计-电感式位移传感器](https://img.taocdn.com/s3/m/02c5040d360cba1aa911da88.png)
裸程筱计镖程__________ 传感器镖程殺针 _________ < « 电感式危移传感器注用电跆说针配务电%信息工程修配专业班怨_________ 测控12・2 ___________ 修空曇名__________ 祖应瑞 _________________ 禽 M 禽号________ 120601240222 _________ 指导敬师邹彦轮刘琏承 _____________£015耳7月了日任务书课程___________________________ 传感器课程设计________________________题目电感式位移传感器应用电路设计专业测控技术与仪器姓名祖景瑞学号12060124022 2主要内容:本设计•要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。
电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。
位移传感器乂称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。
基本要求:1、能够检测O~2 0cm的位移;2、电压输出为1~5V;3、电流输出为4~20mA;主要参考资料:[1]贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006: 68-69.[2] 王煜东.传感器及应用[M].北京:机械工业出版社,2 0 05:5-9.[3] 唐文彦.传感器[H].北京:机械工业出版社,2007:48-5 0.[4]谢志萍.传感器与检测技术[M].北京:高等教育出版社,2 0 02:80-90.完成期限20 1 5.7.4—2015.7.8指导教师_______________________________专业负责人__________________________2015测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。
电感位移计的课程设计
![电感位移计的课程设计](https://img.taocdn.com/s3/m/1d37454e6fdb6f1aff00bed5b9f3f90f76c64d30.png)
电感位移计的课程设计一、课程目标知识目标:1. 学生能理解电感位移计的工作原理和基本构成;2. 学生能掌握电感位移计在测量物体位移中的应用;3. 学生了解电感位移计与其他类型传感器在性能、特点等方面的区别。
技能目标:1. 学生能正确操作电感位移计进行位移测量,并处理实验数据;2. 学生具备分析电感位移计测量误差的能力;3. 学生能设计简单的电感位移计应用电路。
情感态度价值观目标:1. 学生培养对物理传感器技术的兴趣,激发探索精神和创新意识;2. 学生通过电感位移计的学习,认识到传感器技术在现实生活中的广泛应用,增强学以致用的意识;3. 学生在实验和团队合作中,培养严谨、细致、协作的科学态度。
课程性质分析:本课程为高中物理选修课,以电感位移计为主题,结合物理知识和实际应用,培养学生的实验操作能力和科学思维。
学生特点分析:高中学生已具备一定的物理知识和实验技能,对新技术和新设备充满好奇,具备一定的自主学习能力和团队合作精神。
教学要求:1. 结合课本知识,注重理论与实践相结合,提高学生的实际操作能力;2. 创设情境,引导学生主动探究,培养学生的创新意识;3. 强化团队合作,锻炼学生的沟通与协作能力。
二、教学内容1. 电感位移计的基本原理:- 电感的基本概念- 电感位移计的工作原理- 影响电感位移计灵敏度的因素2. 电感位移计的构成与种类:- 电感位移计的组成结构- 常见电感位移计的类型及特点- 电感位移计与其他类型传感器的对比3. 电感位移计的应用:- 电感位移计在位移测量中的应用- 实验操作步骤及注意事项- 数据处理与分析方法4. 电感位移计的误差分析:- 测量误差的来源及分类- 减小误差的方法和技巧- 实际应用中的误差处理5. 电感位移计应用电路设计:- 简单电路原理及设计方法- 电路仿真与实验验证- 创新设计思路及实践教学大纲安排:第一课时:电感位移计的基本原理与构成第二课时:电感位移计的种类及性能对比第三课时:电感位移计在位移测量中的应用第四课时:电感位移计的误差分析及数据处理第五课时:电感位移计应用电路设计与实践教学内容与课本关联:本章节内容与高中物理选修课《传感器及其应用》相关章节紧密关联,结合课本知识,系统地介绍电感位移计的原理、应用和实验操作。
第2章位移检测传感器之电感式
![第2章位移检测传感器之电感式](https://img.taocdn.com/s3/m/274f8dd5d1d233d4b14e852458fb770bf68a3b69.png)
根据鼓励频率不同分为
高频反射式涡流传感器 — 自感型 低频透射式涡流传感器 — 互感型
(三)涡流式位移传感器
➢ 涡流旳大小与金属体旳电阻率ρ、磁导率μ、 厚度t以及线圈与金属体旳距离x、线圈旳鼓励 电流强度i,角频率ω等有关。假如固定其中某 些参数,就能由电涡流旳大小测量出另外某些 参数。
➢ 涡流位移传感器在金属体上产生旳涡流,其渗 透深度与传感器线圈旳鼓励电流旳频率有关, 所以涡流位移传感器主要分为高频反射和低频 透射两类,前者应用较广泛。
L
L0
L
N 20S0 2(0
)
L0
1
0
变气隙型自感传感器
当Δδ/δ0<<1时:
L
L0
L
L0 1
0
0
2
0
3
可求得电感增量ΔL和相对增量ΔL/L0旳体现式,即
L
L0
0
1
0
0
2
L L0
0
1
0
0
2
对上式作线性处理,即忽视高次项后,可得
差动变压器式位移传感器
互感位移传感器常采用差动形式,即两个二次 线圈采用差动接法,故又称为差动变压器式位 移传感器。
➢差动变压器式位移传感器有变隙式、变面积式和 螺管式等。
非电量测量中,应用最多旳是螺管式差动变压器, 它能够测量范围内旳机械位移,并具有测量精度高、 敏捷度高、构造简朴、性能可靠等优点
1. 工作原理与构造
一般气隙旳磁阻远不小于铁芯和衔铁旳磁阻 2 l 0S0 S
则Rm
2 0 s0
L N 2 N 20s0
Rm
2
1. 工作原理与构造
L N 2 N 20s0
电感式传感器教学设计
![电感式传感器教学设计](https://img.taocdn.com/s3/m/eba2c1af112de2bd960590c69ec3d5bbfd0ada8a.png)
电感式传感器教学设计电感式传感器是一种广泛应用于工业领域的传感器,常用于测量金属体的位置、速度和方向等参数。
其工作原理是利用电磁感应产生的电压来进行测量。
本文将就电感式传感器的教学设计进行详细介绍。
一、教学目标1. 理解电感式传感器的工作原理和基本结构;2. 掌握如何使用电感式传感器进行位置测量;3. 熟悉电感式传感器的应用领域和特点。
二、教学内容1. 电感式传感器的基本原理和结构;2. 电感式传感器的类型和特点;3. 电感式传感器在工业领域的应用;4. 电感式传感器的使用方法和注意事项。
三、教学步骤1. 导入环节(5分钟)通过组织学生观看关于电感式传感器的介绍视频,激发学生的学习兴趣,并结合现实生活中的例子,引导学生思考电感式传感器的应用场景和作用。
2. 理论讲解(15分钟)2.1 介绍电感式传感器的基本原理,包括电磁感应和电压产生;2.2 介绍电感式传感器的基本结构,包括线圈和金属体;2.3 介绍电感式传感器的类型和特点,如线性电感传感器和旋转电感传感器等;2.4 介绍电感式传感器的应用领域,如自动化生产线、机器人等。
3. 实验演示(30分钟)准备一套电感式传感器的实验装置,包括线圈、金属体和电压测量仪器。
将线圈与电源连接,并将金属体放置在线圈附近。
通过改变金属体的位置,观察电压测量仪器的指示,并记录测量结果。
通过实验演示,让学生亲自操作电感式传感器,加深对其工作原理的理解,同时培养学生的实验操作能力和数据处理能力。
4. 小组讨论(20分钟)将学生分为小组,给每个小组分配不同的应用场景,如自动门、流水线等。
要求学生思考如何应用电感式传感器来解决实际问题,并在小组内进行讨论。
然后,每个小组派代表进行汇报。
5. 总结归纳(10分钟)对本节课的内容进行总结归纳,强调电感式传感器的应用价值和前景,并鼓励学生继续探索电感式传感器的其他应用领域。
四、教学方法1. 视频观看法:通过观看视频,激发学生的学习兴趣,引发对电感式传感器的思考和探索。
传感器与检测技术第2章(3)-电感式位移传感器可修改全文
![传感器与检测技术第2章(3)-电感式位移传感器可修改全文](https://img.taocdn.com/s3/m/ef253677a31614791711cc7931b765ce05087ad1.png)
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 互感式位移传感器是将被测位移量的变化转换成
互感系数的变化,其基本结构原理与常用变压器 类似,故称其为变压器式位移传感器。
E M di1 dt
M——互感系数
28
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理
❖ 变气隙式自感传感器的输出特性
L 1
SN 2 0 2 0
0
0
1
L
0 0
衔铁
L 1
/ 0
L 1 /
0
0
0
线圈 铁芯
δ Δδ
11
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
L /
1
0
L 1 /
0
0
若 1 0
L1 L0
0
0
2
测量 U、I、f 电路
电感式传感器
自感式传感器 互感式传感器 电涡流式传感器
3
(一)自感式传感器
❖1.自感式传感器的工作原理
L NΦ I
线圈匝数
线圈 铁芯
I 为线圈中所通交流电的有效值。
δ
Φ IN Rm
总磁阻
两式联立得: L N 2
Rm
衔铁
Δδ
变磁阻式传感器
4
(一)自感式传感器
❖1.自感式传感器的工作原理
23
(一)自感式传感器
❖2. 改善性能考虑的因素
❖ (1)损耗问题 ❖ 电感线圈、衔铁系统在高频电流i激励下工作必然
存在功率损耗。主要损耗有:一是线圈,除具有 电感L外,还存在着电阻Rc和分布电容C,会引起 铜损和无功功率;二是铁心,由于交变磁场,使 铁心中产生涡流,可等效为一个电阻Re的损耗。 另外铁心中还存在磁滞现象,也可等效为一个电 阻Rh造成的损耗,它是频率f的函数。
电感传感器课课程设计
![电感传感器课课程设计](https://img.taocdn.com/s3/m/ff1f229b88eb172ded630b1c59eef8c75fbf95c3.png)
电感传感器课课程设计一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:学生需要掌握电感传感器的基本原理、结构及其在实际应用中的基本功能。
具体包括电感传感器的类型、工作原理、特性以及主要应用领域。
2.技能目标:学生能够通过实验和实际操作,熟练使用电感传感器进行相关测量和控制任务。
具体包括电感传感器的选型、安装、调试以及与控制系统的连接与编程。
3.情感态度价值观目标:培养学生对新技术的敏感性和好奇心,增强学生对自动化技术的认识和理解,使学生能够积极地参与到新技术的学习和应用中。
二、教学内容本节课的教学内容主要包括以下几个部分:1.电感传感器的基本原理和结构:介绍电感传感器的工作原理、特性以及主要类型,包括线圈式、磁敏式、电感耦合式等。
2.电感传感器在实际应用中的功能:介绍电感传感器在自动化生产、智能控制系统中的应用,如位置检测、速度检测、物距检测等。
3.电感传感器的选型、安装和调试:讲解如何根据实际需求选择合适的电感传感器,以及如何进行安装和调试,以保证传感器的正常工作。
4.电感传感器与控制系统的连接与编程:介绍电感传感器与控制系统的连接方式,以及如何进行编程,实现对传感器的控制和数据处理。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
1.讲授法:用于讲解电感传感器的基本原理、结构和功能,使学生掌握电感传感器的基本知识。
2.讨论法:通过分组讨论,让学生探讨电感传感器在实际应用中的优势和局限,提高学生的思考和分析能力。
3.案例分析法:分析实际应用中的电感传感器案例,使学生更好地理解电感传感器的工作原理和应用场景。
4.实验法:让学生动手进行电感传感器的安装、调试和编程,提高学生的实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用权威、实用的教材,如《传感器技术与应用》、《自动化控制系统》等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北石油大学课程设计2015年7 月8日任务书课程传感器课程设计题目电感式位移传感器应用电路设计专业测控技术与仪器姓名祖景瑞学号120601240222主要内容:本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。
电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。
位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。
基本要求:1、能够检测0~20cm 的位移;2、电压输出为1~5V;3、电流输出为4~20mA;主要参考资料:[1]贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69.[2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9.[3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50.[4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90. 完成期限2015.7.4—2015.7.8指导教师专业负责人2015年7 月1 日摘要测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。
位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。
电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。
针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。
关键词:电感式传感器;自感式传感器;测量位移;位移传感器目录一、设计要求 (1)1.功能与用途 (1)2. 课题研究的意义 (1)3. 国内外发展现状 (1)二、方案设计 (2)1、方案一 (2)2. 方案二 (4)三、传感器工作原理 (5)四、电路的工作原理 (6)五、单元电路设计、参数计算和器件选择 (6)1、正弦激励电路 (6)2、相敏检波电路设计 (7)3、程控放大电路 (7)4、A/D转换电路模块 (8)5、参数计算 (9)6、器件选择 (10)7、系统需要的元器件清单 (10)六、总结 (11)参考文献 (12)电感式位移传感器应用电路设计一、设计要求1.功能与用途本设计要应用电感式传感器的原理来设计一个位移传感器的应用电路,要求能够检测能够检测0~20cm的位移;电压输出为1~5V;电流输出为4~20mA;并且能够通过LED进行数字显示,具有控制及数据处理等功能,结构简单、成本低等优点。
2.课题研究的意义无论是科学研究还是生产实践,需要进行位移测量的场合非常多,可用于位移测量的传感器的种类也很多。
随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。
要保证产品质量,对产品的检测和质量管理都提出了更高的要求。
我们为此要设计一种精度的检测位移的仪器。
电感测微仪是一种分辨率极高、工作可靠、使用寿命很长的测量仪,应用于微位移测量已有比较长的历史.国外生产的电感测微仪产品比较成熟,精度高、性能稳定,但价格昂贵.国内生产的电感测微仪存在漂移大、工作可靠性不高、高精度量程范围小等问题,一直与国外的传感器水平保持一定的差距.在超精密加工技术迅猛发展的今天,这种测量精度越来越显得不适应加工技术发展的需求.该文针对这些问题,对电感传感器测量电路进行了一定的设计和改进.对电感测微仪的正弦波生成电路、交流放大电路、带通滤波电路、相敏检波电路等进行分析及相应设计。
3.国内外发展现状电感式传感器利用电磁感应将被测位移转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。
传感器分为自感式、互感式(如LVDT)、电涡流式三种。
电感式传感器具有灵敏度和分辨力高,能测出0.01微米的位移变化,传感器非线性误差可达0.05%-0.1%。
伴随着各国航空航天、船舶等军事领域,及工业控制和农业现代化的不断发展,对位移传感器的需求量也不断上升,同时要求位移传感器不断地进行技术革新,不断地有新技术、新材料的运用,以满足不同场合、不同环境条件的需求。
位移传感器的应用已经得到了广泛的发展,几乎可以用于各个领域的位移、位置、行程的自动测量和自动控制,以及测量预先被变成位移的各种物理量,比如:伸缩、膨胀、差压、振动、应变、流量、厚度、重量等等。
位移传感器同其他传感器一样,其发展的总趋势就是利用新材料、新工艺实现微型化、集成化、智能化,利用新原理、新方法实现更多种类的信息获取,辅以先进的信息处理技术提高传感器的各项技术指标,以适应更广泛的应用需求。
(1) 微型化。
各种控制仪器设备的功能越来越多,要求各个部件体积能占位置越小越好,因而传感器本身体积也是越小越好,这就要求发展新的材料和加工技术。
近年来,随着微电子技术和微机械加工技术的日趋成熟,传感器制作技术进入了一个展新阶段。
微电子技术和微机械加工技术相结合,器件结构从二维到三维,实现了进一步微型化、低功耗。
(2) 集成化。
集成传感器的优势是传统传感器无法达到的,它不仅是一个简单的传感器,而且将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,可降低成本、增加产量。
把传感器、信号调节电路、单片机集成在一个芯片上形成超大规模集成化的高级智能传感器已经成为一个新的发展趋势。
(3) 智能化。
智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多优点,具有判断和信息处理功能,可实现多传感器、多参数测量,有自检、自校和自诊断功能,测量数据可存取,且具有数据通信接口,能与微型计算机直接通信。
智能化传感器已从传统传感器的单一功能、单一检测向多功能和多变量检测方向发展,它的准确度、稳定性和可靠性都是传统传感器不可比拟的。
(4) 无线网络化。
无线传感器网络是当前国际上备受关注的、多学科高度交叉的新兴前沿研究热点领域,它综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。
从而真正实现“无处不在的计算”理念。
二、方案设计1、方案一利用电感式传感器的原理设计一个位移传感器的应用电路,设计的总体模块主要由直流稳压电源、振荡电路、电感传感器、解调器、差动放大电路、V/I 转换电路、A/D 转换电路、LED显示电路等构成。
总体设计框图如下。
图1 电感式位移传感器的设计总体框图图2为为螺管式自感传感器结构原理图。
它由平均半径为 r 的螺管线圈、衔铁和磁性套筒等组成。
随着衔铁插入的深度的不同将引起线圈泄露路径中磁阻变化,从而使线圈的电感发生变化。
根据磁路结构,磁通主要由两部分构成:沿轴向贯穿整个线圈后闭合的主磁通φm 和经衔铁侧面气隙闭合的侧磁通φs 。
因气隙较大,故磁性材料的磁阻可忽略不计。
图2螺管式自感传感器原理图侧磁通通过衔铁侧面与线圈交链,交链部分只是衔铁侧面遮盖部分的线圈。
在线圈的轴向不同位置处,磁势是不同的,且交链到的线圈匝数也不一样。
由图 2可知离线圈端面 x 处的磁势,根据两同心圆柱面磁极间的磁导计算公式,可得半径为 ra 的衔铁与内径为 D 的磁性套筒间的比磁导。
于是,可得微分单元磁导以及x 处的微分单元磁通。
整个线圈的总磁链为主磁链和侧磁链之和。
由于传感器轴向气隙较大,存在磁通边缘效应,故可认为在衔铁移动的一定范围内主磁通近似不变。
这时,衔铁位移仅引起侧电感 Ls 变化。
直流稳压电振荡电路 电感式传感解调差动放大电V/I 转换电取样 A/D 转换电LED 显示220V图3 磁通半径作用修正系数 2.方案二系统主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器、A/D 转换、LCD 显示及单片机系统。
正弦波振荡器为电感式传感器和相敏检波器提供了频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中由线圈和电位器组成 的电感桥路上。
工件的微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发生相对的变化。
当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平衡。
当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减少;若上线圈的电感量减少,下线圈的电感量则增加。
交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正 比,频率与振荡器频率相同,相位与位移方向相对应的调制信号。
此信号由相 敏检波器鉴出极性,得到一个与衔铁位移相对应的直流电压信号,经放大和 A/D 转换后输入到单片机,经过数据处理进行显示。
总体设计框图如下。
图4 电感式位移传感器的设计总体框图 正弦激励电路 电感式传感器 相敏检波电路 程控放大电路LCD 显示 A/D 转换电路三、传感器工作原理测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。
电感式位移传感器是一种属于金属感应的线性器件,将直线或角位移的变化转换为线圈电感量变化,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。
图4 自感式传感器工作原理示意图电感式传感器的原理是:自感式传感器是把被测量变化转换成自感L 的变化,通过一定的转换电路转换成电压或电流输出。
传感器在使用时,其运动部分与动铁心(衔铁)相连,当动铁芯移动时,铁芯与衔铁间的气隙厚度发生改变,引起磁路磁阻变化,导致线圈电感值发生改变,只要测量电感量的变化,就能确定动铁芯的位移量的大小和方向。
m m m m R F NI F =Φ=, (1)m R N L 2= (2)式中:N ——线圈匝数;Rm ——磁路的总磁阻。
四、电路的工作原理该系统主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器、A/D转换、LCD显示及单片机系统。