分式方程应用题2013年中考题汇编
分式及分式方程2013年中考题
分式及分式方程中考题1.(2013•淄博)如果分式的值为0,则x的值是().3.(2013•漳州)使分式有意义的x的取值范围是()4.(2013•湛江)计算的结果是()5.(2013•枣庄)化简的结果是()6.(2013•天津)若x=﹣1,y=2,则﹣的值等于()B7.(2013•泰安)化简分式的结果是()8.(2013•临沂)化简的结果是()B9.(2013•包头)化简÷•,其结果是()分式方程的定义:B分式方程的解11.(2013•贵港)关于x的分式方程的解是负数,则m的取值范围是()12.(2012•梧州)关于x的分式方程无解,则m的值是()a使分式方程的分母为的根叫做原方程的增根.因为解分式方程可能出现增根,所以解分式方程必须 .b验根的一般方法是把整式方程的解代入最简公分母,如果不为零,则整式方程的解是原方程的解;否则,这个解不是原方程的解.c增根的特点:增根是原分式方程转化为整式方程的根;增根必定使各分式的最简公分母的值等于零.13.(2013•岳阳)关于x的分式方程+3=有增根,则增根为(). 14.(2011•齐齐哈尔)分式方程=有增根,则m的值为()分式方程的应用:15.(2013•营口)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装xB老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的.B18.(2013•泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设19.(2013•威海)若关于x的方程无解,则m=_________.20.(2013•扬州)已知关于x的方程的解是负数,则n的取值范围为_________.21.(2012•镇江)若,则的值为_________22.(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是_________.解分式方程23.(2013•资阳)解方程:.24.(2013•珠海).25.(2013•武汉)26.(2013•宁波)=﹣5.27.(2013•南京)解方程:= 1﹣28.(2013•扬州)某校九(1)、九(2)两班的班长交流了为四川安雅地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.29.(2013•烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.30.(2013•徐州)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?。
2013年中考备考专题之分式方程-试题与答案
第- 1 -页 共8页2013年中考试题专题之分式方程 试题及答案一、选择1、(2012年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .5 2、(2012年上海市)用换元法解分式方程13101x x xx --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3、(2012襄樊市)分式方程131x x x x +=--的解为( )A .1B .-1C .-2D .-3 4、(2012柳州)5.分式方程3221+=x x的解是( )A .0=xB .1=xC .2=xD .3=x 5、(2012年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、 (2012泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++xx (B )18%)201(160400160=+-+x x(C ) 18%20160400160=-+xx(D )18%)201(160400400=+-+xx7、(2012年嘉兴市)解方程xx-=-22482的结果是( )A .2-=xB .2=xC .4=xD .无解8、(2012年漳州)分式方程211x x=+的解是( )A .1B .1-C .13D .13-9、(09湖南怀化)分式方程2131=-x 的解是( )第- 2 -页 共8页A .21=x B .2=x C .31-=x D . 31=x10、(2012年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】 A .8 B.7 C .6 D .511、(2012年广东佛山)方程121x x=-的解是( )A .0B .1C .2D .312、(2012年山西省)解分式方程11222x x x-+=--,可知方程( )A .解为2x =B .解为4x =C .解为3x =D .无解13、(2012年广东佛山)方程121x x=-的解是( )A .0B .1C .2D .314、(2012年山西省)解分式方程11222xx x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解二、填空15、(2012年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。
2013中考真题汇编(分式计算题)
2013中考真题汇编(分式计算题)1. (2013永州本小题6分)先化简,再求值:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭其中2x =.2、(2013张家界本小题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+÷+-1111222x x x x x,其中 12+=x3、(湘潭本题6分)先化简,再求值:xx x x x +÷++--224)1111(, 其中x =-24、(襄阳6分)先化简,再求值:,其中,5.(2013鄂州本题满分8分)先化简,后求值:224222aa a a a a +⎛⎫-÷ ⎪--⎝⎭,其中a = 3.6.(2013黄石本小题满分7分)先化简,再求值222366510252106a a a a a a a a--+÷++++其中a =7、(荆门本题满分4分)化简求值:⋅+-÷++-2344922a a a a a 31+a ,其中25-=a8、(2013孝感)先化简,再求值:111()x y y x÷--,其中x =,y =9、2013南宁先化简,再求值:(+),其中x=-2.10.(2013龙岩)(本题满分8分)先化简,再求值:231234923x x x x 缸--+,其中2x =.11、((2013厦门)2)先化简下式,再求值:2x 2+y 2x +y - x 2+2y 2x +y ,其中x =2+1, y =22—2;12.(2013南京6分)化简b a a b a b b a +÷⎪⎭⎫⎝⎛---221.13、(2013南通)(2)化简2293(1)69a a a a-÷-++.14.(2013哈尔滨本题6分)先化简,再求代数式2122121a a a a a a +-÷+--+的值,其中6tan 602a =-15.(2013黑龙江农垦本题满分5分)先化简:(x -x 4)÷xx x 442++ 若-2≤x ≤2,请你选择一个恰当的x 值(x 是整数)代入求值.。
【最精细分类】2013全国中考真题分类汇编 13课_考点2 分式方程的解法-推荐下载
(2013•宁波)解方程:
考点:解分式方程.
专题:计算题.
=
﹣5.
分析: 观察可得最简公分母是(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式 方程求解.
解答: 解:方程的两边同乘(x﹣1),得
﹣3=x﹣5(x﹣1), 解得 x=2(5 分)
检验,将 x=2 代入(x﹣1)=1≠0, ∴x=2 是原方程的解.(6 分) 点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方 程转化为整式方程求解. (2)解分式方程一定注意要验根.
*******************************************************************************
有新意
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013年全国中考数学试题分类解析汇编专题10分式方程
2013年全国中考数学试题分类解析汇编专题10:分式方程一、选择题1. (2012海南省3分)分式方程12x +2x 1x+1=-的解是【 】 A .1 B .-1 C .3 D .无解 【答案】C 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是(x+1)(x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:()()()12x+2x+1+2x x 12x+1x 1x 3x 1x+1=⇒-=-⇒=-。
∵x 3=时,(x+1)(x ﹣1)≠0,∴x 3=是原方程的解。
故选C 。
2. (2012浙江丽水、金华3分)把分式方程21=x+4x转化为一元一次方程时,方程两边需同乘以【 】A .xB .2xC .x +4D .x(x +4) 【答案】D 。
【考点】解分式方程。
【分析】根据各分母寻找公分母x(x +4),方程两边乘最简公分母,可以把分式方程转化为整式方程。
故选D 。
3. (2012福建三明4分)分式方程52=x+3x 的解是【 】 A .x=2 B .x=1 C .x=12D .x=-2【答案】A 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 去分母,得5x=2(x +3),解得x=1。
检验,合适。
故选A 。
4. (2012湖北随州4分)分式方程10060=20+v 20v-的解是【 】 A.v=-20 B. v =5 C. v =-5 D. v =20【答案】B 。
【考点】解分式方程。
【分析】观察可得最简公分母是(20+v )(20-v ),方程两边乘最简公分母,可以把分式方程转化为整式方程求解:方程的两边同乘(20+v )(20-v ),得100(20-v )=60(20+v ),解得:v=5。
中考专题----一元一次分式方程的应用题(90题附答案)
中考专题------一元一次分式方程的应用题(90题)附答案1. 一辆快客车和一辆中巴车同在公路上行驶。
已知快客车每小时比中巴车多行驶20千米,快客车行驶80千米所需的时间与中巴车行驶60千米所需的时间相同,求快客车的速度。
2.轮船顺水航行80千米所需要的时间和逆水航行60千米所需要的时间相等,已知水流的速度是每小时3千米,求轮船在静水中的速度。
3.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.求江水的流速为多少km/h?4.重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求出这两种商品每千克的价值。
5.甲乙两人同时开始工作,当乙加工56个机器零件时,甲只加工42个机器零件.已知两人每小时共做28个机器零件,每人每小时各做多少个机器零件?6.A市与甲乙两地的距离分别为400千米和350千米,从A市开往甲地的列车速度比从A 市开往乙地的速度快15千米/小时,结果从A市到甲乙两地所需要的时间相同,求A市开往甲乙两地的列车的速度。
7.甲做180个机器零件所用的时间与乙做240个所用的时间相等。
已知两人每小时共做70个,两人每小时各做多少个机器零件?8某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需要时间和原计划采23100吨煤的时间相等,问现在平均每天采煤多少吨?9某休闲品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成。
(1)按此计划,该公司平均每天该生产帐篷_________顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原来提高了25%,结果提前2天完成任务。
求该公司原计划安排多少名工人生产帐篷?10.便民服装店的老板在北京看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快销售完,又用17600购进同种衬衫,数量是第一次的2倍,每一件比第一次多了4元,服装店扔按每件58元出售,全部售完。
2013年中考数学分式方程试题汇编
2013年中考数学分式方程试题汇编20、(2013•白银)若代数式的值为零,则x= 3 .考点:分式的值为零的条件;解分式方程.专题:计算题.分析:由题意得 =0,解分式方程即可得出答案.解答:解:由题意得, =0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.21、(2013•绥化)若关于x的方程 = +1无解,则a的值是 2 .考点:分式方程的解.分析:把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.解答:解:x�2=0,解得:x=2.方程去分母,得:ax=4+x�2,把x=2代入方程得:2a=4+2�2,解得:a=2.故答案是:2.点评:首先根据题意写出a的新方程,然后解出a的值.22、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a 的取值范围是a>1且a≠2.考点:分式方程的解.专题:计算题.分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x�a=x�1,解得:x=a�1,根据题意得:a�1>0且a�1�1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.点评:此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.23、(2013•泰州)解方程:.考点:解分式方程.分析:观察可得最简公分母是2(x�2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:� = ,方程两边同时乘以x(x�2)得:2(x+1)(x�2)�x(x+2)=x2�2,化简得:�4x=2,解得:x=�,把x=�代入x(x�2)≠0,故方程的解是:x=�.点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24、(2013•宁夏)解方程:.考点:解分式方程.分析:观察可得最简公分母是(x�2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以(x�2)(x+3),得6(x+3)=x(x�2)�(x�2)(x+3), 6x+18=x2�2x�x2�x+6,化简得,9x=�12x= ,解得x= .经检验,x= 是原方程的解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.25、(2013•资阳)解方程:.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+2(x�2)=x+2,去括号得:x+2x�4=x+2,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.26、解方程: = �5.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是(x�1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x�1),得�3=x�5(x�1),解得x=2(5分)检验,将x=2代入(x�1)=1≠0,∴x=2是原方程的解.(6分)点评:本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.27、(2013年武汉)解方程:.解析:方程两边同乘以,得解得.经检验,是原方程的解.28、(2013年南京)解方程。
2013年全国各地中考模拟卷分类汇编:分式方程(含答案)
答:甲每天加工15个玩具,乙每天加工20个玩具。
8、(2013云南勐捧中学三模)(本小题6分)解方程: .
【答案】解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.
检验:把x=4代入(x﹣2)=2≠0.
∴原方程的解为:x=4.
9、(2013年惠州市惠城区模拟)小红家星期六到惠东巽寮湾游玩,从家到目的地全程80km,由于周末车流量较大,实际行驶速度是原计划的 ,结果实际比原计划多用了15分钟,求原计划的行驶速度是多少?
解:设原计划的行驶速度为x千米/小时,得:
………………………(2分)
解得: ………………………(4分)
经检验: 是原方程的解.
答:原计划的行驶速度为80千米/小时.………………………(5分)
10、(2013山东德州特长展示)(本题满分10分)在市政府实施市容市貌工程期间,某中学在教学楼前铺设小广场地面.其图案设计如图1,正方形小广场地面的边长是40m,中心建一直径为20m的圆形花坛,四角各留一个边长为10m的小正方形花坛,种植高大树木.图中其余部分铺设广场砖.
解:设甲公司人均捐款x元,则乙公司人均捐款(x+20)元…
根据题意得:(1-20%)=
解得:x=80
经检验x=80是原方程的解………7分
x+20=100
答:甲公司人均捐款80元,则乙公司人均捐款100元
2.(2013年北京房山区一模)解分式方程: .
答案:解:去分母,得: -----------------------1分
画在图2上.(不必说明方案,不写作法,保留作图痕迹)
解:(1)根据题意可知:
3分
(2)设原计划每天铺设 广场砖,由题意可列方程:
2013年各地中考题类型7分式方程
分式方程一、选择题1.(2013湖北黄石,3,3分)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x = 答案:D解析:去分母,得:3(x -1)=2x ,即3x -3=2x ,解得:x =3,经检验x =3是原方程的根。
二、填空题2.(2013绥化,10,3分)若关于x 的方程=+1无解,则a 的值是 2 .3.(2013牡丹江,18,3分)若关于x 的分式方程的解为正数,那么字母a 的取值范围是 a >1且a ≠2 .4.(2013湖北武汉,17,6分)解方程:xx 332=-. 解析:方程两边同乘以()3-x x ,得()332-=x x解得9=x .经检验, 9=x 是原方程的解.5.(2013湖北十堰,19,6分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?由题意得,=6.(2013湖南娄底,22,8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?得出等式方程求出即可;=7.(2013湖北咸宁,18,8分)在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?8.(2013年哈尔滨市,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天。
且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天? 、(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度。
分式方程应用题
分式方程应用题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分式方程应用题班级姓名1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
中考经典各类型分式方程应用题
中考分式方程应用一、工程问题(1)某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?(2)现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.(3)某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?(4)打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?(5)一项工程,如果甲、乙两队合做,12天可以完成。
现在,先由甲队独做5天,接着由甲、乙两队合做4天,结果只完成了全部工程的一半。
问:如果让甲、乙两队单独做,要完成这项工程各需多少天?二、路程问题(1)某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?(2)某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.(3)供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.三、水流问题(1)轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度(2)一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.(3)大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的211倍,求单独浇这块地各需多少时间? (4)一船自甲地顺流航行至乙地,用2.5小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.(4)假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度.(5)有三堆数量相同的煤,用小卡车独运一堆的天数是大卡车独运一堆天数的一半的3倍.第三堆大小卡车同时运6天,运了这堆煤的一半,求大小卡车单独运一堆煤各要多少天?(6)有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?(7)甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?(8)总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵5.0元,求甲、乙两种糖果每千克各多少元?(9)一个两位数,它的十位数比个位数小5。
2013中考数学精选例题解析:分式方程
2 013中考数学精选例题解析:分式方程知识考点:会用化整法,换元法解分式方程,了解分式方程产生增根的原因并会验根,会用分式方程解决简单的应用问题。
精典例题:【例1】解下列分式方程:1、xx x x --=-+222; 2、41)1(31122=+++++x x x x 3、1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x 分析:(1)题用化整法;(2)(3)题用换元法;分别设112++=x x y ,xx y 1+=,解后勿忘检验。
答案:(1)1-=x (2=x 舍去);(2)1x =0,2x =1,21733+=x ,21734-=x (3)211=x ,22=x 【例2】解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x 分析:此题不宜去分母,可设x 1=A ,y 1-=B 得:⎪⎪⎩⎪⎪⎨⎧-==+9231AB B A ,用根与系数的关系可解出A 、B ,再求x 、y ,解出后仍需要检验。
答案:⎪⎩⎪⎨⎧==32311y x ,⎪⎩⎪⎨⎧-=-=23322y x 【例3】解方程:3124122=---x x x x 分析:此题初看似乎应先去分母,但去分母会使方程两边次数太高,仔细观察可发现x x x x 12122-=-,所以应设xx y 122-=,用换元法解。
答案:2611+=x ,2612-=x ,213=x ,14-=x 探索与创新: 【问题一】已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
略解:存在。
用化整法把原方程化为最简的一元二次方程后,有两种情况可使方程无解:(1)△<0;(2)若此方程的根为增根0、1时。
所以m <47或m =2。
【问题二】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。
2013年中考分式及分式方程
2013年分式及分式方程1.(福建)计算:a a 12-=__________ 2.(厦门)方程xx 312=-的解是( )A .3B .2C .1D .0 3.(厦门)先化简下式,再求值:yx y x y x y x ++-++222222,期中12+=x ,222-=y 4.(晋江)计算:=-+-xx x 222 . 5.(南平)分式方程的解是 .6.(南平)化简:.7.(莆田)先化简,再求值:(2a 12a a 2---)÷2a 1a 2a 2-+-,其中a=38.(泉州)计算:+=9.(龙岩)解方程:10.(龙岩)先化简,再求值:,其中x=2.11.(湖州)计算:111+++x x x =__________ 12.(嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程来 ▲ .13.(宁波)解方程:=﹣5.14.(衢州)化简:224442x x xx x ++-=-- ▲ . 15.(绍兴)分式方程312=-x x的解是 16.(温州)若分式43+-x x 的值为0,则x 的值是( )A. 3=xB. 0=xC. 3-=xD. 4-=x17.(丽水)分式方程021=-x 的解是__________ 18.(义乌)解方程:2321x x =-19.(临沂)化简212(1)211a a a a +÷+-+-的结果是 ( ) (A)11a -. (B)11a +. (C)211a -. (D)211a +. 20.(临沂)分式方程21311x x x+=--的解是 . 21.(滨州)化简3a a,正确的结果为( )A .aB .a 2C .a -1 D .a -222.(德州)先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中12-=a . 23.(东营)先化简再计算:22112111a a a a a a a --?-++-,再选取一个你喜欢的数代入求值24.(菏泽)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25.(莱芜)方程242x x --=0的解为( )A. ﹣2B. 2C. ±2D. 12-26.(莱芜)先化简,再求值:24()44a a a a -÷+--,其中+2. 27.(聊城)计算:22441422x x x x x x x ⎛⎫-+--÷ ⎪-++⎝⎭.28.(济宁)x 的取值范围为 ( )A.x ≥2B.x ≠3C.x ≥2或x ≠3D.x ≥2且x ≠329.(济宁)化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 30.(济宁)解方程:xx 321=-. 31.(潍坊)方程012=++x xx 的根是_________________. 32.(烟台)先化简,再求值:,其中x 满足x 2+x ﹣2=0.33.(烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问: (1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.34.(枣庄)化简xxx x -+-112的结果是( ) A.x +1 B.1x - C.x - D.x35.(枣庄)某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元 36.(枣庄)对于非零实数a b 、,规定11a b b a⊕=-,若2(21)1x ⊕-=,则x 的值为 A.56 B.54 C.32 D.16- 37.(枣庄)先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根. 38.(淄博)若代数式2-1-1x 的值为零,则x=____________. 39.(青岛)化简:1)11(2-⋅+x xx40.(青岛)某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数41.(威海)若关于x 的方程无解,则m= .42.(威海)先化简,再求值:,其中x=﹣1.43.(安徽)已知x 2-2=0,求代数式的值2223(1)11a a a a --÷---,其中44.(泸州)先化简:再求值a =45.(巴中)函数y=中,自变量x 的取值范围是 .46.(巴中)先化简,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值 47.(成都)要使分式51x -有意义,则x 的取值范围是( ) A. 1x ≠ B. 1x > C. 1x < D. 1x ≠-48.(成都)化简:2221()1a a a a a -+-÷-49.(达州)如果实数x 满足2230x x +-=,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_ _. 50.(德阳)已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是____ 51.(德阳)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一 起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程 用了y 天,若x; y 都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那 么两队实际各做了多少天?52.(广安)解方程:43122x x x-=--,则方程的解是______________. 53.(广安)先化简,再求值:22113()24x x x x x --÷--,其中x =454.(乐山)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米。
(完整版)分式方程应用题总汇和答案
分式方程应用题总汇及答案1、A、B两地的距离是80公里。
一辆公共汽车从A地驶出3小时后.一辆小汽车也从A地出发.它的速度是公共汽车的3倍.已知小汽车比公共汽车迟20分钟到达B地.求两车的速度.【提示】设共交车速度为x。
小汽车速度为3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路。
甲、乙两工程队承包此项工程。
如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成。
现在甲、乙两队先共同施工4个月.剩下的由乙队单独施工.则刚好如期完成.问原来规定修好这条公路需多长时间?【提示】设时间为x个月。
列方程得:[1/x+1/(x+6)]*4+(x—4)/(x+6)=13、某工人原计划在规定时间内恰好加工1500个零件.改进了工具和操作方法后。
工作效率提高为原来的2倍。
因此加工1500个零件时。
比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工x个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4。
5千米的敬老院打扫卫生.甲组学生步行出发半小时后。
乙组学生骑自行车开始出发.结果两组学生同时到达敬老院。
如果步行的速度是骑自行车的速度的1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米.则4。
5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有48件合格产品.乙厂有45件合格产品。
甲厂合格率比乙厂高5%。
求抽取检验的产品数量及甲厂的合格率.【提示】设抽取检验的产品数量为x.则(48/x —45/x)*100%=5%6、某车间加工1200个零件后.采用了新工艺.工效提高50%。
这样加工同样多的零件就少用10小时.采用新工艺前后每小时分别加工多少个零件?7、A、B两地相距48千米.一艘轮船从A地顺流航行至B地。
又立即从B地逆流返回A地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题(2013年中考汇编)1、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )A .2300x + 23001.3x = 33B .2300x + 2300x+1.3x = 33C .2300x + 4600x+1.3x = 33D .4600x + 2300x+1.3x = 33 2、(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A 、20x+10x+4 = 15B 、20x-10x+4 = 15C 、20x+10x-4 = 15D 、20x-10x-4= 15 3、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天.则可列方程为( )A 、1030 + 8x = 1B 、10+8+x=30C 、1030 + 8(130 + 1x )=1D 、(1- 1030)+x=8 4、(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( )A.1440x-100 –1440x =10B. 1440x = 1440x+100 +10C. 1440x = 1440x-100 + 10D. 1440x+100–1440x= 10 5、(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为 .6、(2013•呼和浩特)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器.7、(2013•湘西州)吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.8、(2013安顺)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?9、(13年北京5分、17)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务。
若每人每小时绿化面积相同,求每人每小时的绿化面积。
10、(13年山东青岛、19)某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等,求第一次的捐款人数11、(2013•郴州)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.12、(2013菏泽)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.13、(2013•眉山)2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?14、(13年安徽省10分、20)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍。
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用。
(2)若购买的两种球拍数一样,求x。
15、(2013哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天。
且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天? 、(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度。
甲队的工作效率提高到原来的2倍。
要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?16、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?17、(2013•十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?18、(2013•咸宁)在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?19、(2013•娄底)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?20、(2013•徐州)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?21、(2013•德州)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?22、(2013•烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.23、(2013•遂宁)2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?24、(2013凉山州)某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.25、(2013•新疆)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?26、(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?27、(德阳市2013年)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?。