车牌识别数字图像处理
车牌识别数字图像处理报告
axes(handles.before_process);
imshow(edge_p);
图8处理后图片
3.12定位与提取
计算出包含所标记的区域的最小宽和高,并根据先验知识,比较谁的宽高比更接近实际车牌宽高比,将更接近的提取并显示出来。
for(lx=1:1:num)
width=BoundingBox((lx-1)*4+3);%车牌宽
grayed=rgb2gray(a);
图6 车牌灰度化后图片
(3)对原始图像进行开操作得到图像背景图像,灰度图像与背景图像作减法,对图像进行增强处理:
se = strel('disk',5); %-------------------Create morphological structuring element.形态学结构
对二值图像进行区域提取,并计算区域特征参数。进行区域特征参数比较,提取车牌区域:
dge_p=edge(binary,'roberts');%用roberts算子识别强度图像中的边界**********************************************************
axes(handles.before_process);
数字图像处理
课程设计报告
1.
2.不要删除行尾的分节符,此行不会被打印
一.课程设计任务
在交通管理过程中,通常采用视频监控方式对闯红灯和超速等违章车辆进行监督。对违章车辆,需要自动检测车牌信息,提取车牌蓝底白字,长宽比3:1。
1、对车牌图像进行预处理,然后进行车牌定位;
width=BoundingBox((lx-1)*4+3);%车牌宽
数字图像处理-车牌识别技术
实际应用案例二
总结词
停车场管理系统
详细描述
在停车场管理中,车牌识别技术被广泛应用于车辆进出控制和停车位寻找。通过在停车场出入口安装 车牌识别设备,可以快速准确地识别进出车辆的车牌号码,实现自动计时计费、车辆进出记录等功能 ,提高停车场的运营效率和便利性。
实际应用案例三
总结词
智能安防系统
详细描述
车牌识别技术也可以应用于智能安防系统中,如小区、校园、重要场所等。通过 安装监控摄像头和车牌识别设备,可以实时监测和记录车辆进出情况,有效防范 非法入侵和车辆盗窃等安全问题,提高安防系统的可靠性和安全性。
特征提取的目的是降低数据维度,提高分类器的识别效率,同时保留足够的信息以 区分不同的车牌。
支持向量机分类器
支持向量机(SVM)是一种常用 的分类器,用于对车牌进行分类
和识别。
SVM通过找到能够将不同类别 的车牌数据点最大化分隔的决
策边界来实现分类。
在车牌识别中,SVM通常与特 征提取技术结合使用,以实现 对车牌的准确识别。
增强的目标是使车牌区域在图像中更 加突出,同时保持车牌字符清晰可辨。
常见的图像增强技术包括对比度增强、 直方图均衡化、边缘检测等,可以根 据车牌的特点选择适合的增强算法。
图像变换
图像变换是将图像进行几何变换 或频率域变换的过程,以便提取
车牌特征或进行模式识别。
常见的图像变换包括平移、旋转、 缩放、翻转等几何变换,以及傅 里叶变换、小波变换等频率域变
字符识别是车牌识别技术的最 后一步,将分割后的字符与预 定义的字符集进行匹配,以识 别出车牌上的字符。常用的识 别算法包括模板匹配、神经网 络等。
处理识别结果
详细描述
在识别出车牌上的字符后,需 要对识别结果进行处理,如去 除无关字符、合并相邻字符等 ,以提高识别准确率。
基于数字图像处理的车牌识别技术研究
基于数字图像处理的车牌识别技术研究数字图像处理技术的发展,推动了很多生活领域的发展,其中一个应用领域就是车牌识别技术。
随着机器视觉技术的不断进步和成熟,车牌识别技术也得到了广泛应用,从而改变了人们的生活和工作方式。
本文将从车牌识别技术的发展历程、技术原理和应用领域三个方面进行分析和探讨。
一、车牌识别技术的发展历程车牌识别技术起初主要应用在警务、交通违法处理、停车场管理等方面。
但随着技术的不断进步和应用需求的增加,车牌识别技术开始在一些商业领域得到广泛应用,如门禁系统、智慧停车场、道路收费系统等。
二、车牌识别技术的基本原理车牌识别技术是一项集成计算机视觉和数字图像处理技术的综合性技术,其基本原理为:通过采集、处理和识别车辆行驶过程中的数字图像信息,实现对车辆的追踪、预警、识别、管理、控制等功能。
车牌识别技术的核心技术包括图像采集和预处理、车牌定位和分割、字符识别和数字识别等三个方面。
图像采集和预处理是车牌识别技术中最基本的环节,直接影响后续处理的质量和精度。
采集过程需要保证光线的充足性和图像清晰度,同时要根据不同的场景和车速等因素调整采集参数,如曝光时间、快门速度等。
车牌定位和分割是车牌识别技术中比较重要的步骤,其主要任务是将图像中的车牌区域准确地划分出来。
车牌定位和分割方法主要有颜色阈值法、边缘检测法和形状检测法等。
其中,颜色阈值法是一种比较常用和简单的方法,其基本原理是设定一个基于颜色的阈值,将车牌区域和其他区域分割开来。
字符识别是车牌识别技术中最为核心的环节,其主要任务是对车牌上的字符进行识别。
车牌上的字符由数字和字母组成,因此字符识别主要分为数字识别和字母识别两种类型。
字符识别的主要技术包括模式匹配、神经网络、支持向量机、卷积神经网络等方法。
三、车牌识别技术的应用领域车牌识别技术广泛应用于智慧交通、安防监控、金融服务、互联网营销、智慧城市建设等多个领域。
其中,智慧交通是车牌识别技术的主要应用领域之一。
(完整版)基于数字图像处理的车牌识别本科毕业论文
本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。
车辆牌照识别中如何运用数字图像处理技术-数字图像处理论文-计算机论文
车辆牌照识别中如何运用数字图像处理技术-数字图像处理论文-计算机论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:随着我国经济实力得到很大的提升, 汽车已经成为人们的出行的主要交通工具之一, 这对于交通控制以及安全管理也提出了更高的要求, 我国的交通管理也朝着智能交通方向逐渐的完善, 而其中的一个重要组成便是车牌识别, 通过对车牌实现自动识别, 对于交通管理来说有着极大的便利作用。
对此本文利用数字图像识别运用在车牌识别中进行一定的研究, 主要对技术原理极其应用中存在的问题进行分析。
关键词:数字图像处理; 车辆牌照识别; 应用研究; 模式识别;前言随着我国社会取得了快速发展, 目前我国的道路监控与收费软件无法与发展需求相适应, 随着城市内汽车数量快速的增长, 完善的交通管理系统对于道路管理而言非常的必要, 而目前使用的管理系统已经不能很好的适用于社会发展。
要想实现智能化的道路交通系统, 首要便是对车牌实现有效地识别, 其能够对城市道路安全以及实现汽车有序管理具有着非常大的作用, 对此将数字图像处理运用其中是一种非常有效地方式。
1 数字图像处理实现车牌识别的技术原理运用数字图像处理与车牌识别之中主要由如下五个步骤构成, 第一步, 图像预处理, 由于车牌识别过程中所采集到的图像一般为真彩图, 其常常受到采集环境以及硬件设备等造成的影响, 使图像相对较为模糊, 采集图像中存在的背景以及噪声将会对字符分割与识别造成不利影响, 通过与处理能够在很大程度上提升图像质量[1]。
第二步, 车牌定位, 完成预处理之后的得到二值车牌图片, 通过形态学对其实现滤波, 从而使车牌区域可以实现区域的连通, 之后根据车牌先验知识对上述得到的连通区域进行筛选, 以此来获取到相对准确地车牌位置, 最终实现在图片中将车牌进行提取。
第三步, 车牌校正, 由于摄像头在拍摄过程中会与车辆本身具有一定的夹角, 导致获取的车牌图片并非是水平状态, 要想可以对车牌实现有效地分割与识别, 就必须对车牌加以一定的角度校正, 一般是利用Radon变换来使车牌得以校正[2]。
数字图像处理实验_汽车牌照自动识别
贵州大学实验报告学院:计算机学院专业:网络工程班级:101 姓名学号实验组实验时间12.11 指导教师戴丹成绩实验项目名称实验四汽车牌照自动识别实验目的1.分析汽车牌照的特点,正确获取整个图像中车牌的区域,并识别出车牌号。
2.将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。
实验原理牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
实验步骤a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
实验数据getword.mfunction [word,result]=getword(d)word=[];flag=0;y1=8;y2=0.5;while flag==0[m,n]=size(d);wide=0;while sum(d(:,wide+1))~=0 && wide<=n-2wide=wide+1;endtemp=qiege(imcrop(d,[1 1 wide m]));[m1,n1]=size(temp);if wide<y1 && n1/m1>y2d(:,[1:wide])=0;if sum(sum(d))~=0d=qiege(d); % 切割出最小范围else word=[];flag=1;endelseword=qiege(imcrop(d,[1 1 wide m]));d(:,[1:wide])=0;if sum(sum(d))~=0;d=qiege(d);flag=1;else d=[];endendendresult=d;qiege.mfunction e=qiege(d)[m,n]=size(d);top=1;bottom=m;left=1;right=n;while sum(d(top,:))==0 && top<=mtop=top+1;endwhile sum(d(bottom,:))==0 && bottom>=1bottom=bottom-1;endwhile sum(d(:,left))==0 && left<=nleft=left+1;endwhile sum(d(:,right))==0 && right>=1right=right-1;enddd=right-left;hh=bottom-top;e=imcrop(d,[left top dd hh]);main.mfunction [d]=main(jpg)close allclcI=imread('car2.jpg');subplot(2,3,1),imshow(I);title('原图')I1=rgb2gray(I);subplot(2,3,2),imshow(I1);title('灰度图');subplot(2,3,3),imhist(I1);title('灰度图直方图');I2=edge(I1,'robert',0.15,'both');subplot(2,3,4),imshow(I2);title('robert算子边缘检测') se=[1;1;1];I3=imerode(I2,se);subplot(2,3,5),imshow(I3);title('腐蚀后图像');se=strel('rectangle',[25,25]);I4=imclose(I3,se);subplot(2,3,6),imshow(I4);title('平滑图像的轮廓');I5=bwareaopen(I4,2000);figure(2),imshow(I5);title('从对象中移除小对象'); [y,x,z]=size(I5);myI=double(I5);ticBlue_y=zeros(y,1);for i=1:yfor j=1:xif(myI(i,j,1)==1)Blue_y(i,1)= Blue_y(i,1)+1;endendend[temp MaxY]=max(Blue_y);PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);Blue_x=zeros(1,x);for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendwhile ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(3),subplot(1,2,1),imshow(IY),title('行方向合理区域');figure(3),subplot(1,2,2),imshow(dw),title('定位剪切后的彩色车牌图像') imwrite(dw,'dw.jpg');[filename,filepath]=uigetfile('dw.jpg','输入一个定位裁剪后的车牌图像'); jpg=strcat(filepath,filename);a=imread('dw.jpg');b=rgb2gray(a);imwrite(b,'1.车牌灰度图像.jpg');figure(4);subplot(3,2,1),imshow(b),title('1.车牌灰度图像')g_max=double(max(max(b)));g_min=double(min(min(b)));T=round(g_max-(g_max-g_min)/3);[m,n]=size(b);d=(double(b)>=T);imwrite(d,'2.车牌二值图像.jpg');figure(4);subplot(3,2,2),imshow(d),title('2.车牌二值图像')figure(4),subplot(3,2,3),imshow(d),title('3.均值滤波前')h=fspecial('average',3);d=im2bw(round(filter2(h,d)));imwrite(d,'4.均值滤波后.jpg');figure(4),subplot(3,2,4),imshow(d),title('4.均值滤波后')se=eye(2);[m,n]=size(d);if bwarea(d)/m/n>=0.365d=imerode(d,se);elseif bwarea(d)/m/n<=0.235d=imdilate(d,se);endimwrite(d,'5.膨胀或腐蚀处理后.jpg');figure(4),subplot(3,2,5),imshow(d),title('5.膨胀或腐蚀处理后')d=qiege(d);[m,n]=size(d);figure,subplot(2,1,1),imshow(d);%figure(6),subplot(1,1,1),imshow(d),title(n)k1=1;k2=1;s=sum(d);j=1;while j~=nwhile s(j)==0j=j+1;endk1=j;while s(j)~=0 && j<=n-1j=j+1;endk2=j-1;if k2-k1>=round(n/6.5)[val,num]=min(sum(d(:,[k1+5:k2-5])));d(:,k1+num+5)=0;endendd=qiege(d);y1=10;y2=0.25;flag=0;word1=[];while flag==0[m,n]=size(d);left=1;wide=0;while sum(d(:,wide+1))~=0wide=wide+1;endif wide<y1d(:,[1:wide])=0;d=qiege(d);elsetemp=qiege(imcrop(d,[1 1 wide m]));[m,n]=size(temp);all=sum(sum(temp));two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));if two_thirds/all>y2flag=1;word1=temp;endd(:,[1:wide])=0;d=qiege(d);endend[word2,d]=getword(d);[word3,d]=getword(d);[word4,d]=getword(d);[word5,d]=getword(d);[word6,d]=getword(d);[word7,d]=getword(d);subplot(5,7,1),imshow(word1),title('1');subplot(5,7,2),imshow(word2),title('2');subplot(5,7,3),imshow(word3),title('3');subplot(5,7,4),imshow(word4),title('4');subplot(5,7,5),imshow(word5),title('5');subplot(5,7,6),imshow(word6),title('6');subplot(5,7,7),imshow(word7),title('7');[m,n]=size(word1);word1=imresize(word1,[40 20]);word2=imresize(word2,[40 20]);word3=imresize(word3,[40 20]);word4=imresize(word4,[40 20]);word5=imresize(word5,[40 20]);word6=imresize(word6,[40 20]);word7=imresize(word7,[40 20]);subplot(5,7,15),imshow(word1),title('1');subplot(5,7,16),imshow(word2),title('2');subplot(5,7,17),imshow(word3),title('3');subplot(5,7,18),imshow(word4),title('4');subplot(5,7,19),imshow(word5),title('5');subplot(5,7,20),imshow(word6),title('6');subplot(5,7,21),imshow(word7),title('7');imwrite(word1,'1.jpg');imwrite(word2,'2.jpg');imwrite(word3,'3.jpg');imwrite(word4,'4.jpg'); imwrite(word5,'5.jpg');imwrite(word6,'6.jpg');imwrite(word7,'7.jpg');liccode=char(['0':'9' 'A':'Z' '苏豫陕鲁']);SubBw2=zeros(40,20); l=1;for I=1:7ii=int2str(I);t=imread([ii,'.jpg']);SegBw2=imresize(t,[40 20],'nearest');if l==1kmin=37;kmax=40;elseif l==2kmin=11;kmax=36;else l>=3kmin=1;kmax=36;endfor k2=kmin:kmaxfname=strcat('字符模板\',liccode(k2),'.jpg');SamBw2 = imread(fname);for i=1:40for j=1:20SubBw2(i,j)=SegBw2(i,j)-SamBw2(i,j);endendDmax=0;for k1=1:40for l1=1:20if ( SubBw2(k1,l1) > 0 | SubBw2(k1,l1) <0 )Dmax=Dmax+1;endendendError(k2)=Dmax;endError1=Error(kmin:kmax);MinError=min(Error1);findc=find(Error1==MinError);Code(l*2-1)=liccode(findc(1)+kmin-1);Code(l*2)=' ';l=l+1;endfigure(6),subplot(1,1,1),imshow(d);title(n);figure(6),subplot(1,1,1),imshow(dw);title (['车牌号码:',Code],'Color','b');实验总结学会将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。
《数字图像处理》大作业:车牌识别
将图中字符分割出来 将每个字符单独分割出来进行操作方便字 符识别 用d=bwareaopen(d,150);将第二个 和第三个字符中间的点去除点。
分割第一个字符的程序
wide1 = 0 while sum(d(:,wide1+1))<3 && wide1 <= n-2 wide1 = wide1 + 1; end wide2 = wide1; while sum(d(:,wide2+1))>2 && wide2 <= n-2 wide2 = wide2 + 1; end % temp = imcrop(d, [wide1 1 wide2-wide1 m]); % figure;imshow(temp); % tp=3;bottm=m-5; while sum(d(tp,wide1:wide2))==0 tp = tp + 1; end while sum(d(bottm,wide1:wide2))==0 bottm = bottm - 1; end e1 = imcrop(d, [wide1 tp wide2-wide1 bottm-tp]);
%求出一列中满足蓝色区域点的个数
%找出车牌区域左右边界
车牌字符处理
首先要对定位好的车牌图像进行处理,再将车牌 上的字符分割出来,方便后续识别操作。ຫໍສະໝຸດ 图像灰度化图像二值化
图像滤波处理
车牌图像处理
图像处理部分程序
X = im2bw(Plate); 像 [H, L] = size(X); X = imcrop(X, [5 5 L-10 H-10]); %im2bw使用阈值变换法把灰度图 转换成二值图像。
数字图像处理在车牌识别中的应用
数字图像处理在车牌识别中的应用随着汽车数量的增加,城市交通状况日益受到人们的重视,如何进行有效的交通管理更是成为了人们关注的焦点。
针对此问题,人们运用新的科学技术,相继研制开发出了各种交通道路监视、管理系统。
这些系统通过车辆检测装置对过往的车辆实施检测,提取有关交通数据,达到监控、管理和指挥交通的目的。
因此,智能交通系统 I TS( i ntelli gent traf f i c system )已成为世界交通领域研究的重要课题。
车牌识别系统 LPR ( l icense plate recogni t i on)作为智能交通系统的一个重要组成部分,已在高速公路、城市交通和停车场等项目的管理中占有无可取代的重要地位。
它在不影响汽车状态的情况下, 由计算机自动完成车牌的识别,从而降低交通管理工作的复杂度。
本文应用图像处理技术、车牌定位技术、车牌字符分隔、字符识别技术等解决了车辆牌照识别问题。
1 车牌识别的原理和方法通常,车牌识别过程分为图像预处理、车牌定位、车牌校正、车牌分割和车牌识别五个部分。
图像预处理: 在整个车牌识别系统中,由于采集进来的图像为真彩图,再加上实际采集环境的影响以及采集硬件等原因,图像质量并不高,其背景和噪声会影响字符的正确分割和识别,所以在进行车牌分割和识别处理之前,需要先对车牌图像进行图像预处理操作。
车牌定位: 首先对车牌的二值图片进行形态学滤波,使车牌区域形成一个连通区域,然后根据车牌的先验知识对所得到的连通区域进行筛选,获取车牌区域的具体位置,完成从图片中提取车牌的任务。
车牌校正: 由于捕捉图片的摄像头与车身的角度问题,得到的车牌图片不是水平的。
为了顺利进行后续的分割和识别,必须对车牌进行角度校正。
在此,使用了 Ra don变换来对车牌进行校正。
车牌分割: 首先对车牌进行水平投影,去除水平边框;再对车牌进行垂直投影。
通过对车牌进行投影分析可知,与最大值峰中心对应的为车牌中第二个字符和第三个字符的间隔,与第二大峰中心距离对应的即为车牌字符的宽度,并以此为依据对车牌进行分割。
基于数字图像处理的车牌识别系统
基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统1.车牌识别系统研究⽬的及意义车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后⾃动识别汽车牌照上的字符,LPR是利⽤车辆牌照的唯⼀性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,LPR系统应该能够从⼀幅图像中⾃动提取车辆图像,⾃动分割牌照图像,对字符进⾏正确识别,从⽽降低交通管理⼯作的复杂度。
2.车牌图像预处理为了便于车牌的分割识别,摄像机摄下的原始图像应具有适当的亮度和对⽐度。
但通常经输⼊系统获取的车牌图像信息由于光照条件、牌照的整洁度、摄像机的状态(焦距、⾓度和镜头的光学畸变)以及车速的不稳定等因素都会使图像含有各种各样的噪声与畸变。
例如由于光照度不均匀造成图像灰度过于集中;由摄像头获得的图像经过AD转换、线路传送都会产⽣噪声污染;车牌的字符部分受到磨损或是被污迹覆盖等等。
这些主客观因素不可避免地影响车牌图像的清晰程度,降低图像质量,轻者表现为图像不⼲净,难以看清细节,重者表现为图像模糊不清、歪斜或缺损,车牌字符边界模糊、细节不清、⽐划断开、粗细不均等现象。
这势必会影响车牌区域分割,降低车牌字符识别的准确度。
因此,在对车牌图像进⾏分析之前,必须要对车牌图像进⾏预处理。
对车牌图像的预处理主要包括以下三个⽅⾯:(l)图像对⽐度增强。
由于车牌识别系统需要全天候⼯作,⾃然光照度的昼夜变化会引起车辆图像对⽐度的严重不⾜,所以增强图像是很有必要的。
(2)图像去噪。
通常得到的汽车图像会有⼀些污点,为了保证识别的效果,需要对图像进⾏去噪处理。
(3)倾斜矫正。
摄像机的位置、车辆的运动等因素经常使拍摄出来的汽车图像有⼀定的倾斜,这就需要对图像进⾏倾斜矫正,或在分割出车牌区域之后对字符倾斜矫正2.1图像的灰度化通常情况下,实际的车牌识别系统中由摄像机采集到的原始图像是彩⾊图像,所有的彩⾊图像都是由红(R)、绿(G)、蓝(B)三基⾊组合⽽成,在数字图像中每⼀个基⾊都被分为256个等级,即0~255。
基于数字图像处理的车牌识别与违章检测技术研究
基于数字图像处理的车牌识别与违章检测技术研究随着互联网的发展和智能交通系统的推广应用,车牌识别与违章检测技术在交通管理中发挥着越来越重要的作用。
基于数字图像处理的车牌识别与违章检测技术通过对车牌区域进行图像处理和模式识别,能够快速准确地实现车牌识别和违章检测,并为交通管理部门提供有效的辅助决策。
车牌识别是指通过数字图像处理技术将车牌从摄像头采集的图像中准确地识别出来。
车牌识别技术的关键是车牌区域的提取和字符识别。
首先,通过图像处理算法对车辆图像进行预处理,去除噪声和干扰。
然后,通过边缘检测等算法将车辆图像分割出车牌区域。
最后,采用模式识别算法对车牌区域进行字符识别,将识别结果输出。
基于数字图像处理的车牌识别技术有很多应用场景,如交通管理、停车场管理、小区出入口管理等。
在交通管理中,车牌识别技术可以帮助交警部门实现违章车辆的快速查找和处罚,提高违法行为的查处率。
在停车场管理中,车牌识别技术可以用于自动收费和车辆出入记录的管理,提高停车场的管理效率。
在小区出入口管理中,车牌识别技术可以辅助安保人员识别车辆及车主身份,增强小区的安全性。
违章检测是指通过数字图像处理技术对路面上的车辆进行违章行为的检测和记录。
违章行为主要包括闯红灯、压线行驶、超速行驶等。
违章检测技术的关键是对车辆的位置和行为进行准确的分析和判断。
首先,通过图像处理算法提取出车辆的特征信息,如车辆轮廓、颜色等。
然后,通过算法将车辆的位置和行为与交通规则进行匹配,判断是否存在违章行为。
最后,将违章车辆的信息进行记录和处理。
基于数字图像处理的车牌识别与违章检测技术的研究主要包括以下几个方面:首先,完善车牌识别算法。
通过研究不同的图像处理算法和模式识别算法,提高车牌识别的准确率和鲁棒性。
例如,可以采用模板匹配法、特征提取法或深度学习等方法进行车牌识别。
其次,优化违章检测算法。
通过研究车辆的行为模式和交通规则,提高违章检测的准确率和稳定性。
例如,可以采用机器学习算法和数据挖掘方法对违章行为进行建模和分析,从而实现更准确的违章检测。
基于数字图像处理的车牌识别技术研究
OpenCV是一个开源的计算机视觉库,它包含了大量的算法,可以用来进行图 像处理、分析和理解。车牌识别是计算机视觉的一个重要应用,主要涉及图像处 理、模式识别、机器学习等多个领域。通过使用OpenCV,我们可以较容易地实现 车牌识别系统,从而进行车牌号码的自动识别和车辆的监控。
二、车牌识别系统的基本流程
图像处理技术概述
图像处理是一种通过对图像进行分析和处理,提取出有用的信息或特征的技 术。常用的图像处理技术包括图像变换、图像降噪、图像压缩等。图像变换包括 灰度化、二值化、滤波等,用于将图像转换为适合进行分析和处理的形式。图像 降噪用于消除图像中的噪声,提高图像的质量。图像压缩用于减少图像的存储空 间,便于图像的传输和处理。
数字图像处理技术在车牌识别中的优势主要有以下几点:一是准确性高,通 过采用先进的算法和模型,可以大大提高车牌识别的准确率;二是速度快,数字 图像处理技术可以快速处理图像,提高车牌识别的效率;三是成本低,数字图像 处理技术的实施成本较低,可以有效地降低整个车牌识别系统的成本。
数字图像处理技术在车牌识别中的应用前景十分广阔。随着和物联网技术的 快速发展,车牌识别技术将得到更广泛的应用。例如,在智能交通管理、车辆智 能化、停车场智能化等领域,数字图像处理技术将在车牌识别中发挥越来越重要 的作用。
展望未来,随着和深度学习技术的不断发展,车牌识别技术将会取得更大的 突破。我们期望通过继续研究和实践,不断提高车牌识别技术的准确性和稳定性, 推动智能化交通管理系统的进一步发展。我们也希望能够为相关领域的研究人员 和技术开发者提供一些有益的参考和启示。
参考内容
随着科技的不断发展,数字图像处理技术日益成熟,并在众多领域中发挥了 重要的作用。其中,数字图像处理在车牌识别中的应用具有广泛的实际价值。本 次演示将介绍数字图像处理在车牌识别中的重要性、发展现状、应用优势以及未 来前景。
浅谈图像处理技术在车牌识别中的应用
浅谈图像处理技术在车牌识别中的应用车牌的自动识别是计算机视觉、图像处理与模式识别技术在智能交通领域应用的重要研究课题之一, 是实现交通管理智能化的重要环节, 下面浅谈一下图像处理技术在车牌识别中的应用。
先说说数字图像及数字图像处理一般的图像都是模拟图像,即图像上的信息是连续变化的模拟量。
如一幅黑白灰度照片上的物体是通过照片上各点的光的强度不同体现出来的,而照片上的光强是一个连续变化的量,也就是说,在一定的范围内,光强的任何值都可能体现。
对于这种模拟图像只能采用模拟的处理方式进行处理,例如按照光学原理用透镜将照片放大。
计算机不能接受和处理模拟信号,只有将图像在空间和灰度上都离散化为数字信号后,或者说将模拟图像变换为数字图像方能接受[4]。
而数字图像是将连续的模拟图像经过离散化处理后变成计算机能够辨识的点阵图像。
严格的数字图像是一个经过等矩形网格采样,对幅度进行等间隔量化的二维函数,因此,数字图像实际上就是被量化的二维采样数组[3]。
在车牌识别中,图像处理涉及一下几项技术:图象增强技术(空间域,频率域);图像恢复技术去(卷积,图像几何变换);图像分割识别技术。
1.图象增强技术图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。
采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。
图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。
数字图像处理车牌号识别实验
数字图像处理车牌号识别实验1、编程语言与开发环境:C#,操作系统式windows7,开发平台是visual studio 2010。
2、实验数据:在安徽大学校磬苑校区内拍摄到车牌照片3、实验简介车牌自动识别系统的整个处理过程分为图片预处理、车牌定位、字符分割、字符识别四大模块,本课题通过对含车牌的汽车图片进行分析,设计并实现了一个车牌识别原型系统。
第一部分为图像预处理部分,该部分采用基于灰度图像的灰度拉伸和灰度化均衡以及中值滤波算法对车牌图像进行处理。
第二部分为车牌区域定位,该部分在二值图像的基础上用基于边缘检测的车牌定位方法对车牌区域实现定位。
第三部分为字符切分部分,该部分用基于垂直投影法的车牌照字符切分方法对车牌进行字符切分,为车牌字符识别作好准备。
第四部分为字符识别部分,该部分采用基于标准特征库模板匹配的字符识别方法对切分出来的字符块进行识别,满足简单、实用、正确性高的要求。
另外为了增强用户体验和增加识别率,本系统还加入了、车牌特征训练、特征实时入库等辅助功能。
3、实验流程5、实验结果图5-1 原图像图5-2 经灰度化处理后图像图5-3 经灰度化处理后的直方图图5-4 经灰度均衡化处理后的图像图5-5 经灰度均衡化处理后的直方图图5-6 经中值滤波处理后的图像图5-7 经中值滤波处理后的直方图图5-8使用sobel边缘检测后的图像图5-9车牌定位图图5-10对车牌进行灰度化处理后图像图5-11对车牌进行二值化处理后图像图5-12对车牌进行区域化处理后图像图5-13识别结果图5-14 程序运行截图1图5-14 程序运行截图2。
数字图像处理-汽车牌照自动识别要点
数字图象处理题目:汽车牌照自动识别学院:计算机科学与信息学院专业:_______网络工程_______目录1 实验目的 (1)2 实验原理和方法 (1)3 实验内容和步骤 (1)3.1 牌照定位 (1)3.2 牌照字符分割 (2)3.3 牌照字符识别 (2)4 实验数据 (2)4.1 源程序 (2)4.2 运行结果 (7)4.2.1 牌照定位 (7)4.2.2 牌照字符分割 (9)4.2.2 牌照字符识别 (10)1 实验目的1.分析汽车牌照的特点,正确获取整个图像中车牌的区域,并识别出车牌号。
2.将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。
2 实验原理和方法牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
3 实验内容和步骤为了进行牌照识别,需要以下几个基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
3.1 牌照定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。
基于数字图像处理技术的车牌识别技术研究
基于数字图像处理技术的车牌识别技术研究随着数字图像处理技术的发展,基于数字图像处理技术的车牌识别技术已经越来越成熟。
本文将从技术原理、发展历程、应用前景等方面进行探讨。
一、技术原理基于数字图像处理技术的车牌识别技术是通过图像获取、特征提取、匹配识别等过程实现对车牌的快速准确识别和提取的技术。
其核心技术是数字图像处理,主要包括以下几个方面:1.图像获取:通过摄像机、高分辨率相机等设备获取车辆图片,然后对图片进行处理。
2.预处理:对图像进行灰度化、去噪、二值化、图像增强等操作,以提高图像的质量和清晰度。
3.特征提取:针对不同的车辆和车牌,提取不同的特征,比如车牌号码、车牌颜色、车牌字体、大小等,以便后续处理和识别。
4.识别匹配:使用模式识别、人工智能、机器学习等技术对提取的特征进行分析和识别,实现对车牌号码的准确识别。
二、发展历程数字图像处理技术的应用在车牌识别领域可以追溯到上世纪90年代。
在那个时候,人们只是简单地使用黑白相机和一些简单的图像处理算法,提取车牌的高度和长度等信息,进行简单的识别。
随着技术的发展,2000年左右,出现了一些基于嵌入式系统的车牌识别方案,可以在道路上实现对车辆的自动监测和识别。
2005年以后,随着数字图像处理技术的成熟,车牌识别技术得到了极大地发展。
这个时候已经有一些算法可以实现对车牌号码的自动识别,并且具有一定的准确度和鲁棒性。
2010年至今,随着深度学习、人工智能等技术的发展,车牌识别技术已经非常成熟,并且在现实生活中得到了广泛的应用,比如智慧城市交通管理、车辆管理、车位管理等方面。
三、应用前景基于数字图像处理技术的车牌识别技术具有广泛的应用前景。
以下是其中的一些方面:1. 智慧城市交通管理:在城市交通治理中,车牌识别技术可以帮助管理部门实现对违章车辆和黑车的自动监测和管理,提高交通管理效率和管理水平。
2. 车位管理:车牌识别技术可以应用在停车场和小区停车场等地方,实现对车位和车辆的自动识别和管理,帮助车主快速找到空车位。
基于图像处理技术的车辆车牌自动识别系统设计
基于图像处理技术的车辆车牌自动识别系统设计车辆车牌自动识别系统是一种基于图像处理技术的智能系统,能够自动识别车辆的车牌信息,并将识别结果反馈给系统使用者。
本文将介绍车辆车牌自动识别系统的设计原理、流程和关键技术,并讨论其在实际应用中的意义和前景。
1. 引言车辆车牌自动识别系统是借助计算机视觉和图像处理技术,通过处理车辆图像信息,自动提取出车牌号码的一种技术。
该系统可以广泛应用于交通管理、停车场管理、安防监控等领域,提高工作效率,提供更加精准的车辆信息。
2. 系统设计原理车辆车牌自动识别系统设计的主要原理是基于数字图像处理的模式识别技术。
其流程包括图像获取、车牌定位、字符分割和字符识别等关键步骤。
首先,通过摄像头等设备获取车辆图片。
然后,使用图像处理算法对获取的车辆图片进行预处理,包括图像增强、噪声去除、图像平滑等操作,以提高后续车牌定位的准确性。
接下来,通过目标检测和图像分割等算法,确定车辆图片中的车牌区域,并将其分割成若干个字符图像,为后续的字符识别做准备。
最后,使用字符识别算法对分割出的字符图像进行识别,将识别结果返回给系统使用者。
3. 关键技术介绍(1)图像预处理:车辆车牌图像通常存在一定的噪声和光照变化,对图像进行增强、去噪和平滑等预处理操作,可以提高车牌定位和字符识别的准确性。
(2)车牌定位:车牌定位是整个系统的关键步骤,常用的定位方法包括颜色定位、形状定位和边缘定位等。
这些方法可以通过设定一些约束条件(如车牌尺寸、颜色、形状等)来定位车牌区域。
(3)字符分割:字符分割是将车牌图片中的字符分割成单独的字符图像,以便后续的字符识别。
常见的字符分割方法包括基于垂直投影、连通区域、区域生长等。
(4)字符识别:字符识别是根据字符图像的特征进行分类和识别的过程。
常见的字符识别方法包括基于模板匹配、神经网络、支持向量机等。
4. 应用前景与意义车辆车牌自动识别系统在交通管理、停车场管理、安防监控等领域有着广泛的应用前景和意义。
车牌识别-数字图像处理
据长宽比以及车牌占整个图片的比例得出,车牌 的位置 cvFindContours(pImage,pStorage,&pContour,sizeof( CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
字符切割
字符分割
采用连通域思想,与车牌定位类似,二值化,轻
cvThreshold(pImage8uSmooth,pImage8uThres,T,255,CV_TH RESH_BINARY);
车牌定位
腐蚀膨化
腐蚀膨化处理,可以讲二值化以后的图片进行连
通,此时能初步看出车牌的位置, cvDilate, cvErode
车牌定位
找轮廓
查找连通区域轮廓,并用矩形框出。本次设计根
度腐蚀,找到连通区域,切割字符
二值化
去除边框 和钉子
寻找连通 区域
定位切割
结
本次设计能识别出背景相对较为干净的车牌, 也能切割出字符,但仍然存在许多局限性。如 背景太亮,车牌倾斜等 后续将继续完善 谢谢!!
xxx xxxxxxx
主要内容
车牌识别简介 车牌识别流程
总结
车牌识别简介
基于图像处理的车牌识别
将汽车牌照从复杂背景中提取并识别出来,实现
智能识别车辆身份
鲁KK5555
车牌识别流程
车牌定位 字符切割 字符识别
• 预处
• 灰度化
• 字符定 位
• 切割字 符
• 字符归 一化
• 匹配识 别字符
• 二值化
• 切割
车牌定位
灰度化
一般图像为彩色图像,但彩色图像数据量大,结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末大作业报告课程名称:数字图像处理设计题目:车牌识别学院:信息工程与自动化学院专业:计算机科学与技术年级: xxxxx 学生姓名: xxxxxxx (学号 xxxxxxxxxxxxx)指导教师: xxxx 日期: 2012.6.10教务处制车牌识别摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。
MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。
它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。
根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。
MATLAB中集成了功能强大的图像处理工具箱。
由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。
车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
关键词:车牌识别、数字图像处理、MATLAB一、设计原理车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。
二、设计步骤1. 提出总体设计方案:(1)车牌图像预处理方法因为车牌图像都是在室外拍摄的,所以不可避免地会受到光照、气候等因素的影响,而且拍摄者的手部抖动与车辆的移动会造成图像的模糊。
要去除这些干扰就得先对车牌图像进行预处理。
由于当前数码相机的像素较高,原始图像的数据一般比较大,输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度。
因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。
对图像进行灰度化处理后常用的方法是图像二值化、去除背景图像、增强处理、边缘检测、滤波等处理等。
(2)车牌定位方法车牌定位在整个车牌识别系统中是非常关键的一部分,因为如果车牌无法定位或无法精确定位,就不可能进行后续的字符分割与字符识别工作。
经过查阅文献,我发现车牌定位算法的种类非常多,但是至今没有一种通用的方法。
考虑到本次课程大作业所用车牌的一些特点,可采用以下四种车牌定位的算法,下面具体介绍。
1)基于灰度边缘检测与形态学重构的方法。
这种方法只要利用车牌区域局部对比度明显和有规律的纹理特征来定位,然后利用形态学方法将车牌区域与其它背景区域分离。
2)基于直线检测的方法。
这种方法主要Hough变换的方法来检测车牌周围边框直线,利用车牌形状特性来定位车牌。
3)根据车牌的固有长宽比进行定位的方法。
因为中外车牌的长宽比都是固定的3.1:1,在预处理完成后对二值化的图像进行膨胀腐蚀,计算联通区域长宽比确定车牌位置。
4)基于彩色图像的车牌定位方法。
现在的牌照有四种类型:第一种是最常见的小型汽车所用的蓝底白字牌照;第二种是大型汽车所用的黄底黑字牌照;第三种是军用或警用的白底黑字、红字牌照;第四种是国外驻华机构用的黑底白字、红字牌照。
基于彩色图像的车牌定位方法主要利用车牌颜色与车身其他部位颜色具有明显不同的差异来分割与提取车牌。
定位流程图:(3)字符分割方法字符分割是指将车牌区域分割成单个的字符区域,分割越准确,识别效果越好。
目前有许多种车牌字符分割算法,由于在车牌字符分割中存在噪声干扰,边框、铆钉影响,车牌旋转和光照不均等问题,造成分割不准确,甚至分割错误,目前很难找到普遍适用的分割方法。
常用的字符分割法主要是基于投影分析字符的分割方法和基于连通域分析的字符分割方法。
1)投影分析常采用的是水平投影法,即沿水平方向计算每一列属于车牌字符的象素数目,在字符的间隙处取得局部最小值,分割位置应在其附近。
先根据车牌水平投影的统计特征呈现出明显“波峰——波谷——波峰”,进行水平方向上的粗分割,若字符出现合并和粘连现象,再采用递归回归办法进行二次字符分割。
2)投影法进行字符分割实现起较为简单,但在预处理效果不好的情况下,较难获得满足条件的列。
若增加预处理,则使处理后的图像不可避免地损失一部分有用信息,还可能导致额外误差。
基于连通域聚类分析切分车牌字符的方法按照属于同一个字符的像素构成一个连通域的原则,结合牌照字符的固定高度和间距比例关系等先验知识,较好地解决了汽车牌照在复杂背景条件下的字符切分问题,降低了对车牌定位准确度的要求,对不规范的车牌识别也具有一定的适用性。
(4)字符识别方法标准的车牌共有七个字符,如上图所示。
其中第1位为汉字,第2、3位为大写英文字母,4~7位为阿拉伯数字。
目前还有一定数量的个性化车牌,因为保有量较少,故可以忽略不计。
所以总共需要识别的字符约50个汉字,26个大写英文字母及10个阿拉伯数字。
现在常用的字符识别主要是基于模版匹配和神经网络的方法。
1)模板匹配法是最简单的一种字符识别方法。
将待识别字符经分割归一化成模板字体的大小,将它输入字符识别模块进行匹配。
根据实际字符和模板图像之间匹配方差最小的原则,判定车牌图像字符所属类别。
这种方法对于标准、规范的字符识别效果较好。
但在复杂环境下的车牌字符会与理想模板字符不完全一致,这导致了识别结果存在较大误差。
2)模版匹配法简单、成熟,但其自适应不强。
对于字符有断裂和粘连等情况容易造成误判。
神经网络匹配法具有良好的容错性、自适应和学习能力,但样本的训练收敛速度慢,而大规模并行处理为此提供了解决途径。
其中一种方法是采用并行识别的BP网络,让汉字、英文、阿拉伯数字,阿拉伯数字分别送到各自的网络识别。
还有学者结合小波变化的优点,提出基于小波和BP神经网络的车牌字符识别新方法,采用小波变换提取字符特征,神经网络实现字符识别,加快了算法的执行,提高了识别率。
处理流程图:图像输入图像预处理车牌定位字符分割字符识别图像输出2. 各模块的实现(此处仅为处理后的结果图,详细代码见附录)(1)输入待处理的原始图像:原图:I=imread('car2.png');figure;subplot(321);imshow(I);title('原图');(2)图像的灰度化彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。
由彩色转换为灰度的过程叫做灰度化处理。
选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。
sx=[-1 0 1;-2 0 2;-1 0 1];sy=[1 2 1;0 0 0;-1 -2 -1];sox=imfilter(I1,sx);soy=imfilter(I1,sy);subplot(323);imshow(sox+soy);title('边缘检测后图像');se=[1;1;1];%线型构造函数I3=imerode(sox+soy,se);subplot(324);imshow(I3);title('腐蚀后的图像');se=strel('rectangle',[25,25]); %矩形结构元素I4=imclose(I3,se);%图像聚类、填充图像subplot(325);imshow(I4);title('填充后图像');I5=bwareaopen(I4,1500);%去除聚团灰度值小于2000的部分subplot(326);imshow(I5);title('形态滤波后图像');定位后(7)车牌字符分割确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字符图像。
考虑到基于投影分析字符的分割方法和基于连通域分析的字符分割方法实现起来比较复杂,于是我就综合前人方法总结出自己的算法。
车牌字符分割包括字符分割和单个字符识别两个模块。
考虑到获取的图像可能存在一定缺陷,因此在进行字符分割之前要先对定位后的车牌图像进行预处理,以方便后面的工作。
车牌上共有7个字符,间距相等,设平均字宽为W ,还有一个分隔符“﹒”占1/2字宽。
通过之前的预处理,可以将分隔符“﹒”用滤波器去掉。
设(,)f i j 是文字的二维点阵图形,有文字处为1,否则为0。
首先在(,)0f i j =∑处切割,若两个文字相粘连时,其间隔处便不会出现(,)0f i j =∑,此时就要辅之以求平均字宽的方法。
若某个字宽k W W ≥,说明k W 中含有一个以上的文字,需要继续分割。
由于在字符识别中我准备采用模板匹配的方法,因此需要将已分割出来的字符进行归一化处理。
因为我所采用的模板的尺寸为4020⨯,因此需要将分割出的字符也归一化为4020⨯的尺寸。
首先对彩色车牌进行二值化:对二值图像进行形态滤波:最后得到目标车牌区域:经过以上步骤得到分割后的图像:(8)车牌字符识别字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。
基于模板匹配算法是首先将分割后的字符二值化,并将其尺寸缩放为字符数据库中模板的大小,然后与所有模板进行匹配,最后选取最佳匹配作为结果。
建立数字库对该方法在车牌识别过程中很重要, 数字库准确才能保证检测出的数据正确。
基于人工神经元网络的算法有两种,一种是先对特征提取待识别字符,然后用所获得的特征训练神经网络分配器;另一种是直接将待处理图像输入网络由网络自动实现特征提取直至识别结果。
在本程序中用基于人工神经元网络识别车牌字符。