数值分析实验报告4
数值分析综合实验报告
![数值分析综合实验报告](https://img.taocdn.com/s3/m/1f875d69a22d7375a417866fb84ae45c3a35c257.png)
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析报告四
![数值分析报告四](https://img.taocdn.com/s3/m/6001a026aaea998fcc220ee4.png)
实验报告课程名称:数值分析姓名:学号:任课老师:实验一:用循环语句计算函数值实验名称:用MATLAB 软件编写数值计算程序 实验目的与要求:1.学会使用MATLAB 软件编写程序计算函数值2.了解循环语句使用编写方法,计算所求结果并进行分析。
实验内容:序列{n -3}可有下面两种递推公式产生:(1)...,2,1,31,110===-n x x x n n (2)...,3,2,943531,12110=-===--n y y y y y n n n用软件工具或自编程序递推地计算{n x }和{n y },并对计算结果和计算方法进行分析。
实验环境与器材: 9#505 一人一机实验过程(步骤)或程序代码:程序一: x(1)= 1/3; for n=2:15x(n)=(1/3)*x(n-1); x(n) end程序二:y(1)=1/3;y(2)=1/9;for n=3:15y(n)=(5/3)*y(n-1)-(4/9)*y(n-2);y(n)endy(n)end实验结果与分析:结果一:ans =0.1111ans =0.0370ans =0.0123ans =0.0041ans =0.0014ans =4.5725e-004ans =1.5242e-004 ans =5.0805e-005 ans =1.6935e-005 ans =5.6450e-006 ans =1.8817e-006 ans =6.2723e-007 ans =2.0908e-007 ans =6.9692e-008结果二:ans =0.0370 ans =0.0123 ans =0.0041 ans =0.0014 ans =4.5725e-004 ans =1.5242e-004 ans =5.0805e-005 ans =1.6935e-005 ans =5.6450e-006 ans =1.8817e-006ans =6.2723e-007ans =2.0908e-007ans =6.9692e-008在本实验中两种方式计算结果一样,两种方法一样好。
数值分析实验报告
![数值分析实验报告](https://img.taocdn.com/s3/m/1df1b422bcd126fff7050b7b.png)
数值分析实验报告
实验4 常微分方程数值解法
4.1 实验目的 通过本实验理解常微分方程初值问题的数值解法的基本原理。
掌握常微分方程初值问题的数值解法中常见的改进欧拉方法、
Runge-Kutta 方法的编程实现。
培养编程与上机调试能力。
4.2 算法描述
求解
'0()(,)()()y x f x y a x b y a y ⎧=≤≤⎨=⎩ 4.2.1
改进欧拉法 对给定的
(,)f x y ,用改进的欧拉公式 1111()[()()]2n n n n n n n n n n y y hf x y h y y f x y f x y ++++=++⎧⎪⎨=++++⎪⎩ 求解常微分方程初值问题的解
.
4.2.2
四阶龙格-库塔法 对上述给定的
(,)f x y ,用四阶龙格-库塔法求解常微分方程初值问题 112341213243(22)6(,)11(,)2211(,)22(,)n n n n n n n n n n h y y k k k k k f x y k f x h y hk k f x h y hk k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩
4.3 实验内容
用改进的欧拉公式,求解常微分方程初值问题的解
20.10.4(0)1
dy y x dx y ⎧=⎪≤≤⎨⎪=⎩
用四阶龙格-库塔公式解初值问题: / 2.0 2.6,0.2(2.0)1
dy x y x h dx y ⎧=⎪≤≤=⎨⎪=⎩
4.4 实验步骤
4.4.1 代码
4.4.2 实验结果
4.5 实验体会。
数值分析实验报告4
![数值分析实验报告4](https://img.taocdn.com/s3/m/5dc97c375901020207409c25.png)
function f=gg(x) f=sqrt(2.5-(x^3)/4); end
则三种方法运行出的结果分别为: >> BDD(1.5) k= 20 ans = 1.365229578333959 >> WA(1.5) k= 6 ans = 1.365230351032824 >> ATJ(1.5) k= 4 ans = 1.365230013413594 (5)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现 matlab 自带函数求根 的程序代码如下:
>>format long BDD(1.5) k= 7 ans = 1.365230575673434
(2)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现加权加速求根的程序 代码如下:
function [y,n]=WA(a,eps) if nargin==1 eps=1e-16; end syms x L=subs(diff(sqrt(10/(4+x))),a); xl=gg(a,L); n=1; E=abs(xl-a); while (E>=eps)&(n<=10000) x=xl; xl=gg(x,L); n=n+1; E=abs(xl-x); end
在 command Windows 中输入命令:XJF(1.5),得出的结果为:
>> XJF(1.5) k= 5 ans = 1.365230020178121 (8)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现抛物线法求根的程序
代码如下:
function [y,n] = parabola(fx,a,b,c,eps) if(nargin == 4) eps=1e-6; syms x fa = subs(fx,a); fb = subs(fx,b); fc = subs(fx,c); fb_a = (fb-fa)/(b-a); fc_b = (fc-fb)/(c-b); fc_b_a = (fc_b - fb_a)/(c-a); w = fc_b + fc_b_a*(c-b); x0 = c - 2*fc/(w+(w^2 - 4*fc*fc_b_a)^.5); n=1; if(abs(x0-c) > eps && n <= 10000) a=b; b=c; c=x0; fa = subs(fx,a); fb = subs(fx,b); fc = subs(fx,c); fb_a = (fb-fa)/(b-a); fc_b = (fc-fb)/(c-b); fc_b_a = (fc_b - fb_a)/(c-a); w = fc_b + fc_b_a*(c-b); x0=c - 2*fc/(w+(w^2 - 4*fc*fc_b_a)^.5); n=n+1; end y=x0; n; end end
数值分析实验报告心得(3篇)
![数值分析实验报告心得(3篇)](https://img.taocdn.com/s3/m/46278f26b207e87101f69e3143323968011cf438.png)
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析实验报告
![数值分析实验报告](https://img.taocdn.com/s3/m/b098f0db8662caaedd3383c4bb4cf7ec4afeb63f.png)
一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析实验报告5篇
![数值分析实验报告5篇](https://img.taocdn.com/s3/m/aff68bef58f5f61fb7366641.png)
1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
《数值分析》实验报告实验四
![《数值分析》实验报告实验四](https://img.taocdn.com/s3/m/ea9f83a9680203d8ce2f249d.png)
学号:姓名:班级:成绩:
实验名称:常微分方程数值解法的实现
实验地点:八教
所使用的工具软件及环境:Matlab
一、实验目的:
1.利用Matlab实现常微分方程数值解法;
2.利用编制的算法求解若干常微分方程;
二、实验内容:
1.编制求解常微分方程的改进的Euler算法和四阶Runge-Kutta方法的Matlab程序;
2.利用所编制的程序,求解初值问题:
分别取步长h=0.05,和h=0.2进行计算,并与准确解 相比较.
三、操作步骤:
Matlab程序如下:
一、改进的Euler算法的程序:
二、四阶Runge-Kutta方法的程序:
三、主程序:
四、实验结果:
(1)步长h=0.05时
利用改进的Euler算法求得的近似解为:
函数图像为:
从数据和图像中可以看出…
(2)步长h=0.2时
……
任课教师:鲍亮20年月日
1.0000000 1.1349933 1.3024974 1.5066572 1.7521464 2.0442343 2.3888619 2.7927279 3.2633851
准确解为:
1.0000000 1.1349937 1.3024983 1.5066588 1.7521487 2.0442376 2.3888664 2.7927339 3.2633929
数值分析实习报告总结
![数值分析实习报告总结](https://img.taocdn.com/s3/m/93d682a30342a8956bec0975f46527d3250ca607.png)
一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。
随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。
为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。
二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。
通过阅读相关教材和文献,我对数值分析有了初步的认识。
接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。
2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。
首先,我使用泰勒展开法求解一个简单的微分方程。
通过编写程序,我得到了微分方程的近似解。
然后,我运用牛顿法求解一个非线性方程组。
在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。
通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。
3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。
这些方法在解决实际问题中具有更高的精度和效率。
我选择了一个具体的工程问题,运用复化梯形公式求解定积分。
在计算过程中,我遇到了区间细分、精度控制等问题。
通过不断尝试和调整,我得到了较为精确的积分值。
三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。
在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。
这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。
2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。
在编写程序、进行数值计算时,我注重细节,力求精确。
这使我更加注重学术规范,提高了自己的学术素养。
3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。
在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。
这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。
数值分析实习报告
![数值分析实习报告](https://img.taocdn.com/s3/m/93cdc9695b8102d276a20029bd64783e08127d54.png)
一、实习背景随着科学技术的飞速发展,数值分析在各个领域都得到了广泛的应用。
为了更好地掌握数值分析的基本理论和方法,提高自己的实践能力,我于2023年暑期参加了某科技有限公司的数值分析实习。
二、实习内容1. 数值微分在实习期间,我首先学习了数值微分的基本理论和方法。
通过实际操作,我掌握了使用中心差分法、前向差分法和后向差分法计算函数在某点的导数。
在实际应用中,我使用这些方法对工程问题中的函数进行了导数计算,为后续的数值积分和数值求解提供了基础。
2. 数值积分接下来,我学习了数值积分的基本理论和方法。
在实习过程中,我掌握了梯形法则、辛普森法则和柯特斯法则等数值积分方法。
通过实际操作,我能够对函数进行数值积分,并在实际工程问题中应用这些方法。
3. 线性方程组求解线性方程组在数值分析中具有广泛的应用。
在实习期间,我学习了高斯消元法、LU 分解法、Cholesky分解法等求解线性方程组的方法。
通过实际操作,我能够对大规模线性方程组进行求解,并在实际工程问题中应用这些方法。
4. 最优化方法最优化方法是数值分析中的重要分支。
在实习期间,我学习了梯度下降法、牛顿法、共轭梯度法等最优化方法。
通过实际操作,我能够对实际问题进行最优化求解,并在实际工程问题中应用这些方法。
5. 数值求解微分方程微分方程在科学研究和工程应用中具有重要作用。
在实习期间,我学习了欧拉法、龙格-库塔法等数值求解微分方程的方法。
通过实际操作,我能够对微分方程进行数值求解,并在实际工程问题中应用这些方法。
三、实习收获1. 提高了数值分析的理论水平。
通过实习,我对数值分析的基本理论和方法有了更深入的理解。
2. 增强了实际操作能力。
在实习过程中,我熟练掌握了各种数值分析方法的实际操作,提高了自己的动手能力。
3. 培养了团队合作精神。
在实习过程中,我与团队成员密切合作,共同完成实习任务,提高了自己的团队协作能力。
4. 了解了数值分析在工程应用中的重要性。
数值分析第四章实验报告
![数值分析第四章实验报告](https://img.taocdn.com/s3/m/7a75e8487e21af45b307a856.png)
数学与信息科学学院实验报告课程名称:现代数值计算姓名:学号:专业班级:指导教师:2018-2019 学年 1 学期实验(二)数值实验二课后习题实验日期: 2018年10月24日 实验类型: 验证型 实验成绩:一、实验目的1. 了解并熟悉拉格朗日插值的定义和计算过程;2. 熟悉如何使用Matlab 计算以n+1个等距节点为条件的插值多项式;3. 熟悉如何使用Matlab 计算以切比雪夫点为条件的插值多项式;4. 进一步熟悉并掌握Matlab 的基本命令以及绘图命令的简单操作;二、实验内容1. 在区间[]5,5-,使用21个等距节点,找出龙格函数()12()1f x x -=+的20阶插值多项式()p x ,并打印出()f x 和()p x 的图形,观察()f x 和()p x 的最大偏差;2. 在同样的条件下,使用切比雪夫点()5cos 20i x i π=,020i ≤≤,找出函数()12()1f x x -=+的20阶插值多项式()q x 。
打印出()f x 和()q x 图形,观察()f x 和()q x 偏差值;3. 对比两次插值结果,分析得出结论;三、实验结果与分析1.源程序1)拉格朗日(Lagrange)函数的Function 文件function YValue_Inter = Lagrange( XValue_Real,YValue_Real,XValue_Inter) n = length(YValue_Real);YValue_Inter = zeros(size(XValue_Inter));for k = 1:npt = ones(size(XV alue_Inter));for j = [1:k-1 k+1:n]pt = pt .* (XValue_Inter - XValue_Real(j)) / (XValue_Real(k) - XValue_Real(j));endYValue_Inter = YValue_Inter + YValue_Real(k) * pt;endend以下是运行程序:clc;clear all;clc;Xmin = -5;Xmax = 5;Length_Interval = Xmax - Xmin;N_Value = 20;X_Value = Xmin: Length_Interval / N_Value : Xmax;Y_Value = 1 ./ (1+ X_Value.^2);X_Inter_Value = Xmin: Length_Interval / (N_Value * 5) : Xmax;Y_Inter_Value = Lagrange(X_Value,Y_Value,X_Inter_Value);X = Xmin: Length_Interval / (N_Value * 5) : Xmax;Y = 1 ./ (1+ X.^2);Different_Value = Y - Y_Inter_Value;Different_Value_ABS = abs(Different_Value);Max_Different_Value = max(Different_Value_ABS);Min_Different_Value = min(Different_Value_ABS);figure(1);plot(X_Inter_Value,Y_Inter_Value,'r--',X,Y,'bo');legend('Lagrange interpolating polynomial','f(x)');figure(2);plot(X,Different_Value_ABS);legend('Different Value');运行结果如图1所示。
《数值分析》实验报告4
![《数值分析》实验报告4](https://img.taocdn.com/s3/m/54bed4c6168884868662d662.png)
《数值分析》实验报告
【实验名称】
运用MATLAB编程实现多项式插值的拉格朗日方法。
【实验目的】
①熟悉了解lagrange插值多项式的算法。
②学习MATLAB软件的功能。
【实验环境】
操作环境:Windows 10
实验平台:Matlab7.1软件
【实验操作】
1、打开MATLAB程序软件。
2、所用实例为课本p116页例1。
3、lagrange插值多项式的MATLAB函数文件lagrange.m如下:
3.1 function yi=lagrange(x,y,xi)
n=length(x); m=length(y);
if n~=m
error('The lengths of X and Y must be equal');
return;
end
p=zeros(1,n);
for k=1:n
t=ones(1,n);
for j=1:n
if j~=k
if abs(x(k)-x(j))<eps
error('the DATA is error');
return;
end
t(j)=(xi-x(j))/(x(k)-x(j));
end
end
p(k)=prod(t);
end
yi=sum(y.*p);
4、结果说明:通过构造运用lagrange插值多项式使得求解某些函数值得较为简便。
【实验感想】
通过本次的实验了解了lagrange插值多项式的计算方法,大大提高了对课本知识的运用能力,熟悉了MATLAB的一些功能,增强了对数值分析学习的兴趣。
数值_分析实验报告
![数值_分析实验报告](https://img.taocdn.com/s3/m/b6f1177959fb770bf78a6529647d27284a73374d.png)
一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。
二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。
2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。
3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。
4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。
三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。
(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。
数值分析拟合实验报告(3篇)
![数值分析拟合实验报告(3篇)](https://img.taocdn.com/s3/m/dcb926929f3143323968011ca300a6c30d22f17d.png)
第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。
二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。
其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。
2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。
其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。
3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。
其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。
三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。
数值分析的实验报告
![数值分析的实验报告](https://img.taocdn.com/s3/m/52818decdc3383c4bb4cf7ec4afe04a1b171b077.png)
数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值分析实验报告
![数值分析实验报告](https://img.taocdn.com/s3/m/e1dd838f162ded630b1c59eef8c75fbfc77d942f.png)
数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
工程数值分析实验报告(3篇)
![工程数值分析实验报告(3篇)](https://img.taocdn.com/s3/m/f9925f41bdd126fff705cc1755270722192e59d1.png)
第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。
通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。
二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。
而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。
2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。
幂法在处理大型稀疏矩阵时表现出较好的性能。
3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。
拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 数值积分
实验目的
1、了解并掌握matlab 软件的基本编程、操作方法;
2、初步了解matlab 中的部分函数,熟悉循环语句的使用;
3、通过上机进一步领悟用复合梯形、复合辛普森公式,以及用龙贝格求积方法计算积分的原理。
实验题目:
1.用不同数值方法计算积分错误!未指定书签。
⎰10x ln xdx=-9
4. (1) 取不同的步长h.分别用复合梯形及辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确值比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善?
(2) 用龙贝格求积计算完成问题(1)。
1.实验原理
(1) 复合梯形公式:Tn=++)()([2b f a f h 2∑-=11
)](n k xk f ; (2) 复合辛普森公式:Sn=6h [f(a)+f(b)+2∑-=11)](n k xk f +4∑-=+10
)2/1(n k x f ]; 以上两种算法都是将a-b 之间分成多个小区间(n ),则h=(b-a)/n,x k =a+kh, x k+1/2=a+(k+1/2)h,利用梯形求积根据两公式便可。
(3) 龙贝格算法:在指定区间内将步长依次二分的过程中运用如下公式
1、Sn=34T2n-3
1Tn 2、 Cn=1516S2n-15
1Sn 3、 Rn=6364C2n-63
1Cn 2.程序设计
(1)、复合梯形法:
function t=natrapz(fname,a,b,n)
h=(b-a)/n;
fa=feval(fname,a);fb=feval(fname,b);f=feval(fname,a+h:h:b-h+0.001*h); t=h*(0.5*(fa+fb)+sum(f));
(2)、复合辛普森法:
function t=natrapz(fname,a,b,n)
h=(b-a)/n;
fa=feval(fname,a);fb=feval(fname,b);f1=feval(fname,a+h:h:b-h+0.001*h); f2=feval(fname,a+h/2:h:b-h+0.001*h);
t=h/6*(fa+fb+2*sum(f1)+4*sum(f2));
(3)龙贝格法:
function [I,step]=Roberg(f,a,b,eps)
if(nargin==3)
eps=1.0e-4;
end;
M=1;
tol=10;
k=0;
T=zeros(1,1);
h=b-a;
T(1,1)=(h/2)*(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b));
while tol>eps
k=k+1;
h=h/2;
Q=0;
for i=1:M
x=a+h*(2*i-1);
Q=Q+subs(sym(f),findsym(sym(f)),x);
end
T(k+1,1)=T(k,1)/2+h*Q;
M=2*M;
for j=1:k
T(k+1,j+1)=T(k+1,j)+(T(k+1,j)-T(k,j))/(4^j-1);
end
tol=abs(T(k+1,j+1)-T(k,j));
end
I=T(k+1,k+1);
step=k;
3.实验结果;
(1)复合梯形法
format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,10),format short;
ans =
-0.41706283177947
format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,100),format short;
ans =
-0.44311790800816
>> format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,1000),format short;
ans =
-0.44438753899716
(2)、复合辛普森法结果:
>> format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,10),format short;
ans =
-0.43529789007469
>> format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,100),format short;
ans =
-0.44416117841567
>> format long;natrapz(inline('sqrt(x).*log(x)'),eps,1,1000),format short;
ans =
-0.44443411761418
(3)龙贝格法结果
[q,s]=Roberg('sqrt(x)*log(x)',0.0000001,1)
q =
-0.4444
s =
9
4.总结由实验结果可知复合辛普森法求积分精度明显比复合梯形法求积的精度要高,且当步长取不同值时即n越大、h越小时,积分精度越高。
实验结果说明不存在一个最小的h,使得精度不能再被改善。