导数大题问解题方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数大题一、二问专练

一、求单调性解题步骤:

(1)求函数()f x 的定义域

(2)求函数的导函数()f x ',并化简;

(3)令()0f x '=,求出所有的根,并检查根是否在定义域内。(注意此处是否引出讨论)............

(讨论:1)讨论的对象,即讨论哪个字母参数

2)讨论的引发,即为何讨论

3)讨论的范围,即讨论中要做到“不重不漏”)

(4)列表:注意定义域的划分、()f x '正负号的确定

(5)根据列表情况作出答案

二、导数难点:

难点一:如何讨论:

(1)判断()0f x '=是否有根(可通过判别式的正负来确定),如果无法确定,引发讨论;

(2) 求完根后,比较()0f x '=两根的大小,如果无法确定,引发讨论。

(3在填表时确定()f x '的正负或解不等式()0f x '>过程中,引发讨论。

难点二、()f x '正负的确定

(1) 当()f x '或()f x '式中未确定部分是一次或二次函数时,画函数图象草图来确定正负号;

(2)()f x '为其他函数时,由()0f x '>的解集来确定()f x '的正负。

(3)若()0f x '=无根或重根,不必列表,直接判断导函数的正负即可。

题型一:讨论()0f x '=是否有根型

(1)若导数是二次函数,需判断判别式∆的正负

(2)若导数是一次函数y kx b =+,需判断k 的正负

1、设函数3

()3(0)f x x ax b a =-+≠.

(Ⅰ)若曲线()y f x =在点(2,(2))f 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点

2.(08文)已知函数32

()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;

(Ⅱ)求函数()f x 的单调区间

(18) (本小题共13分)已知函数x a x x f ln )(2

-=(R a ∈).(练习)

(Ⅰ)若2=a ,求证:)(x f 在(1,)+∞上是增函数;

(2)求()f x 的单调区间;

18.设函数()0)(2>+=a b

x ax x f 。 (1)若函数)(x f 在1-=x 处取得极值2-,求b a ,的值;

(2)求函数()f x 的单调区间

(3)若函数)(x f 在区间()1,1-内单调递增,求b 的取值范围

3(2010东城一摸试卷)已知函数1()ln f x a x x

=-,a ∈R (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;

4.(本小题满分13分)已知函数2()ln f x a x x

=+,a ∈R . (Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线垂直于直线2y x =+,求a 的值; (Ⅱ)求函数()f x 在区间(0, e]上的最小值.

5.(安徽)已知函数2()(2ln ),(0)f x x a x a x

=-+->,求()f x 的单调性.

6.已知函数()(1)e (0)x

a f x x x =->,其中e 为自然对数的底数.

(Ⅰ)当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积; (II )求函数()f x 的单调区间

题型二:比较两根大小讨论型

1、设函数R b a b ax x a x x f ∈+++-=、其中,4)1(3

)(23

(基础) (Ⅰ)若函数)(x f 在3=x 处取得极小值是

2

1,求b a 、的值; (Ⅱ)求函数)(x f 的单调递增区间;

18. (本小题满分13分) 设函数c x b ax x f +-=23

2

)(,其图像过点(0,1).(基础) (1)当方程01)('=+-x x f 的两个根分别为是2

1,1时,求f(x)的解析式; (2)当0,32≠=b a 时,求函数f(x)的极大值与极小值.

2.(天津)已知函数22()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈ (中等)

(1) 当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;

(2) 求函数()f x 的单调区间与极值。

18.(2011北京理) 已知函数k

x

e k x x

f 2)()(-=.(偏难) (1)求)(x f 的单调区间;

(2)若对0(∈∀x ,)∞+,都有e x f 1)(≤

,求k 的取值范围。

18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).a g x a x

+=-

∈ (Ⅰ)若1a =,求函数()f x 的极值;

(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;

综合题(讨论包含一、二两种情况)

18. (本小题共14分)已知函数221()()ln 2

f x ax x x ax x =--+.()a ∈R . (I )当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程(e 2.718...=); (II )求函数()f x 的单调区间

相关文档
最新文档