应用回归分析-实用回归分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何对数据进行修正 果
选择回归函数的形式
回归分析
回归变量的选择
自变量选择的准则 逐步回归分析方法
要 内 容
参数估计方法的改进
岭回归 主成分回归
偏最小二乘法
一元非线性回归
非线性回归
分段回归
多元非线性回归
含有定性变量的回归
S=R2
、原原材材料料消价耗格额(x与3)之产间量的(x关1) 系、单位产量消耗(x2) y = x1 x2 x3
1 .1 变量间的统计关系
y(万元)
6000 5000 4000 3000 2000 1000
0 0
y = 1000x
123456 x(万辆)
图1.1 函数关系图
1 .1 变量间的统计关系
相关关系的例子
子女身高 (y)与父亲身高(x)之间的关系 收入水平(y)与受教育程度(x)之间的关系 粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、温度(x3)之 间的关系 商品的消费量(y)与居民收入(x)之间的关系 商品销售额(y)与广告费支出(x)之间的关系
1 .1 变量间的统计关系
北京市 8、9、10、11、12; 上海市 9、10、11、12、13; 天津市 5、6、7、8、9; 重庆市 7、8、9、10、11
2. 注意的问题
( 1) 数据的可比性: 按可比价格计算,扣除价格变动因素,确切反映实物量的变化.
当(2)年统价一格计(报算告口期径n实.如际1G0价Dp格P()按用国价土格原指则数计换算算)成GN可P比(按价国格民. 原则计算).两者包含内
即区分因变量(被解释变量)和自变量(解释 变量):前者是随机变量,后者不是。
1 .1 变量间的统计关系
• 回归分析构成计量经济学的方法论基础, 其主要内容包括:
– (1)根据样本观察值对经济计量模型的参 数进行估计,求得回归方程;
– (2)对回归方程、参数估计值进行显著性 检验;
– (3)利用回归方程进行分析、评价及预测。
1百度文库.4 建立实际问题回归模型的过程
实际问题
设置指标变量 收集整理数据 构造理论模型 估计模型参数
模型 N
检验
修改
Y
模型运用
经济因素分析 经济变量控制 经济决策预测
1 .4 建立实际问题回归模型的过程
一、设置指标变量
根据研究目的,利用经济学理论,从定性角度来确定经济问题中各因 素之间的因果关系。 指标变量不容易确定: 1. 认识的局限性; 2. 为了模型参数估计的有效性,设置的解释变量应该是不相关的,可是 在经济问题中很难找到. 3. 从经济学角度考虑应该引进非常重要的经济变量,但是在实际中没有 这样的数据,或数据很难拿到,可以考虑用相近的变量代替,或由其他几 个指标符合成一个新的指标. 4. 并不是模型中所涉及的解释变量越多越好 (1) 可能会引进与问题无关的变量; (2) 容易产生共线性—信息重叠 (3) 计算量大,误差累计大,估计模型参数精度不高.
第1章 回归分析概述
1 .1 变量间的统计关系 1 .2 回归方程与回归名称的由来 1 .3 回归分析的主要内容及其一般模型 1 .4 建立实际问题回归模型的过程 1 .5 回归分析应用与发展述评
思考与练习
1 .1 变量间的统计关系
函数关系
商品的销售额与销售量之间的关系 y = px 圆的面积与半径之间的关系
1 .4 建立实际问题回归模型的过程
二. 收集整理统计数据
1.数据类型
时间序列—按时间顺序排列的数据 横截面数据—同一时间截面上的统计数据. 面板数据—是截面数据与时间序列数据综合起来的一种数据类型。例如2000、 2001、2002、2003、2004各年中国所有直辖市的GDP分别为(单位亿元):
y
x 图1. 2 y 与x 非确定性关系图
1 .1 变量间的统计关系
• 对变量间统计依赖关系的考察主要是通过相关 分析(correlation analysis)或回归分析 (regression analysis)来完成的
统计依赖关系
正相关 线性相关 不相关 相关系数:
负相关 1 XY 1
自变量含定性变量的情 因变量是定性变量的情
况 况
1 .3 回归分析的主要内容及其一般模型
回归分析的一般形式
y f (x1, x2 , , xp )
随机误差项主要包括下列因素: (1)在解释变量中被忽略的因素的影 (2)变量观测值的观测误差的影响; (3)理论模型设定误差的影响; (3)其他随机因素的影响。
yˆ 33.73 0.516x
1 .3 回归分析的主要内容及其一般模型
一元线性回归
回 归
线性回归 多元线性回归
多个因变量与多个自变 量的回归
讨论如何从数据推断回 归模型基本假设的合理 性
分 析 的 主
回归诊断
当基本假设不成立时如 判定回归方程拟合的效
正相关 非线性相关 不相关
负相关
有因果关系 回归分析 无因果关系 相关分析
1 .1 变量间的统计关系
• 注意 (1)不线性相关并不意味着不相关。 (2)有相关关系并不意味着一定有因果关系。 (3)相关分析对称地对待任何(两个)变量,
两个变量都被看作是随机变量。 (4)回归分析对变量的处理方法存在不对称性,
1 .2 回归方程与回归名称的由来
1. 回归方程
2. 回归方程的由来
英国著名统计学家F.Galton(1822-1911年)和他的学生、 现代统计学的奠基者之一K.Pearson(1856—1936年)在研究 父母身高与其子女身高的遗传问题时,观察了1 078对夫妇, 他们以成年儿子身高作为纵坐标,夫妇平均身高为横坐标做 散点图,结果发现两者的关系近似于一条直线,经计算得到 如下方程:
应用回归分析
Applied Regression Analysis
教材 何晓群,刘文卿: 《应用回归分析》第二版, 中国人民大学出版社,2007年
统计软件
SPSS 17.0 最新版本
Statistical Package for the Social Science
章节 目录
第1章 回归分析概述 第2章 一元线性回归 第3章 多元线性回归 第4章 违背基本假定的情况 第5章 自变量选择与逐步回归 第6章 多重共线性的情形及其处理 第7章 岭回归 第8章 非线性回归 第9章 含定性变量的回归模型