7应力和应变分析

合集下载

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

第七章应力状态及应变状态分析

第七章应力状态及应变状态分析

第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。

应力又分正应力σ和剪应力τ两种。

前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。

同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。

同一点不同方向的应力也是不同的。

过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。

研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。

如图7-1(a )中过a 点取出的单元体放大如图7-2所示。

单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。

杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。

当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。

该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。

各面均为主平面的单元体,称为主单元体....。

三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。

单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。

第七章应力和应变分析

第七章应力和应变分析
2
tg20
2 xy x
y
mm
ax in
x
y
±
(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力!
明德 砺志 博学 笃行
max在剪应力相对的项限内,
且偏向于x 及y大的一侧。
y
2
主 单元体
x
令:d d
0
1
tg212xxy y
y
xy 1
Ox
mmainx
± (x
y
2
)2 2 xy
014 , 即极值剪应力面与主面 成450
(4)最大切应力
max
1
2
2
22.1MPa
明德 砺志 博学 笃行
§7-4 二向应力状态分析——图解法
y
n
x
2
y
x
2
y
c
os2
xysin2
y
xy
x
x
2
y
s
in2
xyc
os2
Ox
对上述方程消去参数(2),得:
x
y
xy
x
2
y
2
2
x
2
y
2
2 xy
n
明德 砺志 博学 笃行
y n 二、应力圆的画法
明德 砺志 博学 笃行
例 分析受扭构件的破坏规律。
解:确定危险点并画其原
C
yx
始单元体
M
C
xy
x y 0
xy
T WP
xy
求极值应力
y
yx
m m
ax in

材料力学应力与应变分析

材料力学应力与应变分析
主应力和次应力
在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。

材料力学应力理论

材料力学应力理论

例 单向拉伸状态
σx
45º
σx'
τx'y'
B
45º A
σy'
E
τy'x'
D
τα
b
2×45º
d
c
σα
o
a
2×45º
e
σx
¾45º斜面同有正应力、切应力;但正应力不是最大,切应力最大
例 纯剪切状态
D
σy'=τ
y
O
x
τα
a (0,τ )
τ σx'=τ
2×45º
2×45º
E
τ
e
c
b σα
o B
Α
d(0,-τ )
σy τyx
τyx
σy
σx
σz
τxy
σx
σz
τxy
平面应力三维看: σ1≥σ2 ≥σ3
τ
τ
o
σ2
σ
σ1
σ3 o
σ
σ1
σ3
τ
σ
σ2
o
200 300 50
τα
τmax
σ3
σ2
σα
o
σ1
σ3
200 300 50
τα
τα
σ3 σ2
O
σ2
σ1 σα
O
300 50
σα
σ1
例 求图示单元体的主应力和最大剪应力。(MPa)
τ τ
45°
τ
τ
7.5 三向应力状态-应力圆法
设三个主应力已知
σ2
τα
τmax
y
σ3
z
x

材料力学典型例题及解析7.应力应变状态典型习题解析

材料力学典型例题及解析7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、梁截面惯性矩为点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

第七章 应力状态、应变分析和强度理论

第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135

y =60 MPa xy = -50MPa =-30°

材料力学第07章应力状态与应变状态分析

材料力学第07章应力状态与应变状态分析

以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A

7应力和应变分析

7应力和应变分析

应力状态的分类:
①单向应力状态:只有一个主应力不等于零 ②二向应力状态(平面应力状态):两个主应
力不等于零 ③三向应力状态(空间应力状态):三个主应
力皆不等于零 • 单向应力状态也称为简单应力状态 • 二向和三向应力状态统称为复杂应力状态
§7-2 平面应力状态下的应力分析
y sy
t yx t xy s x
20 30 40
0 14.9o s 3
40
3)
t t
m
ax
min
s1
s
2
3
40.3MPa
s1
20 3104.9o
s1
单位:MsPa3
二、图解法
s
sx
s y
2
sx
s y
2
cos 2
t xy sin 2(1)
t
sx
s y
2
sin 2
t xy cos 2 (2)
(1)2 (2)2 , 得 ( x x0 )2 ( y y0 )2 R2
s
t
sx sx
s y
2
s y
2
s
x
s
2
y
cos2
t
xy
sin
2
sin 2 t xy cos2
任意倾角斜截面的应力公式
s和t都是的函数。利用上式便可 确
定正应力和剪应力的极 值。
3、主应力及其方位:
s
t
sx sx
s y
2
s y
2
s
x
s
2
y
cos2
t
xy
sin
2
sin 2 t xy cos2

应力和应变分析和强度

应力和应变分析和强度

泊松比
总结词
泊松比是描述材料横向变形与纵向变形之间关系的物理量。
详细描述
当材料受到外力作用时,会发生形变。泊松比是表示材料在受到外力作用时,横向变形与纵向变形之间的比例关 系。其值通常在-0.5到0.5之间,但不同材料的泊松比可能会有所不同。
屈服强度
总结词
屈服强度是描述材料在受到外力作用时开始发生屈服现象的应力极限。
应力和应变分析和强度
目录
• 应力分析 • 应变分析 • 强度分析 • 材料性能 • 应力和应变的关系 • 工程应用
01
应力分析
定义与概念
01
02
03
应力
物体受到外力作用时,单 位面积上的内力。
应变
物体在外力作用下发生的 形状和尺寸的改变。
应力分析
通过数学模型和实验手段, 研究物体在受力状态下的 应力分布、大小和方向的 过程。
应力分类
正弯曲应力
由于弯曲产生的应力。
扭曲应力
由于扭曲产生的应力。
应力计算方法
解析法
通过数学公式和物理定律,计算应力 的方法。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的应力,再组合得到 整体的应力分布。
实验法
通过实验手段测量物体的应力分布。
应变计算方法
有限元分析法
有限元分析是一种数值计算方法,通过将物体离散化为有限个小的单元,对每个 单元进行受力分析和形变计算,再通过单元的集合来模拟整个物体的形变。这种 方法可以处理复杂的几何形状和边界条件,广泛应用于工程领域。
实验测量法
通过在物体上粘贴应变片或使用激光干涉仪等设备来测量物体的形变,这种方法 可以直接获得物体的应变值,但需要专业的设备和操作技能。

材料力学刘鸿文第六版最新课件第七章 应力和应变分析 强度理论

材料力学刘鸿文第六版最新课件第七章 应力和应变分析 强度理论
不相同,此即应力的点的概念。
5
7-1 应力状态的概述
直杆拉伸斜截面上的应力
k
F
{ F
p cos cos2
k
F
k p
k
p sin cos sin sin 2
2
直杆拉伸应力分析结果表明:即 使同一点不同方向面上的应力也是各
不相同的,此即应力的面的概念。
6
7-1 应力状态的概述
点的应力状态:
虚线:主压应力迹线 实线:主拉应力迹线
思考:在钢筋混泥土梁中,钢筋怎么放置最佳。 30
内容小结:
(1)根据已知点的应力状态求任意截面的应力。 (2)根据已知点的应力状态求主应力、主平面。 (3)结合前五章内容,掌握梁在拉、压、剪、扭、弯 等状态下,求某点的应力,并计算主应力和主平面。
31
第七章 应力和应变分析
58.3MPa 22
7-3 二向应力状态分析-解析法
(2)主应力、主平面
y xy
max
x
y
2
(
x
y
)2
2 xy
2
68.3MPa
x
min
x
y
2
(
x
y
)2
2 xy
2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa
23
7-3 二向应力状态分析-解析法
y
主平面的方位:
2
2sin cos sin2
并注意到 yx xy (切应力互等)
化简得出:
1 2
( x
y)
1 2
(
x
y ) cos 2
xy
sin
2

材料力学第七章知识点总结

材料力学第七章知识点总结
研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x

−σ y
2
sin 2α0
+τ xy
cos

0
⎤ ⎥

=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D

材料力学典型例题及解析 7.应力应变状态典型习题解析

材料力学典型例题及解析 7.应力应变状态典型习题解析

应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。

绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。

b = 60 mm ,h = 100 mm 。

解题分析: 从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。

则各点处的应力状态如图示。

2、 梁截面惯性矩为 点微体上既有正应力又有切应力。

解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z1点处弯曲正应力(压应力)MPa 100Pa 10100m 10500m1050m N 101064833−=×=×××⋅×==−−zI My σ 1点为单向压缩受力状态,所以 021==σσ,MPa 1003−=σ 2点为纯剪切应力状态, MPa 30Pa 1030m10100602N 1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa 303−=σ 3点为一般平面应力状态弯曲正应力MPa 50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−zI My σ 弯曲切应力F S =120 kN题图1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−z z bI S F τ MPa 6.8MPa 6.58Pa)105.22()2Pa 1050(2Pa 1050)2(22626622min max −=×+×±×=+−±+=xy x y x τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-应力和应变分析强度理论(圣才出品)

OA1
= OC + CA1
= x
+ y 2
+
(
x
− y )2 2
+
2 xy
= max = 1
OB1
= OC − CB1
=
x
+ 2
y

(
x
− 2
y
)2
+
2 xy
= min
=2
b.确定主平面方位的方法
如图 7-3(b)(c)所示,将半径 CD 旋转 20 到 CA1 处,单元体 x 轴沿 20 旋转方向
图 7-2 应力圆 (2)应力圆的应用 ①应力圆与单元体应力间的关系 点面之间的对应关系:单元体某一面上的应力,必对应于应力圆上某一点的坐标; 夹角关系:圆周上任意两点所引半径的夹角等于单元体上对应两截面夹角的两倍,且两 者的转向一致。 ②求单元体上任一截面上的应力 从应力圆的半径 CD 按方位角 α 的转向转动 2α 得到半径 CE,圆周上 E 点的坐标就是
任意两个互相垂直的截面上的正应力之和为常数,即 + +90 = x + y 。
③最大切应力和最小切应力 切应力的大小
max min
=
x
− y 2
2
+ 2xy
=
1 2
(max
− min )
切应力极值所在截面方位角
tan
21
=
x − y 2 xy
最大和最小切应力所在平面与主平面的夹角为 45°,即1 = 0 + 45。
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 应力和应变分析强度理论

应力和应变分析和强度理论

应力和应变分析和强度理论

机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。

材料力学第七章应力应变分析

材料力学第七章应力应变分析

x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位

d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等

应力状态与应变状态分析

应力状态与应变状态分析
概念
应变状态分析对应力状态分析起到补充作用,特别是在复杂受力情况下,能够更 准确地描述物体的变形行为。
应变状态的分类
单轴应变
物体在单向受力过程中发 生的应变,只有一个方向 的长度变化。
双轴应变
物体在双向受力过程中发 生的应变,长度变化发生 在两个相互垂直的方向上。
三轴应变
物体在三向受力过程中发 生的应变,长度变化发生 在三个相互垂直的方向上。
塑性变形
在某些高应力状态下,材料可能 会发生塑性变形,影响其机械性 能和稳定性。
断裂韧性
材料的断裂韧性可能会受到其内 部应力的影响,高应力状态可能 降低材料的断裂韧性,导致材料 更容易断裂。
02
应变状态分析
定义与概念
定义
应变状态分析是研究物体在受力过程中内部应变的分布和变化情况,以及应变与 应力之间的关系。
详细描述
在塑性行为下,材料发生屈服,即应力达到某一特定值后,应变开始急剧增加。这种行为通常发生在 材料承受的应力高于其屈曲点时。
脆性行为
总结词
当材料受到外力作用时,它可能会突然断裂,而不会发生显著的形变。
详细描述
在脆性行为下,材料在较低的应力状态下就会断裂,且断裂前几乎没有明显的塑性变形。这种行为常见于某些脆 性材料,如玻璃或陶瓷。
弹性行为
总结词
当材料受到外力作用时,会发生形变, 但当外力去除后,材料能够完全恢复 其原始形状和尺寸。
详细描述
在弹性行为下,材料的应力和应变之 间呈线性关系,即应力与应变成正比。 这种行为通常发生在材料承受的应力 低于其屈服点时。
塑性行为
总结词
当材料受到外力作用时,会发生形变,并且当外力去除后,材料不能完全恢复其原始形状和尺寸。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档