旋风除尘器设计详解

合集下载

旋风除尘器方案

旋风除尘器方案

旋风除尘器方案1. 引言空气中的污染物对人类的健康和环境造成了严重的影响。

除尘器是一种用于过滤空气中颗粒物的设备,旋风除尘器是其中一种常用的除尘器类型。

本文将介绍旋风除尘器的工作原理、优点以及在实际应用中的方案设计。

2. 旋风除尘器工作原理旋风除尘器利用离心力原理将空气中的颗粒物分离出来。

其工作原理如下:1.空气进入旋风除尘器后,经过导流器进入圆柱形的腔体。

2.腔体内的空气开始旋转,并形成一个旋风状的气流。

3.由于旋转过程中,颗粒物具有较大的质量,会由于离心力的作用沉积到腔体的壁面上。

4.净化后的空气从腔体的顶部中心位置被排出。

3. 旋风除尘器的优点与其他类型的除尘器相比,旋风除尘器具有以下几个优点:•简单而紧凑的结构:旋风除尘器结构简单,占地面积小,适合在空间有限的场所安装。

•低能耗:旋风除尘器不需要额外的能源,仅依靠气流旋转就可以完成颗粒物的分离,因此能耗较低。

•适用性强:旋风除尘器可以处理高温、高湿度和高含尘浓度的空气,适用范围广。

4. 旋风除尘器方案设计在设计旋风除尘器方案时,需要考虑以下几个关键因素:4.1. 预处理系统在旋风除尘器之前,可以增加一个预处理系统,用于去除大颗粒的杂质。

这样可以提高旋风除尘器的除尘效率和延长其使用寿命。

4.2. 旋风腔体尺寸旋风腔体的尺寸直接影响到除尘效率和处理能力。

腔体的大小应根据实际需求进行选择,通常应根据空气流量、排放要求和除尘效率等因素进行综合考虑。

4.3. 腔体材料选择旋风腔体材料的选择应考虑其耐磨性和耐腐蚀性。

常见的材料有碳钢、不锈钢和橡胶内衬等,根据工作环境的特点选择合适的材料能够提高旋风除尘器的使用寿命。

4.4. 排放系统设计除尘后的空气需要进行排放处理,排放系统的设计需要考虑到处理量、净化效果和环保要求。

常见的排放系统包括直排和循环排放两种。

5. 结论旋风除尘器是一种简单、高效的除尘设备,能够有效分离空气中的颗粒物。

其简单而紧凑的结构、低能耗和广泛的适用性使其在各个行业得到了广泛应用。

旋风除尘器cad结构图纸设计及技术参数

旋风除尘器cad结构图纸设计及技术参数

七、旋风除尘器的效率检验
• 已知处理烟气温度T=180℃,查表或用公式可得常 压下烟气密度ρg=0.8kg/m3,动力黏度μ=2.5×10-5 Pa·s。
由几何尺寸,可得自然返回长
L 2 . 3 D 0 ( D e 2 / H i ) 1 / 3 2 W . 3 0 . 8 ( 0 . 4 4 2 / 0 . 4 2 0 . 1 2 ) 1 / 3 8 2 m
明细表
总质量
311kg
切流式旋风除尘器
图号
外形图
比例 日期
设计 制图 校对 审核
LX-0
1:10 2006年1月
十、零件图的画法
A.蜗壳的画法
1)蜗壳出口断面尺寸确定 出口风速:v=12~15m/s abv=Q,取a=b; a=(Q/v)1/2=〔5000/(15×3600)〕 1/2 =
0.304~0.340 取a=b=320mm 2)确定偏心距 考虑焊接方便,蜗壳出口内壁距旋风出气管20mm, 于是中心线到出口蜗壳出口内壁距半径:r=230mm, 中心线距蜗壳外壁半径:R=210+20+320=550mm。 偏心距:e=320/4=8mm
1020 320
80 480
1030
550
蜗壳
设计 制图 校对 审核
图号
LX-06
比例
1:2
日期
2006年1月
A.法兰的画法
1)法兰材料的确定
采用角钢,查手册:选不等边角钢40×25×4 还可选等边角钢:36×4 2)螺栓孔距确定 需满足JB/ZQ4248-86。如螺栓直径为8mm,孔距大于28mm。对于旋风除尘
实际风速为:Vc=Q/(3600×0.42×0.18)= 19.5m/s 4. 由尺寸比确定筒体直径和高:

旋风除尘设计方案

旋风除尘设计方案

旋风除尘设计方案1. 简介在工业生产过程中,颗粒物的排放是环境污染的主要来源之一。

为了净化工业排放物中的颗粒物,旋风除尘器被广泛应用于各个领域。

本文将介绍旋风除尘器的设计原理、工作方式以及相关设计方案。

2. 设计原理旋风除尘器是一种利用离心力原理去除颗粒物的设备。

其基本原理是将含有颗粒物的气体通过旋风除尘器的进气口进入,由于旋风除尘器内部的构造特点和设计原理,颗粒物受到离心力作用会沿着旋风除尘器内壁向下运动,最终通过集尘斗排出,而净化后的气体则从出口排放。

3. 设计方案3.1. 旋风除尘器的结构设计旋风除尘器主要包括进气管道、旋风体、集尘斗和出气口。

进气管道用于引导含有颗粒物的气体进入旋风除尘器,旋风体是除尘器的核心构件,用于产生旋转气流以实现颗粒物的分离,集尘斗用于收集颗粒物,而出气口则用于排放净化后的气体。

3.2. 旋风体的设计旋风体是旋风除尘器中最关键的组件之一。

其设计应考虑以下几个因素:•直径:旋风体的直径决定了旋风除尘器的处理能力。

较大的直径可以处理更大量的气体,但也需要更大的空间。

•高度:旋风体的高度影响颗粒物的分离效果。

较高的旋风体可以提高颗粒物的分离效率。

•锥角:旋风体的锥角决定了颗粒物的分离效果。

较小的锥角可以提高分离效率,但同时增加阻力。

•入口形状:入口形状的设计应考虑颗粒物的流动性,以确保颗粒物能够顺利进入旋风体。

3.3. 集尘斗的设计集尘斗是用于收集被除尘的颗粒物,其设计应考虑以下几个因素:•斗形:集尘斗的斗形应尽可能兼顾容积和流动性,以确保颗粒物能够顺利流动到出料口。

•出料口:集尘斗的出料口设计应考虑颗粒物的排出方式,可以选择手动清理或自动排出。

•材料选择:集尘斗的材料应选用耐磨损和耐腐蚀的材料,以提高设备的使用寿命。

4. 工作方式旋风除尘器的工作方式可以分为以下几个步骤:1.气体进入旋风除尘器的进气口,并通过进气管道进入旋风体。

2.在旋风体内,气体产生旋转气流,颗粒物受到离心力作用沿着旋风除尘器内壁向下运动。

旋风除尘器设计(五篇范例)

旋风除尘器设计(五篇范例)

旋风除尘器设计(五篇范例)第一篇:旋风除尘器设计中南大学本科生课程设计(实践)任务书、设计报告题目学生姓名指导教师学院专业班级学生学号除尘器设计计算苏小根马爱纯能源科学与工程学院热能与动力工程090210030904192012年月21日1.除尘器1.1 除尘器简介除尘器是把粉尘从烟气中分离出来的设备叫除尘器或除尘设备。

除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。

日常工业上使用的除尘器主要有:重力除尘器、惯性除尘器、电除尘器、湿除尘器、袋式除尘器、旋风除尘器等。

重力除尘器是使含尘气体中的粉尘借助重力作用自然沉降来达到净化气体的装置,它的特点是结构简单,阻力小,但体积大,除尘效率低,设备维修周期长。

惯性除尘器是一种利用粉尘在运动中惯性力大于气体惯性力的作用,将粉尘从气体中分离出来的除尘设备,特点是结构简单,阻力较小,但除尘效率低。

电除尘器利用含尘气体在通过高压电场电离时,尘粒荷电并受电场力的作用,沉积于电极上,从而使尘粒和气体分离的一种除尘设备,其特点是效率高、阻力低、适用于高温和除去细微粉尘等优点。

湿式除尘器是使含尘气体与水或者其他液体相接触,利用水滴和尘粒的惯性膨胀及其他作用而把尘粒从气流中分离出来,特点是投资低、造作简单,占地面积小,能同时进行有害气体的净化、含尘气体的冷却和加湿等优点。

袋式除尘器主要依靠编织的或毡织的滤布作为过滤材料达到分离含尘气体中粉尘的目的,特点是适应性比较强,不受粉尘比电阻的影响,也不存在水的污染问题,同时存在过滤速度低、压降大、占地面积大、换袋麻烦等缺点。

1.2除尘器的概念和分类除尘器是把粉尘从烟气中分离出来的设备叫做除尘器或除尘设备。

除尘器的性能用可处理的气体量、气体通过除尘器时的阻力损失和除尘效率来表达。

同时,除尘器的价格、运行和维护费用、使用寿命长短和操作管理的难易也是考虑其性能的重要因素。

除尘器是锅炉及工业生产中常用的设施。

在国家采暖通风与空气调节术语标准中,明确了若干除尘器的具体含义,摘抄部分如下:除尘器:用于捕集、分离悬浮于空气或气体中粉尘例子粒子的设备,也称收尘器。

旋风除尘设计方案

旋风除尘设计方案

旋风除尘设计方案旋风除尘设计方案旋风除尘器是一种常见的工业除尘设备,广泛应用于建筑材料、化工、冶金、电力等行业。

下面是一个旋风除尘器的设计方案:一、工作原理旋风除尘器利用离心力将粉尘分离出来。

工作时,含有粉尘的气体进入旋风除尘器,通过旋风除尘器内部的旋风叶片的作用,气体呈螺旋状流动,形成离心力。

由于粉尘颗粒的质量较重,它们受到离心力的影响,被分离出来并沉降到底部的灰斗中。

经过除尘处理的气体从旋风除尘器的顶部排出。

二、设计参数1. 气体流量:根据实际生产过程中产生的气体流量进行确定。

2. 气体温度:旋风除尘器的材料和结构应能够适应气体的高温和低温。

3. 气体含尘浓度:根据实际生产过程中气体中粉尘的含量进行确定。

4. 除尘效率要求:根据国家相关标准和行业要求确定。

三、设计方案1. 材料选择:旋风除尘器的主要构件应选用耐腐蚀、耐磨损的材料,如不锈钢、玻璃钢等。

2. 结构设计:旋风除尘器的结构应合理,方便维护和清洁。

3. 出灰装置设计:设计一个有效的出灰装置,确保粉尘可以及时排出。

4. 工艺流程设计:根据实际生产过程中对除尘设备的要求,确定旋风除尘器的位置、排气管道等。

四、设备运行维护1. 启动前检查旋风除尘器的各个部件是否完好,如有损坏及时更换。

2. 定期清理除尘器内部的粉尘,避免积灰影响除尘效果。

3. 定期检查旋风除尘器的运行情况,如有异常及时处理。

4. 注意旋风除尘器的安全问题,防止因设备故障引发火灾等事故。

通过合理设计和有效运行维护,旋风除尘器可以有效地将生产过程中产生的粉尘除去,提高了生产环境的清洁度,保护了工作人员的身体健康。

旋风除尘器设计详解

旋风除尘器设计详解

高效旋风除尘器设计摘要00论文主要介绍了旋风除尘器各部分结构尺寸的确定以及旋风除尘器性能的计算。

以普通旋风除尘器设计为基础,结合现代此类相关课题的研究方法,设计出符合一定压力损失和除尘效率要求的除尘器,在CAD/CAM软件辅助设计的基础上,绘制旋风除尘器装配图、零件图、以及除尘系统原理图。

本文分以下几部分对以上内容进行了讨论:首先,通过查阅资料计算出旋风除尘器各部分尺寸;其次,绘制出旋风除尘器装配图及旋风除尘器各零部件图;最后,整理资料,选取与论文相关的英文文献进行翻译完成设计说明书。

关键词:旋风除尘器压力损失除尘效率目录1.引言 (1)2.旋风除尘器的除尘机理及性能 (2)2.1旋风除尘器的基本工作原理 (2)2.1.1旋风除尘器的结构 (2)2.1.2旋风除尘器内的流场 (2)2.1.3旋风除尘器内的压力分布 (5)2.2 旋风除尘器的性能及其影响因素 (5)2.2.1旋风除尘器的技术性能 (5)2.2.2 影响旋风除尘器性能的主要因素 (6)2.2.3 旋风除尘器选型原则 (10)3.旋风除尘器的设计 (12)3.1旋风除尘器各部分尺寸的确定 (12)3.1.1形式的选择 (12)3.1.2 确定进口风速 (12)3.1.3 确定旋风除尘器的尺寸 (12)3.2旋风除尘器强度的校核 (14)3.2.1筒体和锥体壁厚s和气压试验强度校核 (14)3.2.2排气管尺寸的确定 (15)3.2.3.支座的选择计算 (17)3.2.4支腿的设计计算及校核 (19)3.3旋风除尘器压力损失及除尘效率 (20)3.3.1计算压力损失 (20)3.3.2除尘效率的计算 (21)3.4风机的选择 (22)3.5排尘阀的选择 (22)3.6连接方式的选择 (22)结论 (24)致谢 (25)参考文献 (26)外文资料 (27)1.引言旋风除尘器设计是我通过学习全部基础课、专业课和以往的课程设计的基础上进行的一次综合性的设计。

旋风除尘器的设计

旋风除尘器的设计

旋风除尘器的设计二.说明书2.1图形设计:旋风除尘器图(图1)2.2设计数据:2.3旋风除尘器的参数计算许多学者都致力于旋风除尘器的研究,通过各种假设,他们提出了许多不同的计算方法。

由于旋风除尘器内实际的气、尘两相流动非常复杂,因此根据某些假设条件得出的理论公式目前还不能进行较精确的计算。

1.分割粒径(dc50)计算旋风除尘器的分割粒径(dc50)是确定除尘器效率的基础。

在计算时,因假设条件和选用系数不同,计算分割粒径的公式也各不同。

下面简要介绍一种计算方法,以说明旋风除尘器的除尘原理。

处于外涡旋的尘粒在径向会受到两个力的作用:惯性离心力(2-3-1)式中 vt——尘粒的切线速度,可以近似认为等于该点气流的切线速度,m/s;r——旋转半径,m。

向心运动的气流给予尘粒的作用力(2-3-2)式中 w——气流与尘粒在径向的相对运动速度,m/s。

这两个力方向相反,因此作用在尘粒上的合力(2-3-3)由于粒径分布是连续的,必定存在某个临界粒径dk作用在该尘粒上的合力之和恰好为零,即F=Fl-P=0。

这就是说,惯性离心力的向外推移作用与径向气流造成的向内飘移作用恰好相等。

对于粒径dc >dk的尘粒,因Fl>P,尘粒会在惯性离心力推动下移向外壁。

对于dc <dk的尘粒,因Fl<P,尘粒会在向心气流推动下进入内涡旋。

如果假想在旋风除尘器内有一张孔径为dk 的筛网在起筛分作用,粒径dc>dk的被截留在筛网一面,d c <dk的则通过筛网排出。

那么筛网置于什么位置呢?在内、外涡旋交界面上切向速度最大,尘粒在该处所受到的惯性离心力也最大,因此可以设想筛网的位置应位于内、外涡旋交界面上。

对于粒径为dk 的尘粒,因Fl=P,它将在交界面不停地旋转。

实际上由于气流紊流等因素的影响,从概率统计的观点看,处于这种状态的尘粒有50%的可能被捕集,有50%的可能进入内涡旋,这种尘粒的分离效率为50%。

因此d k =dc50。

根据公式(5-4-7),在内外涡旋交界面上,当Fl=P时,旋风除尘器的分割粒径:(2-3-4)式中 r——交界面的半径,m;w——交界面上的气流径向速度,m/s;v0t——交界面上的气流切向速度,m/s。

旋风除尘器cad结构图纸设计和技术参数

旋风除尘器cad结构图纸设计和技术参数
有一台锅炉旳粒度分布见表,其他条件同第三 组,设计旋风除尘器。
n 第七组:
原始数据同实例,要求总效率>95%,设计两台串 联旋风除尘器。
Q235-A
1
Q235-A
1
Q235-A
1
Q235-A
1
Q235-A
1 Q235-A,成品
数量
材料
55 15 73
82 12 65
重量kg 附注
明细表
总质量
311kg
切流式旋风除尘器 外形图
设计 制图 校对 审核
图号
百分比 日期
LX-0
1:10
2023年1月
十、零件图旳画法
A.蜗壳旳画法
1)蜗壳出口断面尺寸拟定 出口风速:v=12~15m/s abv=Q,取a=b; a=(Q/v)1/2=〔5000/(15×3600)〕 1/2 =
2. 筛分理论 分级效率 粉尘分割径
1 exp[0.693 d p ]
dc
dc 18Q / 2 p LVc2
自然返回长
L 2.3D0 ( De2 / HWi )1/ 3
三、旋风除尘器旳阻力
经验公式
p k gVc2
2
阻力系数 k =6~9。
四、旋风除尘器旳尺寸比
1. 筒体直径: D0=150~1100mm 2. 筒体高度:H 1 = 1~1.5D0 3. 入口尺寸:H/W=2~4, H=0.5 D0,W=0.2D0 4. 排气管:De=0.4~0.6D0 ;S≥H 5. 锥体: H 2 ≥ L- H 1 ≈2D0 6. 排尘口: Dd ≈ 1/3D0
0.304~0.340 取a=b=320mm 2)拟定偏心距 考虑焊接以便,蜗壳出口内壁距旋风出气管20mm, 于是中心线到出口蜗壳出口内壁距半径:r=230mm, 中心线距蜗壳外壁半径:R=210+20+320=550mm。 偏心距:e=320/4=8mm

旋风除尘器cad结构图纸设计及技术参数

旋风除尘器cad结构图纸设计及技术参数

旋风除尘器cad结构图纸设计及技术参数旋风除尘器 CAD 结构图纸设计及技术参数一、旋风除尘器的工作原理旋风除尘器是利用旋转气流所产生的离心力将粉尘从气流中分离出来。

含尘气体由进气管进入旋风除尘器的圆筒部分,形成旋转气流。

气流中的粉尘在离心力的作用下被甩向器壁,并沿壁面下滑落入灰斗。

净化后的气体则由排气管排出。

二、CAD 结构图纸设计1、筒体设计旋风除尘器的筒体是其主要组成部分。

在 CAD 设计中,需要根据处理气量、粉尘特性等因素确定筒体的直径和高度。

一般来说,筒体直径越大,处理能力越强,但过大的直径会导致气流速度降低,影响分离效果。

2、进气管设计进气管的形状和尺寸对旋风除尘器的性能有重要影响。

常见的进气管有切向进气管和轴向进气管。

切向进气管能够使气流产生较强的旋转运动,但阻力较大;轴向进气管阻力较小,但旋转效果相对较弱。

在设计时,需要综合考虑两者的优缺点,选择合适的进气管类型和尺寸。

3、排气管设计排气管位于旋风除尘器的顶部,其直径和插入深度会影响净化后气体的排出和粉尘的二次夹带。

排气管直径过小会导致阻力增加,过大则会降低分离效率。

排气管插入深度过浅容易引起粉尘的二次夹带,过深则会增加阻力。

4、灰斗设计灰斗用于收集分离下来的粉尘,其形状和尺寸应保证粉尘能够顺利排出,避免堆积。

同时,为了防止粉尘在灰斗内搭桥,灰斗的壁面应具有一定的倾斜角度。

在进行 CAD 结构图纸设计时,需要考虑各部分之间的连接方式和密封性能,确保旋风除尘器的整体结构稳固、气密。

三、技术参数1、处理气量处理气量是旋风除尘器设计的重要参数之一。

它决定了设备的尺寸和性能。

处理气量通常根据生产工艺中的粉尘产生量和排放要求来确定。

2、分离效率分离效率是衡量旋风除尘器性能的关键指标。

它表示被分离出来的粉尘质量与进入除尘器的粉尘质量之比。

分离效率受到多种因素的影响,如筒体直径、进气管形状、气流速度等。

3、压力损失压力损失是指气体通过旋风除尘器时所产生的压力降。

旋风除尘器设计

旋风除尘器设计

设计原始资料:锅炉型号:DLP2-13 即,单锅筒纵置式抛煤机炉,蒸发量2t/h ,出口蒸汽压力13MPa 设计耗煤量:360kg/h(按学号增加5)设计煤成分:C Y =60.5% H Y =3% O Y =4% N Y =1% S Y =1.5% A Y =18% W Y =12%; V Y =15%;属于中硫烟煤 排烟温度:165℃空气过剩系数=1.4 飞灰率=21%烟气在锅炉出口前阻力650Pa污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。

连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m ,90°弯头10个。

1. 燃烧计算1.1 实际耗空气量的计算在标准状况下,以1Kg 应用煤为基准进行计算,结果见表1-1。

1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积o V 为:o V =(50.4+7.5+0.47-1.25)×22.4=1279.448 L (1-1) 假设空气中氮氧的摩尔数之比为N/O=3.78,则1Kg 低硫煤完全燃烧时所需要的空气体积k V 为:k V =(1+3.78)×1279.448=6115.953L (1-2)实际消耗的空气体积'k V 为:'k V =1.4k V =1.4×6115.953=8562.333L (1-3)表1-1 1Kg 应用煤的相关计算成分质量)(g摩尔数)(mol燃烧耗氧量)(mol生成气体量)(mol生成气体体积)(LC 605 50.4 50.4 50.4 1128.96 H 30 15 7.5 15 336 O 40 1.25 —— —— 28 N 10 0.36 —— 0.36 7.84 S 15 0.47 0.47 0.47 10.528 水分 120 6.67 —— —— 149.408 灰分180————————1.2 产生烟气量的计算1Kg 该煤完全燃烧后生成的烟气量y V =149.408+10.528+7.84+336+1128.96+8562.333=10195.069L=10.1953m (1-4) 则,在160℃时的实际烟气体积为'y V 为:'y V =15.273195.10×(160+273.15)=16.17 3m (1-5)该锅炉一小时产生的烟气流量Q 为:Q =16.17×360=5821.2 3m /h=1.6173m /s (1-6)1.3 灰分浓度及二氧化硫浓度的计算烟气中灰分的质量h M 为:h M =180×21%=37.8g=37800mg (1-7)烟气中灰分的浓度h ρ为:h ρ=37800/16.17=2337.662mg/3m (1-8) 烟气中2SO 质量S M 为:S M =0.47×64=30.08g=30080mg (1-9) 烟气中2SO 的浓度s ρ为:s ρ=30080/16.17=1860.235mg/3m (1-10)2. 净化方案设计及运行参数选择本设计中采用旋风除尘设备进行净化处理。

大气污染控制工程课程设计旋风除尘器设计

大气污染控制工程课程设计旋风除尘器设计

大气污染控制工程课程设计旋风除尘器设计大气污染是当前一个十分重要的环境问题,大气污染控制工程是需要针对当前的环境情况设计出相应的污染控制方案。

旋风除尘器是一种非常有效的粉尘污染控制设备,它可以将排放的灰尘颗粒快速和有效地与气流分离,从而达到减少环境污染的目的。

在本文中,我们将对旋风除尘器进行设计与优化。

一、旋风除尘器的基本原理旋风除尘器利用离心力,将灰尘颗粒随着气流旋转,并加速向离心力最大的气流区域靠拢,在这里相互碰撞慢慢沉淀下去。

在整个气体流程之中,粉尘颗粒可以原有形态沿着流体中心线旋转,也可以因流速梯度引起涡旋流,因此。

旋风除尘器最主要的部件为旋风筒或次级同心圆筒,其内和外计有气口分别用于进气和排气,气流通过时呈高速旋转,灰尘受力振动运动,最后对其中粉尘两性颗粒受气流升力作用,随着气流排放于排气口中,达到高效过滤的目的。

二、旋风除尘器的设计方案1、确定处理量在进行设计之前首先要确定处理的尘量,从而确定处理设备的大小。

在设计旋风除尘器时,需要根据企业的生产情况和污染源的性质来选择合适的旋风除尘器。

2、选择材料旋风除尘器在设计过程中需要选择适当的材料,如果环境比较恶劣,建议使用不锈钢制造,这样可以保证设备的耐腐蚀性和耐高温性。

3、设置进出口的位置和口径进口和出口的设置对旋风除尘器的效果有很大影响,一般来说气流的进口需要在旋风除尘器的中心位置,而出口则应该在离中心位置较远处。

此外,设备进出口的直径大小也要考虑到气流先后进出的量。

4、分析气流的流速和密度在进行旋风除尘器设计时,需要分析气流的流速和密度,以便更加有效地设计旋风面积和高度。

同时根据工作条件的需求,要确定处理空气的流速和密度,从而可以得到选定旋风除尘器的尺寸。

5、计算旋风除尘器的头压损失在参照相关标准和拟定的工艺生产条件计算得到旋风过滤器的处理能力与头压损失时,应该将规定的系数对最终结果进行逐步加减,进行检查误差,以达到正确结果。

三、优化旋风除尘器的设计1、增加旋风筒的高度增加旋风除尘器的高度可以增加气流轨迹长度,可以更长时间的让灰尘颗粒与空气相互碰撞,从而提高过滤除尘效率。

旋风除尘器设计

旋风除尘器设计

旋风除尘器设计计算说明书1、旋风除尘器简介旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的,用来分离粒径大于5—10μm以上的的颗粒物。

工业上已有100多年的历史。

特点:结构简单、占地面积小,投资低,操作维修方便,压力损失中等,动力消耗不大,可用于各种材料制造,能用于高温、高压及腐蚀性气体,并可回收干颗粒物。

优点:效率80%左右,捕集<5μm颗粒的效率不高,一般作预除尘用。

旋风除尘器的结构形式按进气方式可分为直入式、蜗壳式和轴向进入式;按气流组织分类有回流式、直流式、平流式和旋流式多种1.1 工作原理(1)气流的运动普通旋风除尘器是由进气管、筒体、锥体和排气管等组成;气流沿外壁由上向下旋转运动:外涡旋;少量气体沿径向运动到中心区域;旋转气流在锥体底部转而向上沿轴心旋转:内涡旋;气流运动包括切向、轴向和径向:切向速度、轴向速度和径向速度。

图1(2)尘粒的运动:切向速度决定气流质点离心力大小,颗粒在离心力作用下逐渐移向外壁;到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗;上涡旋-气流从除尘器顶部向下高速旋转时,一部分气流带着细小的尘粒沿筒壁旋转向上,到达顶部后,再沿排出管外壁旋转向下,最后从排出管排出。

1.2 影响旋风器性能的因素(2)二次效应-被捕集粒子的重新进入气流在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,粒子被反弹回气流或沉积的尘粒被重新吹起,实际效率低于理论效率;通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效地控制二次效应;临界入口速度。

(2)比例尺寸在相同的切向速度下,筒体直径愈小,离心力愈大,除尘效率愈高;筒体直径过小,粒子容易逃逸,效率下降;锥体适当加长,对提高除尘效率有利;排出管直径愈少分割直径愈小,即除尘效率愈高;直径太小,压力降增加,一般取排出管直径d e=(0.6~0.8)D;特征长度(natural length)-亚历山大公式:排气管的下部至气流下降的最低点的距离旋风除尘器排出管以下部分的长度应当接近或等于l,筒体和锥体的总高度以不大于5倍的筒体直径为宜。

旋风除尘器设计

旋风除尘器设计

设计原始资料:锅炉型号:DLP2-13 即,单锅筒纵置式抛煤机炉,蒸发量2t/h ,出口蒸汽压力13MPa 设计耗煤量:360kg/h(按学号增加5)设计煤成分:C Y =60.5% H Y =3% O Y =4% N Y =1% S Y =1.5% A Y =18% W Y =12%; V Y =15%;属于中硫烟煤 排烟温度:165℃空气过剩系数=1.4 飞灰率=21%烟气在锅炉出口前阻力650Pa污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。

连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m ,90°弯头10个。

1. 燃烧计算1.1 实际耗空气量的计算在标准状况下,以1Kg 应用煤为基准进行计算,结果见表1-1。

1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积o V 为:o V =(50.4+7.5+0.47-1.25)×22.4=1279.448 L (1-1) 假设空气中氮氧的摩尔数之比为N/O=3.78,则1Kg 低硫煤完全燃烧时所需要的空气体积k V 为:k V =(1+3.78)×1279.448=6115.953L (1-2)实际消耗的空气体积'k V 为:'k V =1.4k V =1.4×6115.953=8562.333L (1-3)表1-1 1Kg 应用煤的相关计算成分质量)(g摩尔数)(mol燃烧耗氧量)(mol生成气体量)(mol生成气体体积)(LC 605 50.4 50.4 50.4 1128.96 H 30 15 7.5 15 336 O 40 1.25 —— —— 28 N 10 0.36 —— 0.36 7.84 S 15 0.47 0.47 0.47 10.528 水分 120 6.67 —— —— 149.408 灰分180————————1.2 产生烟气量的计算1Kg 该煤完全燃烧后生成的烟气量y V =149.408+10.528+7.84+336+1128.96+8562.333=10195.069L=10.1953m (1-4) 则,在160℃时的实际烟气体积为'y V 为:'y V =15.273195.10×(160+273.15)=16.17 3m (1-5)该锅炉一小时产生的烟气流量Q 为:Q =16.17×360=5821.2 3m /h=1.6173m /s (1-6)1.3 灰分浓度及二氧化硫浓度的计算烟气中灰分的质量h M 为:h M =180×21%=37.8g=37800mg (1-7)烟气中灰分的浓度h ρ为:h ρ=37800/16.17=2337.662mg/3m (1-8) 烟气中2SO 质量S M 为:S M =0.47×64=30.08g=30080mg (1-9) 烟气中2SO 的浓度s ρ为:s ρ=30080/16.17=1860.235mg/3m (1-10)2. 净化方案设计及运行参数选择本设计中采用旋风除尘设备进行净化处理。

旋风除尘器设计说明

旋风除尘器设计说明

旋风除尘器设计说明设计说明:旋风除尘器概述:设计原理:旋风除尘器的基本原理是利用气流的离心力,将颗粒物与气体进行分离。

工作过程中,气体通过进气口进入旋风除尘器,然后在内筒内形成旋转气流。

由于气流的高速旋转,颗粒物受到离心力的作用,向外沉降。

最后,颗粒物通过斜板引流器落入底部的集尘器中,而干净的气体则从出口排放。

设计要点:1.设计合理的气流结构:气流的旋转速度、流动方向和气流的分布是影响旋风除尘效果的关键。

需要合理设计内筒和引导板的结构,以实现稳定的旋转气流,从而提高除尘效率。

2.合适的尺寸和比例:旋风除尘器的尺寸和比例对其除尘效果有重要影响。

需要根据处理气体的流量、颗粒物的大小和密度等参数来确定合适的尺寸和比例,以保证除尘器的工作效率和性能。

3.高效的颗粒物分离装置:除了气流结构的设计,颗粒物的分离装置也是关键因素。

一般采用斜板引流器作为颗粒物的收集装置,其设计要注意斜角和间距的选择,以最大限度地收集颗粒物并避免重新悬浮。

4.适当的清灰装置:旋风除尘器在工作过程中会积累大量的颗粒物,需要设计合适的清灰装置来清除积灰。

常见的清灰方式有机械清灰和脉冲清灰两种,可以根据具体情况选择合适的方式。

5.高效的能量利用:旋风除尘器工作过程中存在能量损失,需要设计合适的能量回收装置来提高能量利用效率。

常见的回收装置有热交换器、旋风预分离器等,可以根据实际情况选择合适的装置。

6.安全可靠的设计:旋风除尘器在使用过程中需要满足安全可靠的要求,包括防爆、防火等方面的设计。

同时,还应考虑设备的运输和维护等因素,设计便于操作和维护的结构。

结论:旋风除尘器是一种高效的固体颗粒物除尘设备,通过合理设计气流结构、尺寸和比例、颗粒物分离装置、清灰装置和能量回收装置等,可以达到高效除尘和能量利用的效果。

在设计过程中需要综合考虑各种因素,以满足不同行业的需求。

旋风除尘器的设计

旋风除尘器的设计

旋风除尘器的设计首先,旋风除尘器的结构应该合理。

它主要由入口管、旋转室、出口管以及废气管组成。

入口管用于引导带有粉尘的废气进入旋转室,而出口管则用于将净化后的废气排出,废气管则用于排放含有粉尘的排放气体。

这些组成部分应该紧密结合,以确保废气能够顺利进入和流出除尘器,并且粉尘能够得到有效分离。

其次,在旋风除尘器的设计中,需要考虑到废气的流速和流量。

废气的流速应该适中,过高的流速会导致粉尘无法有效分离,而过低的流速则会影响除尘效果。

此外,还需要根据生产过程中产生的废气量确定除尘器的流量,以确保除尘器能够满足实际需求。

其次,旋风除尘器的旋转室设计也非常重要。

旋转室的形状应该经过合理的计算和优化,以确保废气能够顺利旋转,形成旋风,从而使粉尘被分离出来。

此外,旋转室的大小也需要根据废气流量来确定,以确保它能够容纳足够的废气量,防止堵塞和阻力增加。

另外,旋风除尘器还需要考虑到粉尘的回收和处理问题。

粉尘的回收主要是通过重力效应来实现的,因此需要在除尘器的底部设置一个粉尘收集装置。

收集装置应该容易清理和维护,以确保粉尘的有效回收。

此外,对于不同性质的粉尘,可以考虑采用不同的粉尘处理设备,如过滤器、洗涤器等,以进一步提高除尘效果。

最后,旋风除尘器的材料选择也非常重要。

废气中可能含有酸碱物质或高温物质,因此除尘器必须选择能够耐腐蚀和高温的材料。

常见的材料有不锈钢、耐酸碱玻璃钢等。

此外,还需要考虑材料的重量和成本,以确保旋风除尘器的稳定性和经济性。

总之,旋风除尘器的设计需要考虑结构合理性、废气流速和流量、旋转室设计、粉尘回收和处理以及材料选择等因素。

只有全面考虑和优化这些问题,才能设计出性能稳定、效果显著的旋风除尘器。

回转窑石膏粉尘旋风除尘器工艺设计解读

回转窑石膏粉尘旋风除尘器工艺设计解读

回转窑石膏粉尘旋风除尘器工艺设计解读
回转窑石膏粉尘旋风除尘器工艺设计主要是通过旋风除尘器的原理来去除石膏生产过程中产生的粉尘,确保生产环境的清洁和工作人员的健康。

具体的工艺设计可以从以下几个方面进行解读:
1. 旋风除尘器的选型:根据生产规模和粉尘产量确定旋风除尘器的尺寸和型号。

需要考虑的因素包括石膏粉尘的颗粒大小、含尘浓度、空气流速等。

2. 除尘器的布置:根据场地条件和生产工艺要求,确定除尘器的布置位置,一般应选择在石膏生产设备附近,以便能够及时收集粉尘。

3. 管道设计:设计合理的管道系统可以实现粉尘的有效输送和收集。

需要考虑的因素包括管道长度、直径、弯头和局部阻力的影响等。

4. 气力输送系统:旋风除尘器利用气力输送原理将粉尘从生产设备中送入除尘器。

气力输送系统的设计要考虑气流速度、压力损失和管道阻力等因素。

5. 除尘效果监测:设计合适的除尘效果监测系统,对除尘器的工作情况进行实时监测和控制。

可以采用空气质量监测仪器或粉尘浓度计等设备。

6. 清灰系统设计:除尘器工作一段时间后,需要对积灰进行清理。

设计合理的清灰系统可以实现自动或手动清灰,保证除尘器的正常运行。

综上所述,回转窑石膏粉尘旋风除尘器工艺设计需要考虑除尘器的选型、布置、管道设计、气力输送系统、除尘效果监测和清灰系统设计等方面,从而实现高效的粉尘去除效果,保证生产环境的清洁和工人的健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效旋风除尘器设计摘要00论文主要介绍了旋风除尘器各部分结构尺寸的确定以及旋风除尘器性能的计算。

以普通旋风除尘器设计为基础,结合现代此类相关课题的研究方法,设计出符合一定压力损失和除尘效率要求的除尘器,在CAD/CAM软件辅助设计的基础上,绘制旋风除尘器装配图、零件图、以及除尘系统原理图。

本文分以下几部分对以上内容进行了讨论:首先,通过查阅资料计算出旋风除尘器各部分尺寸;其次,绘制出旋风除尘器装配图及旋风除尘器各零部件图;最后,整理资料,选取与论文相关的英文文献进行翻译完成设计说明书。

关键词:旋风除尘器压力损失除尘效率目录1.引言 (1)2.旋风除尘器的除尘机理及性能 (2)2.1旋风除尘器的基本工作原理 (2)2.1.1旋风除尘器的结构 (2)2.1.2旋风除尘器内的流场 (2)2.1.3旋风除尘器内的压力分布 (5)2.2 旋风除尘器的性能及其影响因素 (5)2.2.1旋风除尘器的技术性能 (5)2.2.2 影响旋风除尘器性能的主要因素 (6)2.2.3 旋风除尘器选型原则 (10)3.旋风除尘器的设计 (12)3.1旋风除尘器各部分尺寸的确定 (12)3.1.1形式的选择 (12)3.1.2 确定进口风速 (12)3.1.3 确定旋风除尘器的尺寸 (12)3.2旋风除尘器强度的校核 (14)3.2.1筒体和锥体壁厚s和气压试验强度校核 (14)3.2.2排气管尺寸的确定 (15)3.2.3.支座的选择计算 (17)3.2.4支腿的设计计算及校核 (19)3.3旋风除尘器压力损失及除尘效率 (20)3.3.1计算压力损失 (20)3.3.2除尘效率的计算 (21)3.4风机的选择 (22)3.5排尘阀的选择 (22)3.6连接方式的选择 (22)结论 (24)致谢 (25)参考文献 (26)外文资料 (27)1.引言旋风除尘器设计是我通过学习全部基础课、专业课和以往的课程设计的基础上进行的一次综合性的设计。

这次毕业设计更充分的体现了理论联系实际的宗旨,通过这次毕业设计,我不仅加深了对专业基础知识的理解,而且认识到作为一名工作人员我们应该具有良好的技术水平、严谨务实的工作态度,这次设计锻炼了我查阅资料自我设计的能力。

我希望通过本次毕业设计对我三年来所学课程有更深入的理解,熟练掌握AutoCAD制图,运用所学的知识设计出符合要求的除尘器。

随着人类社会的发展与进步,人们对生活质量和自身的健康越来越重视,对空气质量也越来越关注。

然而人们在生产和生活中,不断的向大气中排放各种各样的污染物质,使大气遭到了严重的污染,有些地域环境质量不断恶化,甚至影响人类生存。

在大气污染物中粉尘的污染占重要部分,可吸入颗粒物过多的进入人体,会威胁人们的健康。

所以防治粉尘污染、保护大气环境是刻不容缓的重要任务[1]。

除尘器是大气污染控制应用最多的设备,其设计制造是否优良,应用维护是否得当直接影响投资费用、除尘效果、运行作业率。

所以掌握除尘器工作机理,精心设计、制造和维护管理除尘器,对搞好环保工作具有重要作用[2]。

工业中目前常用的除尘器可分为:机械式除尘器、电除尘器、袋式除尘器、湿式除尘器等。

机械式除尘器包括重力沉降室、惯性除尘器、旋风除尘器等。

重力沉降室是通过重力作用使尘粒从气流中沉降分离的除尘装置,主要用于高效除尘的预除尘装置,除去大于40μm以上的粒子。

惯性除尘器是借助尘粒本身的惯性力作用使其与气流分离,主要用于净化密度和粒径较大的金属或矿物性粉尘。

旋风除尘器是利用旋转气流产生的离心力使尘粒从气流中分离的装置,多用作小型燃煤锅炉消烟除尘和多级除尘、预除尘的设备[12]。

本次设计为旋风除尘器设计,设计的目的在于设计出符合要求的能够净化指定环境空气的除尘设备,为环保工作贡献一份力量。

设计时力求层次分明、图文结合、内容详细。

此设计主要由筒体、锥体、进气管、排气管、排灰口的设计计算以及风机的选择计算等组成,在获得符合条件的性能的同时力求达到加工工艺简单、经济美观、维护方便等特点。

本次设计参考和引用了一些关于除尘器设计的论著、教材、手册等,由于学识、经验、和水平有限,设计中缺点乃至不当之处在所难免,殷切希望各位老师批评指正,提出宝贵意见。

2旋风除尘器的除尘机理及性能2.1旋风除尘器的基本工作原理2.1.1旋风除尘器的结构旋风除尘器的结构如图2-1所示,当含尘气体由进气管进入旋风除尘器时,气流将由直线运动转变为圆周运动,旋转气流的绝大部分延器壁呈螺旋形向下,朝椎体流动。

通常称为外旋气流,含尘气体在旋转过程中产生离心力,将重度大于气体的尘粒甩向器壁。

尘粒一旦与器壁接触,便失去惯性力而靠入口速度的动量和向下的重力延壁面下落,进入排灰管。

旋转下降的外旋气流在到达椎体时,因椎体形状的收缩而向除尘器中心靠拢。

根据“旋转矩”不变原理,其切向速度不断增加。

当气流到达椎体下端某一位置时,即以同样的旋转方向从旋风除尘器中部,由下反转而上,继续做螺旋运动,即内旋气流。

最后净化气体经排气管排除旋风除尘器外,一部分未被捕集的尘粒也由此遗失。

1—排气管2—顶盖3—排灰管4—圆锥体5—圆筒体6—进气管图2—1 旋风除尘器2.1.2旋风除尘器内的流场旋风除尘器内的流场是一个相当复杂的三维流场。

气体在旋风器内作旋转运动时,任一点的速度均可分解为切向速度v t、轴向速度v z和径向速度v r。

(1) 旋风除尘器的各向速度①切向速度v t切向速度对于粉尘颗粒的捕集与分离起着主导作用,含尘气体在切向速度的作用下,由里向外离心沉降,排气管以下任一截面上的切向速度v t 沿半径的变化规律为:在旋风除尘器中心部分的旋转气流,其切向速度v t 随着半径的增大而增大,是类似与刚体旋转运动的强制涡旋,称为“内涡旋”;除尘器外部的旋转气流,其切向速度v t 则随着半径的增加而减少,称为“外涡旋”。

在内外涡旋的交界面上,切向速度达到最大值。

各种不同结构的旋风除尘器,其切向速度分布规律基本相同。

表达通式为:t n v r =常数式中r 为气流质点的旋转半径;n 为速度分布指数一般为0.5~0.9之间。

若忽略旋风除尘器内气流所存在的内摩擦力,根据能量守恒定律,在理想情况下n=1,此时,v t r=常数,称为自由旋流。

因此,n 和1的差值就是旋流和自由旋流的差异,该n 值可由下式计算0.140.301(10.668)()283T n D =-- 式中 D —旋风除尘器的直径(m );T —热力学温度(K );n —速度分布指数。

最大切向速度的位置r m 称为强制旋流的半径,实验证明r m=2/3r e式中 r e —出口管半径图2—2旋风除尘器内的流场分布②径向速度v r径向速度v r是影响旋风除尘器分离性能的重要因素,因为它可以使尘粒沿半径由外向内推向漩涡中心,阻碍尘粒的沉降。

但是该径向速度和切向速度之比较小,通常v r在±1~5m/s范围内。

③轴向速度v z轴向速度v z分布构成了旋风除尘器的外层下行、内层上行的气体双层旋转流动结构。

实验表明,有一个零轴向速度面始终和器壁平行,即使在椎体部分,也能保持外层气流厚度不变。

除了上述三种流速外还由于轴向流速和径向流速的作用引起涡流。

他们都将引起除尘效率的降低。

(2)旋风除尘器的涡流旋风除尘器内,除了主旋转气流外,还存在着由轴向速度和径向速度相互作用而形成的涡流。

涡流对旋风除尘器的分离效率和压力损失影响较大。

常见的涡流有以下几种:①短路流即旋风除尘器顶盖、排气管外面与筒体内壁之间,由于径向速度与轴向速度的存在,将形成局部涡流(上涡流),夹带着相当数量的尘粒向中心流动,并沿排气管外表面下降,最后随中心上升气流逸出排气管,影响了除尘效率。

②纵向旋涡流纵向旋涡流是以旋风除尘器内、外旋流分界面为中心的器内再循环而形成的纵向流动。

由于排气管内的有效通流截面小于排气管管端以下内旋流的有效通流截面,因此在排气管管端处产生节流效应,从而使气体对大颗粒的甩力超过颗粒所受的离心力,而造成“短路”,影响了分离性能。

③外层涡流中的局部涡流由于旋风除尘器壁面不光滑,如突起、焊缝等等,可产生与主流方向垂直的涡流,其量虽只约为主流的五分之一,但这种流动会使壁面附近,或者己被分离到壁面的粒子重新甩到内层旋流,使较大的尘粒在净化气中出现,降低了旋风除尘器的分离能力。

这种湍流对分离5μm以下的颗粒尤为不利。

④底部夹带外层旋流在锥体顶部向上返转时可产生局部涡流,将粉尘重新卷起,假使旋流一直延伸到灰斗,也同样会把灰斗中粉尘,特别是细粉尘搅起,被上升气流带走。

底部夹带的粉尘量占从排气管带出粉尘总量的20~30%。

因此,合理的结构设计,减少底部夹带是改善旋风除尘器捕集效率的重要方面。

2.1.3旋风除尘器内的压力分布一般旋风除尘器内的压力分布如图2—2所示。

依据对旋风除尘器的工作原理、结构形式、尺寸以及气体的温度、湿度和压力等分析和试验测试,其压力损失的主要影响因素可归纳如下:(1)结构形式的影响旋风除尘器的构造形式相同或几何图形相似,则旋风除尘器的阻力系数ζ相同。

若进口的流速相同,压力损失基本不变。

(2)进口风量的影响压力损失与进口速度的平方成正比,因而进口风量较大时,压力损失随之增大。

(3)除尘器尺寸的影响除尘器的尺寸对压力损失影响较大,表现为进口面积增大,排气管直径减小,而压力损失随之增大,随圆筒与椎体部分长度的增加而减小。

(4)气体密度变化的影响压力损失随气体密度增大而增大。

由于气体密度变化与T、P有关,换句话说,压力损失随气体温度或压力的增大而增大。

(5)含尘气体浓度的大小的影响试验表明,含尘气体浓度增高时,压力损失随之下降,这是由于旋转气流与尘粒之间的摩擦作用使旋转速度降低所致。

(6)除尘器内部障碍物的影响旋风除尘器内部的叶片、突起、和支撑物等障碍物能使气流旋转速度降低。

但是,除尘器内部粗糙却使压力损失很大。

2.2 旋风除尘器的性能及其影响因素2.2.1旋风除尘器的技术性能(1)处理气体流量Q处理气体流量Q是通过除尘设备的含尘气体流量,除尘器流量为给定值,一般以体积流量表示。

高温气体和不是一个大气压情况时必须把流量换算到标准状态,其体积m3/h或m3/min表示。

(2)压力损失旋风除尘器的压力损失△p是指含尘气体通过除尘器的阻力,是进出口静压之差,是除尘器的重要性能之一。

其值当然越小越好,因风机的功率几乎与它成正比。

除尘器的压力损失和管道、风罩等压力损失以及除尘器的气体流量为选择风机的依据。

压力损失包含以下几个方面:①进气管内摩擦损失;②气体进入旋风除尘器内,因膨胀或压缩而造成的能量损失;③与容器壁摩擦所造成能量损失;④气体因旋转而产生的能量消耗;⑤排气管内摩擦损失,以及由旋转气体转为直线气体造成的能量损失; ⑥排气管内气体旋转时的动能转换为静压能所造成的损失等。

相关文档
最新文档