《反比例函数的实际应用》PPT课件
合集下载
反比例函数的应用PPT课件
学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关
反比例函数应用ppt课件
02
反比例函数在解决实际问题中也 有广泛应用,如物理学、工程学 、经济学等领域,是建模和解决 实际问题的重要工具。
对其他数学知识的促进作用
反比例函数对一次函数、比例等基础 数学知识有很好的巩固作用,同时它 也是学习二次函数、幂函数等更复杂 函数的重要基础。
反比例函数在平面几何、解析几何等 领域也有广泛应用,如利用反比例函 数解决与圆、椭圆等图形相关的问题 。
反比例函数的图像表示
要点一
使用图像法表示反比例函数
通过图像展示函数的变化趋势,以及与坐标轴的交点等。
要点二
图像的几何意义
解释图像中的曲线与坐标轴的夹角、曲线与直线等高线的 关系等所代表的含义。
反比例函数的性质分析
函数单调性
分析反比例函数在哪些区 间内递增或递减,以及函 数值的变化情况。
奇偶性
判断反比例函数是否为奇 函数或偶函数,并解释原 因。
反比例函数的意义
反映现实世界的规律性
反比例函数在现实世界中有着广泛的应用,如物理、工程、 经济等领域,它可以帮助我们理解和描述这些领域中的一些 规律和现象。
数学中的重要概念
反比例函数是数学中的一个重要概念,它与比例、百分数等 概念有密切的联系。掌握反比例函数的概念和性质对于理解 中学数学中的比例、百分数等概念具有重要意义。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
极限情况
分析当自变量趋近于哪些 值时,反比例函数的函数 值会无限增大或无限减小 。
PART 06
反比例函数的应用例题及 解析
反比例函数的应用例题一
总结词
该例题展示了如何利用反比例函数解决实际 问题。
反比例函数在解决实际问题中也 有广泛应用,如物理学、工程学 、经济学等领域,是建模和解决 实际问题的重要工具。
对其他数学知识的促进作用
反比例函数对一次函数、比例等基础 数学知识有很好的巩固作用,同时它 也是学习二次函数、幂函数等更复杂 函数的重要基础。
反比例函数在平面几何、解析几何等 领域也有广泛应用,如利用反比例函 数解决与圆、椭圆等图形相关的问题 。
反比例函数的图像表示
要点一
使用图像法表示反比例函数
通过图像展示函数的变化趋势,以及与坐标轴的交点等。
要点二
图像的几何意义
解释图像中的曲线与坐标轴的夹角、曲线与直线等高线的 关系等所代表的含义。
反比例函数的性质分析
函数单调性
分析反比例函数在哪些区 间内递增或递减,以及函 数值的变化情况。
奇偶性
判断反比例函数是否为奇 函数或偶函数,并解释原 因。
反比例函数的意义
反映现实世界的规律性
反比例函数在现实世界中有着广泛的应用,如物理、工程、 经济等领域,它可以帮助我们理解和描述这些领域中的一些 规律和现象。
数学中的重要概念
反比例函数是数学中的一个重要概念,它与比例、百分数等 概念有密切的联系。掌握反比例函数的概念和性质对于理解 中学数学中的比例、百分数等概念具有重要意义。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
极限情况
分析当自变量趋近于哪些 值时,反比例函数的函数 值会无限增大或无限减小 。
PART 06
反比例函数的应用例题及 解析
反比例函数的应用例题一
总结词
该例题展示了如何利用反比例函数解决实际 问题。
反比例函数反比例函数的应用ppt
而用一次函数的性质来研究反比例函数。
与二次函数的联系
二次函数与反比例函数的图形特征
二次函数表现为抛物线,而反比例函数表现为双曲线,两者在图形上也有明显的区别。
二次函数与反比例函数的性质
二次函数的顶点坐标和开口方向是重要的性质,而反比例函数的斜率和渐近线也是其重要 的性质。
反比例函数与二次函数的转化
可以通过对数、指数等运算将反比例函数转化为二次函数,从而用二次函数的性质来研究 反比例函数。
与实际应用的结合
01
反比例函数在物理学中的应用
在物理学中,电流、电压、电阻之间的关系等可以用反比例函数来描
述。
02
反比例函数在经济学的应用
在经济学的中,商品的价格和需求量之间的关系可以用反比例函数来
描述。
03
反比例函数在工程中的应用
在工程中,很多实际问题的解决方案都可以用反比例函数来优化,例
如电路设计、管道铺设等。
04
反比例函数在实际案例中的应用
案例一:电路设计中的反比例函数应用
总结词
优化设计,减少损耗
详细描述
在电路设计中,反比例函数的应用可以帮助我们更好地进行电力传输和分配 。通过利用反比例函数特性,可以计算出最佳的电线直径和长度,以减少电 能的损失。
案例二:桥梁设计中的反比例函数应用
总结词
提高桥梁结构稳定性
详细描述
在桥梁设计中,反比例函数的应用可以帮助我们更好地设计桥墩和桥跨之间的比 例关系。通过合理利用反比例函数,可以增强桥梁结构的稳定性,确保交通安全 。
案例三:航空航天领域中的反比例函数应用
总结词
优化飞行器性能
详细描述
在航空航天领域中,反比例函数的应用可以帮助我们设计出更加高效的飞行 器。例如,利用反比例函数优化机翼形状和大小,可以提高飞行器的升力性 能和燃油效率。
反比例函数应用ppt课件ppt
经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数的应用PPT
载完毕,那么平均每天至少要卸载多少吨?
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
反比例函数的应用ppt课件
如图,一辆汽车匀速通过某段公路,所需时间
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
反比例函数应用课件ppt课件
反比例函数应用课 件ppt课件
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
北师大版数学九年级上册6.3反比例函数的应用 课件(共19张PPT)
(2)当 = 时, =
.
= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的
气体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积
³ 的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120
<<
的解集是____________
.
例2:如图所示,一次函数y=-x+m与反比例函数 =
的图象相交于点A 和点
B(5,-1).
(1)求m的值和反比例函数的表达式;
解:(1)∵一次函数 ₁ = − + 与反比例函数 =
− = − + ,
的图象相交于点 − , ∴ ቐ
位置情况,可先由两者中的某一图象确定字母系数的取值情况,再与另一图象相对
照解决;
(3)已知关于一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数图象的几何意义求与面积有关的问题.
教师讲评
知识点 2:反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式.
过程
分析实际情境→建立函数模型→明
确数学问题
实际问题中的
反比例函数
实际问题中的两个变量往往都只
能取非负值;
注意
作实际问题中的函数图象时,横、
纵坐标的单位长度不一定相同
1.教材习题:完成课本159-160页习题6.4的
第1-3题
2.作业本作业:完成对应练习
.
= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的
气体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积
³ 的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120
<<
的解集是____________
.
例2:如图所示,一次函数y=-x+m与反比例函数 =
的图象相交于点A 和点
B(5,-1).
(1)求m的值和反比例函数的表达式;
解:(1)∵一次函数 ₁ = − + 与反比例函数 =
− = − + ,
的图象相交于点 − , ∴ ቐ
位置情况,可先由两者中的某一图象确定字母系数的取值情况,再与另一图象相对
照解决;
(3)已知关于一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数图象的几何意义求与面积有关的问题.
教师讲评
知识点 2:反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式.
过程
分析实际情境→建立函数模型→明
确数学问题
实际问题中的
反比例函数
实际问题中的两个变量往往都只
能取非负值;
注意
作实际问题中的函数图象时,横、
纵坐标的单位长度不一定相同
1.教材习题:完成课本159-160页习题6.4的
第1-3题
2.作业本作业:完成对应练习
反比例函数应用课件ppt课件ppt课件
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
实际问题和反比例函数的应用课件
。
与三角函数的结合
三角函数和反比例函数在周期性上的联系
三角函数具有周期性,而反比例函数不具备周期性,但两者在某些情况下可以相互转化。
三角函数和反比例函数的图像变换
通过适当的变量替换和变换,可以将反比例函数的图像转换为三角函数的图像,反之亦然 。
三角函数和反比例函数的应用场景
三角函数常用于描述周期性变化的现象,如振动、波动等;而反比例函数则常用于描述变 量之间成反比的情况。
PART 05
反比例函数在实际问题中 的应用案例
REPORTING
经济问题中的应用
总结词
反比例函数在经济领域的应用广泛,涉及供需关系、运输成本、价格 与销售量等。
供需关系
在市场经济中,反比例函数可用于描述商品供应和需求之间的关系, 当供应量增加时,需求量减少,反之亦然。
运输成本
在物流和运输领域,反比例函数可用于分析运输成本与运输距离的关 系,随着运输距离的增加,运输成本通常呈反比例降低。
REPORTING
解决实际问题的方法
确定问题类型
建立数学模型
首先需要明确问题是关于反比例函数 的实际应用,还是需要利用反比例函 数解决其他数学问题。
根据问题描述,将实际问题转化为数 学问题,建立反比例函数的数学模型 。
分析问题背景
了解问题的实际背景,如物理、化学 、工程等领域的实际问题,有助于更 好地理解问题并建立数学模型。
定义域
所有非零实数。
值域
所有非零实数。
反比例函数的图像
01
当 k > 0 时,图像位于第一象限 和第三象限;
02
当 k < 0 时,图像位于第二象限 和第四象限。
反比例函数的性质
26.2.1 实际问题中的反比例函数课件(共20张PPT)
26.2.1 反比例函数在实际生活中的应用 例2 码头工人每天往一艘轮船上装载 30 吨货物,装载完毕恰好用了 8 天时间.
26.2.1 反比例函数在实际生活中的应用
(1) 轮船到达目的地后开始卸货,平均卸货速度 v (单位:吨/天) 与卸货天 数 t 之间有怎样的函数关系? 分析:根据“平均装货速度 × 装货天数 = 货物总量”,可以求出轮船装 载货物的总量;再根据“平均卸货速度 = 货物的总量 ÷ 卸货天数”,得 到 v 关于 t 的函数解析式.
多少?
方法二:解:把 t = 4 代入 v 480 ,得 v 480 120.
t
t
从结果可以看出,如果该司机恰好 4小时回到甲地,返程时的平均速度为 120km/h. 对于函数 v 480 ,当t>0时,t 越小,v 越大. .这样若该司机必
t 须在 4h 之内回到甲地,那么返程时的平均速度不能小于120km/h.
解:设轮船上的货物总量为 k 吨,根据已知条件得 k = 30 × 8 = 240,
所以 v 关于 t 的函数解析式为 v 240 . t
26.2.1 反比例函数在实际生活中的应用
(2) 由于遇到紧急情况,要求船上的货物不超过 5 天卸载完毕,那么平
均每天至少要卸载多少吨?
小于或等于
大于或等于
方法一:解:因为 v 240 ,所以 t 240 .
26.2.1 反比例函数在实际生活中的应用
5.红星粮库需要把晾晒场上的1200t玉米入库封存. (1)求人库所需时间d(单位:天)与入库平均速度v(单位:t/天)有怎样 的函数关系? 解: d 1200 (v > 0)
v (2)已知粮库有职工60名,每天最多可入库300t玉米,预计玉米入库最快 可在几天内完成?
反比例函数应用ppt课件ppt课件ppt
检验解
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
6.3 反比例函数的应用 初中数学北师大版九年级上册课件(共24张PPT)
把 B (4,-2)代入反比例函数 y2= ,可得 k =-2×4=-8,
∴反比例函数的表达式为 y2=- .
1
2
3
4
6.3
反比例函数的应用
知识梳理
(2)△ AOB 面积.
,
= −
解:(2)联立方程组ቐ
= − + ,
= ,
= − ,
解得ቊ
ቊ
∴ A (-2,4).
)
6.3
4.
反比例函数的应用
知识梳理
课时学业质量评价
已知一次函数 y1=- x +2的图象与反比例函数 y2= 的图象交于 A ,
B 两点,且 B 点的纵坐标是-2,求:
(1)反比例函数的表达式;
解:(1)在一次函数 y1=- x +2中,令 y1=-2,
可得-2=- x +2,解得 x =4,∴ B (4,-2).
所以可变电阻应不小于3.6 Ω.
探究新知
(2)你能求出点B的坐标吗?你是怎样求的?
解:(2)点B的坐标是两个函数组成的方程组的另一个解.
y=2x
6
y=
解得x= ± 3 .
∴ x= − 3 ,y = −2 3 . ∴B( − 3 , −2 3 ).
当堂训练
某蓄水池的排水管每小时排水 8 m3,6 h 可将满池水全部排空.
压后气体对汽缸壁所产生的压强 p (kPa)与汽缸内气体的体积 V (mL)成反
比例, p 关于 V 的函数图象如图所示,若压强由75 kPa加压到100 kPa,则气体体积压缩了(C)A. 10 mL
B. 15 mL
C. 20 mL
反比例函数应用1ppt课件
3、如图所示,正比例函数y=k1x的图象与 反比例函数y= k2的图象交于A、B两点,其
x
中点A的坐标为( 3 ,2 3 )。
(1)分别写出这两个函数的表达式。 (2)你能求出点B的坐标吗?你是怎样求的?
2 33
(3)若点C坐标是(–4,0). 请求△BOC的面积。
(4)试着在坐标轴上找 C 点D,使△AOD≌△BOC。
问题(1):题目中哪个量是一定的? (2):哪些量是变化的? (3):变量之间存在什么样的关系? 21.6
S=
______________x___________
2.小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己 眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数2.小丽 是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己眼镜配 制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜 片的焦距x(m)成反比例,并请教了师傅了解到自己400度的近视眼 镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写 不出y(度)与镜片的焦距x(m)成反比例,并请教了师傅了解到自 己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数 的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比 例函数了,谁能帮助她解决这个问题呢?
2、小明家离学校3600米,他骑自行 车的速度x(米/分)与时间y(分) 之间的关系式是___Y_=__3_6_x0_0______ 若他每分钟骑450米,需___8__分钟 到达学校。
想一想
1.小明用过年自己剩下的压岁钱去买每枝售价为 1.8元的圆珠笔,恰好买了12枝,他回家后高兴地 告诉妈妈,自己用压岁钱买了学习用笔,妈妈夸 奖了他,妈妈随即问他,假设用这些钱可买单价 为x元的圆珠笔y枝,那么y与x间的函数关系式是 什么呢?妈妈说,如果他答上来,奖励他一枝钢 笔,同学们一起来帮助他,好吗?
反比例函数实际生活中的反比例函数课件ppt
$k$为常数,且$k \neq 0$;
数学定义:形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
理解要点
Байду номын сангаас
反比例函数的图像和性质
图像:在直角坐标系中,反比例函数$y = \frac{k}{x}$的图像是以原点为对称中心的双曲线。
当$k < 0$时,双曲线的两支分别位于第二、第四象限。
图像相似
两种函数在解决实际问题时具有相似的应用场景,如描述变量之间的关系等。
应用场景相似
和幂函数的联系
如何学好反比例函数
05
了解什么是反比例函数,掌握反比例函数的表达式和图像。
掌握基础知识点
反比例函数的定义
了解反比例函数的单调性、对称性、渐近线等基本性质。
反比例函数的性质
学习如何将反比例函数应用于实际问题中,如物理学、工程学等领域。
xx年xx月xx日
反比例函数实际生活中的反比例函数课件ppt
反比例函数概述实际生活中的反比例函数案例反比例函数在数学学科中的应用反比例函数和其他数学知识的联系如何学好反比例函数总结与展望
contents
目录
反比例函数概述
01
反比例函数的定义
因变量$y$与自变量$x$的倒数成正比。
自变量$x$在分母位置;
和二次函数的联系
01
表达式相似
反比例函数和二次函数的表达式具有一定的相似性,如y=ax²和y=k/x。
02
图像相似
两种函数的图像都关于原点成中心对称,且具有相似的形状和趋势。
反比例函数和幂函数的表达式具有一定的相似性,如y=xˣ和y=k/x。
表达式相似
数学定义:形如$y = \frac{k}{x}$($k$为常数,$k \neq 0$)的函数称为反比例函数。
理解要点
Байду номын сангаас
反比例函数的图像和性质
图像:在直角坐标系中,反比例函数$y = \frac{k}{x}$的图像是以原点为对称中心的双曲线。
当$k < 0$时,双曲线的两支分别位于第二、第四象限。
图像相似
两种函数在解决实际问题时具有相似的应用场景,如描述变量之间的关系等。
应用场景相似
和幂函数的联系
如何学好反比例函数
05
了解什么是反比例函数,掌握反比例函数的表达式和图像。
掌握基础知识点
反比例函数的定义
了解反比例函数的单调性、对称性、渐近线等基本性质。
反比例函数的性质
学习如何将反比例函数应用于实际问题中,如物理学、工程学等领域。
xx年xx月xx日
反比例函数实际生活中的反比例函数课件ppt
反比例函数概述实际生活中的反比例函数案例反比例函数在数学学科中的应用反比例函数和其他数学知识的联系如何学好反比例函数总结与展望
contents
目录
反比例函数概述
01
反比例函数的定义
因变量$y$与自变量$x$的倒数成正比。
自变量$x$在分母位置;
和二次函数的联系
01
表达式相似
反比例函数和二次函数的表达式具有一定的相似性,如y=ax²和y=k/x。
02
图像相似
两种函数的图像都关于原点成中心对称,且具有相似的形状和趋势。
反比例函数和幂函数的表达式具有一定的相似性,如y=xˣ和y=k/x。
表达式相似
反比例函数的应用课件
误差分析
在进行数值计算时,需要 进行误差分析,以确保计 算结果的精度和可靠性。
04
反比例函数的应用案例
案例一:解决实际问题
总结词
反比例函数在实际问题中的应用广泛,可以通过建立数学模型来求解实际问题 。
详细描述
反比例函数可以描述一些实际问题的关系,例如电流与电阻、电容与电压等。 通过建立反比例函数模型,可以求解出未知量,为实际问题的解决提供依据。
详细描述
在经济学中,反比例函数可以用于描述供需关系、市场均衡等经济现象和规律。 通过应用反比例函数,可以更好地理解经济现象和规律,为经济政策的制定提供 依据。
案例四:在其他领域中的应用
总结词
反比例函数在其他领域中也有应用,例如生物学、化学等。
详细描述
在生物学中,反比例函数可以用于描述生物种群数量与环境容量的关系;在化学中,反比例函数可以用于描述化 学反应速率与反应物浓度的关系等。通过应用反比例函数,可以更好地理解这些领域的规律和现象,为相关领域 的发展提供支持。
反比例函数在生物学中的应用:计算生物种群数量、繁 殖率等。
反比例函数在心理学中的应用:研究人的行为与心理活 动之间的关系。
03
反比例函数的应用方法
建模方法
建立实际问题与反比例函数的联系
01
通过分析实际问题的数学模型,将问题转化为反比例函数的形
式,以便利用其性质和结论解决问题。
确定变量的实际意义
02
图像变化
当k的值逐渐增大或减小,双曲线的形 状会发生变化,但始终关于原点对称 。
反比例函数的性质
奇函数
无界性
单调性
实际应用
由于反比例函数的图像关于 原点对称,因此它是一个奇 函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章 二次函数与反比例函数
21.5 反比例函数
第5课时 反比例函数的实际应用
1 课堂讲解 实际问题中的反比例函数表达式
实际问题中的反比例函数的图象
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知1-讲
知识点 1 实际问题中的反比例函数表达式
例1 你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗 细(横截面面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y与S之间的函数表达式; (2)当面条粗为1.6 mm2时,面条的 总长度是多少米?
4 已知甲、乙两地相距20 km,汽车从甲地匀速行驶到乙地,则汽
车行驶时间t(单位:h)关于行驶速度v(单位:km/h)的函数表达式
是( ) A.t=20v
B.t=
20 v
C.t=
v 20
D.t= 10 v
知2-讲
知识点 2 实际问题中的反比例函数的图象
例2 甲乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达 乙地所用的时间y(h)表示为汽车的平均速度x(km/h) 的函数,则 这个函数的图象大致是( C)
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 改编辑
1.6
=80.因此,当面条粗为1.6 mm2时,面条的总长度为
80 m.
总结
知1-讲
建立反比例函数解决实际问题的方法:先灵活运用反比例函 数解决实际问题的一般步骤求出反比例函数的表达式并写出 自变量的取值范围,然后根据题中要求,利用函数的定义或 性质解答相关问题.
知1-练
1 某水池的容量一定,当注入水的流量Q=15m3/min时,注 满全池需时t=20 min. (1)求Q与t之间的函数表达式; (2)当t=25 min时,求水流量Q的值.
解析:∵路程为100,速度为v,∴时间t=100 /v ,t是v的反比例函 数.又v>0,只取双曲线中第一象限的一支,故选C.
总结
知2-讲
实际问题中反比例函数的表达式自变量的取值范围, 一般都是大于零,图象在第一象限.
知2-练
1 一台印刷机每年可印刷的书本数量y(万册)与它的使用 时间x(年)成反比例关系,当x=2时,y=20.则y与x 的 函数图象大致是( )
1、“读”是我们学习语文最基本的方法之一,古人说,读书时应该做到“眼到,口到,心到”。我看,你们今天达到了这个要求。 2、大家自由读书的这段时间里,教室里只听见琅琅书声,大家专注的神情让我感受到什么叫“求知若渴”,我很感动。 3、经过这么一读,这一段文字的意思就明白了,不需要再说明什么了。 4、请你们读一下,将你的感受从声音中表现出来。 5、读得很好,听得出你是将自己的理解读出来了。特别是这一句,请再读一遍。
知1-讲
导引:(1)已知反比例函数图象上一个点的坐标,用待定系数法 求表达式;(2)已知S的值求y的值.
解:(1)设y= k (k≠0),由图象知双曲线过点P(4,32),可得
S
k=128,即y与S之间的函数表达式为y= 128 (S>0).
S
(2)当面条粗为1.6 mm2时,即当S=1.6时,y= 128
知2-练
2 已知矩形的面积为10,长和宽分别为 x和y,则y 关于x的函数图象大致是( )
知2-练
3 如图,市煤气公司计划在地下修建一个容积为 104 m3 的圆柱形煤气储存室,则储存室的占地面积S(单位: m2)与其深度d(单位:m)的函数图象大致是( )
用反比例函数解决实际问题的步骤: (1)审清题意,找出问题中的常量、变量(有时常量、变量以图象
(来自教材)
2 某汽车的油箱一次加满汽油45 L,可行驶y km,设该汽 车每行驶100 km耗油x升,则y关于x的函数表达式为 .
知1-练
3 电是商品,可以提前预购.小明家用购电卡购买800度电,那么 这些电能够用的天数n(天)与小明家平均每天的用电量m(度)之间 的函数表达式为____________;如果平均每天用电4度,则这些 电可用________天.
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。
的形式给出),并且理清常量与变量之间的关系; (2)根据常量与变量之间的关系,设出反比例函数表达式; (3)利用待定系数法确定函数表达式,并注意自变量的取值范围; (4)利用反比例函数的图象与性质解决实际问题.
1.必做: 完成教材P48-P49T2-T3,T8 2.补充: 请完成《xxx》剩余部分习题
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
21.5 反比例函数
第5课时 反比例函数的实际应用
1 课堂讲解 实际问题中的反比例函数表达式
实际问题中的反比例函数的图象
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
知1-讲
知识点 1 实际问题中的反比例函数表达式
例1 你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗 细(横截面面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y与S之间的函数表达式; (2)当面条粗为1.6 mm2时,面条的 总长度是多少米?
4 已知甲、乙两地相距20 km,汽车从甲地匀速行驶到乙地,则汽
车行驶时间t(单位:h)关于行驶速度v(单位:km/h)的函数表达式
是( ) A.t=20v
B.t=
20 v
C.t=
v 20
D.t= 10 v
知2-讲
知识点 2 实际问题中的反比例函数的图象
例2 甲乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达 乙地所用的时间y(h)表示为汽车的平均速度x(km/h) 的函数,则 这个函数的图象大致是( C)
1. 你真让人感动,老师喜欢你的敢想、敢说、敢问和敢辩,希望你继续保持下去。 2. 这么难的题你能回答得很完整,真是了不起!你是我们班的小爱因斯坦。 3. 你预习的可真全面,自主学习的能力很强,课下把你的学习方法介绍给同学们,好不好? 4. 哎呀. 通过你的发言,老师觉得你不仅认真听,而且积极动脑思考了,加油哇! 改编辑
1.6
=80.因此,当面条粗为1.6 mm2时,面条的总长度为
80 m.
总结
知1-讲
建立反比例函数解决实际问题的方法:先灵活运用反比例函 数解决实际问题的一般步骤求出反比例函数的表达式并写出 自变量的取值范围,然后根据题中要求,利用函数的定义或 性质解答相关问题.
知1-练
1 某水池的容量一定,当注入水的流量Q=15m3/min时,注 满全池需时t=20 min. (1)求Q与t之间的函数表达式; (2)当t=25 min时,求水流量Q的值.
解析:∵路程为100,速度为v,∴时间t=100 /v ,t是v的反比例函 数.又v>0,只取双曲线中第一象限的一支,故选C.
总结
知2-讲
实际问题中反比例函数的表达式自变量的取值范围, 一般都是大于零,图象在第一象限.
知2-练
1 一台印刷机每年可印刷的书本数量y(万册)与它的使用 时间x(年)成反比例关系,当x=2时,y=20.则y与x 的 函数图象大致是( )
1、“读”是我们学习语文最基本的方法之一,古人说,读书时应该做到“眼到,口到,心到”。我看,你们今天达到了这个要求。 2、大家自由读书的这段时间里,教室里只听见琅琅书声,大家专注的神情让我感受到什么叫“求知若渴”,我很感动。 3、经过这么一读,这一段文字的意思就明白了,不需要再说明什么了。 4、请你们读一下,将你的感受从声音中表现出来。 5、读得很好,听得出你是将自己的理解读出来了。特别是这一句,请再读一遍。
知1-讲
导引:(1)已知反比例函数图象上一个点的坐标,用待定系数法 求表达式;(2)已知S的值求y的值.
解:(1)设y= k (k≠0),由图象知双曲线过点P(4,32),可得
S
k=128,即y与S之间的函数表达式为y= 128 (S>0).
S
(2)当面条粗为1.6 mm2时,即当S=1.6时,y= 128
知2-练
2 已知矩形的面积为10,长和宽分别为 x和y,则y 关于x的函数图象大致是( )
知2-练
3 如图,市煤气公司计划在地下修建一个容积为 104 m3 的圆柱形煤气储存室,则储存室的占地面积S(单位: m2)与其深度d(单位:m)的函数图象大致是( )
用反比例函数解决实际问题的步骤: (1)审清题意,找出问题中的常量、变量(有时常量、变量以图象
(来自教材)
2 某汽车的油箱一次加满汽油45 L,可行驶y km,设该汽 车每行驶100 km耗油x升,则y关于x的函数表达式为 .
知1-练
3 电是商品,可以提前预购.小明家用购电卡购买800度电,那么 这些电能够用的天数n(天)与小明家平均每天的用电量m(度)之间 的函数表达式为____________;如果平均每天用电4度,则这些 电可用________天.
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!
同学们下课啦
授课老师:xxx
此页为防盗标记页(下载后可删)
教师课堂用语在学科专业方面重在进行“引”与“导”,通过点拨、搭桥等方式让学生豁然开朗,得出结论,而不是和盘托 出,灌输告知。一般可分为:启发类、赏识类、表扬类、提醒类、劝诫类、鼓励类、反思类。
一、启发类
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
此页为防盗标记页(下载后可删)
1、谢谢大家听得这么专心。 2、大家对这些内容这么感兴趣,真让我高兴。 3、你们专注听讲的表情,使我快乐,给我鼓励。 4、我从你们的姿态上感觉到,你们听明白了。 5、我不知道我这样说是否合适。 6、不知我说清了没有,说明白了没有。 7、我的解释不知是否令你们满意,课后让我们大家再去找有关的书来读读。 8、你们的眼神告诉我,你们还是没有明白,想不想让我再讲一遍? 9、会“听”也是会学习的表现。我希望大家认真听好我下面要说的一段话。 10、从听课的情况反映出,我们是一个素质良好的集体。 1、谢谢你,你说的很正确,很清楚。 2、虽然你说的不完全正确,但我还是要感谢你的勇气。 3、你很有创见,这非常可贵。请再响亮地说一遍。 4、××说得还不完全,请哪一位再补充。 5、老师知道你心里已经明白,但是嘴上说不出,我把你的意思转述出来,然后再请你学说一遍。 6、说,是用嘴来写,无论是一句话,还是一段话,首先要说清楚,想好了再说,把自己要说的话在心里整理一下就能说清楚。 7、对!说得很好,我很高兴你有这样的认识,很高兴你能说得这么好! 8、我们今天的讨论很热烈,参与的人数也多,说得很有质量,我为你们感到骄傲。 9、说话,是把自己心里的想法表达出来,与别人交流。说时要想想,别人听得明白吗? 10、说话,是与别人交流,所以要注意仪态,身要正,不扭动,眼要正视对方。对!就是这样!人在小时候容易纠正不良习惯,经常 注意哦。
的形式给出),并且理清常量与变量之间的关系; (2)根据常量与变量之间的关系,设出反比例函数表达式; (3)利用待定系数法确定函数表达式,并注意自变量的取值范围; (4)利用反比例函数的图象与性质解决实际问题.
1.必做: 完成教材P48-P49T2-T3,T8 2.补充: 请完成《xxx》剩余部分习题
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类