初中数学教学设计案例

合集下载

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。

初中数学教学设计(优秀4篇)

初中数学教学设计(优秀4篇)

初中数学教学设计(优秀4篇)初中数学教学设计篇一一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

(三)德育渗透点培养学生独立思考、勇于创新的精神。

二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。

因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。

”这是否是真命题呢?引出课题。

(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。

引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。

在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

初中数学教育教学案例(3篇)

初中数学教育教学案例(3篇)

第1篇一、案例背景本案例以我国某中学七年级数学教学为背景,选取了“分数的意义”这一教学内容。

由于分数是学生在数学学习过程中遇到的第一个比较抽象的概念,学生对分数的理解往往存在困难。

因此,本案例旨在通过有效的教学设计,帮助学生理解分数的意义,提高学生的数学思维能力。

二、教学目标1. 知识与技能:理解分数的意义,掌握分数的表示方法。

2. 过程与方法:通过观察、比较、操作等活动,培养学生的抽象思维能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、善于思考的精神。

三、教学重难点1. 教学重点:理解分数的意义,掌握分数的表示方法。

2. 教学难点:分数的抽象意义,分数与整体的关系。

四、教学过程1. 导入新课教师通过提问:“同学们,你们知道什么是分数吗?请举例说明。

”让学生回顾已学过的知识,为新课的引入做好铺垫。

2. 新课讲授(1)分数的意义教师引导学生观察生活中的例子,如:将一个苹果平均分成4份,每份占这个苹果的$\frac{1}{4}$。

通过观察、比较,学生理解分数的意义:分数表示把一个整体平均分成若干份,其中一份或几份的数。

(2)分数的表示方法教师引导学生观察分数的写法,如:$\frac{1}{4}$,$\frac{3}{8}$等。

让学生理解分数的分子表示分得的份数,分母表示总的份数。

(3)分数与整体的关系教师通过图形、文字等多种方式,帮助学生理解分数与整体的关系。

如:将一个正方形平均分成4份,每份是正方形的$\frac{1}{4}$,即$\frac{1}{4}$个正方形。

3. 课堂练习教师设计一些基础练习题,让学生巩固所学知识。

如:(1)将一个长方形平均分成6份,每份是长方形的$\frac{1}{6}$,求这个长方形的$\frac{2}{3}$是多少?(2)一个班级有40人,其中男生占$\frac{3}{5}$,求这个班级有多少男生?4. 课堂小结教师引导学生回顾本节课所学内容,总结分数的意义、表示方法以及分数与整体的关系。

初中数学实践课教学设计(3篇)

初中数学实践课教学设计(3篇)

第1篇1. 知识与技能:掌握平方根的概念,理解平方根的性质,并能进行简单的平方根运算。

2. 过程与方法:通过小组合作、探究实验等方法,培养学生自主学习和合作探究的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生严谨的科学态度和良好的学习习惯。

二、教学重难点1. 教学重点:平方根的概念、性质和运算。

2. 教学难点:平方根的性质理解和应用。

三、教学过程(一)导入新课1. 复习平方的概念:引导学生回顾平方的概念,即一个数乘以自己。

2. 提出问题:如果一个数的平方是4,那么这个数是多少?引导学生思考,得出2和-2的平方都是4。

3. 引入平方根的概念:如果一个数的平方是4,那么这个数叫做4的平方根。

(二)探究平方根的性质1. 引导学生观察4的平方根2和-2,发现它们的平方都是4。

2. 提出问题:平方根有什么性质?引导学生进行小组讨论,得出以下性质:(1)平方根的值是正数或0;(2)平方根的平方等于被开方数;(3)一个正数的平方根有两个,它们互为相反数;(4)0的平方根是0;(5)负数没有平方根。

3. 通过举例验证这些性质,让学生进一步理解平方根的性质。

(三)平方根的运算1. 引导学生回顾平方根的概念和性质,为平方根的运算做准备。

2. 介绍平方根的运算方法:(1)求一个数的平方根,即找到一个数,使得它的平方等于这个数;(2)平方根的乘除法运算,即求两个平方根的乘积或商的平方根;(3)平方根的加减法运算,即求两个平方根的和或差的平方根。

3. 通过例题讲解,让学生掌握平方根的运算方法。

(四)巩固练习1. 布置课堂练习题,让学生巩固所学知识。

2. 引导学生相互讨论,共同解决练习题中的问题。

(五)课堂小结1. 总结本节课的学习内容,强调平方根的概念、性质和运算。

2. 引导学生反思学习过程,提出改进建议。

(六)课后作业1. 完成课后练习题,巩固所学知识。

2. 预习下一节课的内容,为下一节课的学习做好准备。

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。

你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流探究新知(活动一)探究角平分仪的原理。

具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。

以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。

其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。

使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。

初中数学教学设计 初中数学设计教案(优秀5篇)

初中数学教学设计 初中数学设计教案(优秀5篇)

初中数学教学设计初中数学设计教案(优秀5篇)作为一名默默奉献的教育工作者,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。

那么教学设计应该怎么写才合适呢?作者整理了5篇初中数学设计教案,希望您在阅读之后,能够更好的写作初中数学教学设计。

初中数学教学设计篇一为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。

努力作好教学工作,在这一学期中,下文将准备了初中二年级下册数学教学设计如下:一、教学目标:通过本期的学习,要使学生在情感与态度上,认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,能够设计精美的图案,提高学生的审美情趣,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。

对于过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到漫江碧透,鱼翔浅底的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力与逻辑思维能力,自主探究,解决问题的能力,提高运算能力,使所有学生在数学上都有不同的发展,尽可能接近其发展的较大值,培养学生良好的学习习惯,发展学生的非智力因素,使学生潜移默化的接受辩证唯物的熏陶,提高学生素质。

二、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章分式本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十七章反比例函数函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。

学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)篇一:初中数学教学设计篇一一、内容和内容解析(一)内容概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.(二)内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.二、目标和目标解析(一)教学目标1.理解不等式的概念2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念4.用数轴来表示简单不等式的解集(二)目标解析1.达成目标1的标志是:能正确区别不等式、等式以及代数式.2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.三、教学问题诊断分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.四、教学支持条件分析利用多媒体直观演示课前引入问题,激发学生的学习兴趣.五、教学过程设计(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.(二)立足实际引出新知问题一辆匀速行驶的汽车在11U20距离a地50km,要在12U00之前驶过a地,车速应满足什么条件?小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.(三)紧扣问题概念辨析1.不等式设问1:什么是不等式?设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.2.不等式的解设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式3.不等式的解集设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.4.解不等式设问1:什么是解不等式?由学生回答.老师强调:解不等式是一个过程.设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.(四)数形结合,深化认识问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题1、什么是不等式?<的解集,也是不等式>502、什么是不等式的解?3、什么是不等式的解集,它与不等式的解有什么区别与联系?4、用数轴表示不等式的解集要注意哪些方面?设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.(六)布置作业,课外反馈教科书第119页第1题,第120页第2,3题.设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.六、目标检测设计1.填空下列式子中属于不等式的有___________________________①x +7>②x≥ y + 2 = 0③ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.2.用不等式表示① a与5的和小于7② a的与b的3倍的和是非负数③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.篇二:初中数学教学设计模板篇二教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。

最热新课标初中数学教学设计(通用21篇)

最热新课标初中数学教学设计(通用21篇)

最热新课标初中数学教学设计(通用21篇)最热新课标初中数学教学设计(通用21篇)篇一这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。

本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。

它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

知识与技能探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用过程与方法(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。

情感态度与价值(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

教学重点探索和证明勾股定理·教学难点用拼图的方法证明勾股定理(学法)“引导探索法”(自主探究,合作学习,采用小组合作的方法。

课件、三角板教学环节1(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?学生活动:学生思考回答设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。

教学环节2 教学过程:实验操作获取新知归纳验证完善新知教师活动:出示课件,引导学生探索学生活动:猜想实验合作交流画图测量拼图验证设计意图:渗透从特殊到一般的数学思想。

为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。

初中数学教学设计方案(范文六篇)

初中数学教学设计方案(范文六篇)

初中数学教学设计方案(范文六篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作计划、工作总结、个人总结、汇报体会、策划方案、事迹材料、申请书、演讲稿、主持稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work plans, work summaries, personal summaries, report experiences, planning plans, deeds materials, application forms, speeches, hosting drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初中数学教学设计方案(范文六篇)本店铺为你整理了多篇初中数学教学设计方案(范文六篇),希望对您的工作学习有帮助,您还可以在本店铺找到更多相关《初中数学教学设计方案(范文六篇)》范文。

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)

初中数学教学设计(精选5篇)初中数学教学设计(精选5篇)作为一名为他人授业解惑的教育工作者,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

那么优秀的教案是什么样的呢?下面是由给大家带来的初中数学教学设计模板5篇,让我们一起来看看!初中数学教学设计【篇1】教学目标1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。

运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。

对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。

对代数式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.等都不是代数式.3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。

用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。

初中优秀数学教学设计5篇

初中优秀数学教学设计5篇

初中优秀数学教学设计5篇初中优秀数学教学设计1一、教材内容及设置依据【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。

也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。

为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。

同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。

同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)四、关于教学方法的选用根据本节课的内容和学生的实际水平,本节课可采用的方法:1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

教研案例初中数学(3篇)

教研案例初中数学(3篇)

第1篇一、背景介绍勾股定理是初中数学中的重要内容,它不仅揭示了直角三角形三边之间的关系,而且在几何学、物理学等领域有着广泛的应用。

传统的勾股定理教学往往以教师讲解、学生记忆为主,缺乏探究性和实践性。

为了提高学生的学习兴趣和探究能力,本教研案例以“探究式学习”为理念,通过设计一系列探究活动,引导学生主动探索、发现和总结勾股定理。

二、教学目标1. 知识与技能目标:理解勾股定理的内容,掌握勾股定理的证明方法,能够运用勾股定理解决实际问题。

2. 过程与方法目标:通过探究活动,培养学生观察、分析、推理、归纳等数学思维能力。

3. 情感态度与价值观目标:激发学生学习数学的兴趣,培养学生严谨的科学态度和勇于探索的精神。

三、教学过程(一)导入环节1. 展示生活中的直角三角形图片,如建筑、几何图形等,引导学生回顾直角三角形的特征。

2. 提问:在直角三角形中,三边之间是否存在某种关系?引导学生思考并猜测。

(二)探究活动一:发现勾股定理1. 将学生分成小组,每组准备一个直角三角形模型和一把直尺。

2. 要求学生通过测量直角三角形的三边长度,尝试发现直角三角形三边之间的关系。

3. 小组内讨论、交流测量结果,引导学生观察和发现勾股定理。

(三)探究活动二:证明勾股定理1. 引导学生回顾勾股定理的内容,提出证明问题。

2. 学生自主探究证明方法,可以采用以下几种方式:- 几何画板软件绘制直角三角形,通过旋转、翻转等方式证明;- 利用勾股定理的代数形式,通过代数运算证明;- 利用相似三角形、全等三角形等几何知识证明。

3. 学生展示自己的证明过程,教师进行点评和总结。

(四)应用环节1. 给学生提供一些实际问题,要求学生运用勾股定理进行解答。

2. 学生独立完成练习,教师巡视指导。

(五)总结与反思1. 学生总结勾股定理的内容和证明方法。

2. 教师引导学生反思探究过程,总结学习经验。

四、教学反思1. 探究式学习能够激发学生的学习兴趣,提高学生的探究能力和数学思维能力。

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)

初中数学教学设计(优秀8篇)初中数学教案篇一1.初中数学教案模板1.课题填写课题名称(初中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。

知识,提高学生解决实际问题的能力;(2)过程与方法:通过。

(讨论、发现、探究)的过程,提高。

(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4.教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5.教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的。

解法和步骤)。

②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。

可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。

③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。

(3)课堂小结教师提问,学生回答本节课的收获。

(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。

6.教学板书2.初中数学教案格式课程编码:______________________________________总学时/ 周学时:/开课时间:年月日第周至第周授课年级、专业、班级:___________________________使用教材:_______________________________________授课教师:_______________________________________1.章节名称2.教学目的3.课时安排4.教学重点、难点5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)6.复习巩固与作业要求7.教学环境及教具准备8.教学参考资料9.教学后记3.初中数学教案范文教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)

初中数学教学设计优秀案例(分享九篇)初中数学教学设计优秀案例(分享九篇)。

初中数学教学设计优秀案例篇1一学期的工作结束了,可以说紧张忙碌却收获多多。

回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:一、在备课方面在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面在课堂教学中我一直注重学生的参与。

让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。

波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。

”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。

但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。

后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。

对学生的自主学习,合作学习,缺乏理论指导4)、差生末抓在手。

由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。

上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。

导致了教学中的盲目性。

四、今后努力的方向1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。

初中数学课堂教学精彩教学案例设计【三篇】

初中数学课堂教学精彩教学案例设计【三篇】

初中数学课堂教学精彩教学案例设计【三篇】教学案例是真实而典型的问题大事。

以下是为大家整理的学校数学课堂教学精彩教学案例设计的文章3篇 ,欢迎品鉴!学校数学课堂教学精彩教学案例设计一、教学目标:1、理解二元一次方程及二元一次方程的解的概念;2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学方法与教学手段:通过与一元一次方程的比较,加强同学的类比的思想方法;通过"合作学习',使同学熟悉数学是依据实际的需要而产生进展的观点。

四、教学过程:1、情景导入:新闻链接:x70岁以上老人可领取生活补助。

得到方程:80a+150b=902880、2、新课教学:引导同学观看方程80a+150b=902880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:(1)依据题意列出方程:①小明去探望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价、设苹果的单价x元/kg,梨的单价y元/kg;②在高速大路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,假如设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2、判定哪些式子是二元一次方程方程。

合作学习:活动背景爱心满人间记求是中学"学雷锋、关爱老人'志愿者活动。

问题:参与活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人、团支书拟支配8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由同学检验得出代入方程后,能使方程两边相等、得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。

初中数学教学设计精选15篇

初中数学教学设计精选15篇

初中数学教学设计精选15篇初中数学教学设计1教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边.教学重点全等三角形的性质.教学难点找全等三角形的对应边、对应角.教学过程一.提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.3.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中"全等"符号表示的要求.二.导入新课将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.议一议:各图中的两个三角形全等吗?不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等.全等三角形的对应角相等.[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,•说出这两个三角形中相等的边和角.问题:△OCA≌△OBD,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,•所以C和B重合,A和D重合.∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.解:对应角为∠BAE和∠CAD.对应边为AB与AC、AE与AD、BE与CD.[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成) 借鉴例2的方法,可以发现∠A=∠A,•在两个三角形中∠A的对边分别是BC 和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB•与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.做法二:沿A与BC、DE交点O的连线将△ABC•翻折180°后,它正好和△ADE 重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.三.课堂练习课本练习1.四.课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的找对应元素的常用方法有两种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.五.作业课本习题1课后作业:《新课堂》初中数学教学设计2一、教学目标:1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根。

初中数学优秀教学设计

初中数学优秀教学设计

初中数学优秀教学设计在平平淡淡的学习中,大家或多或少都参加过一些主题班会吧?主题班会必须有明确的教育目的,自始至终贯穿,渗透着极强的教育性。

你知道什么样的主题班会才是好的主题班会吗?下面是由作者给大家带来的初中数学优秀教学设计5篇,让我们一起来看看!初中数学优秀教学设计篇1一、教学目标:1、知识目标:①能准确知道绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深入地知道相反数的概念。

2、能力目标:①初步培养学生视察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知愿望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感遭到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的知道及求一个负数的绝对值。

三、教学方法启示引导式、讨论式和谈话法四、教学进程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特点?(二)新授1、引入结合教材P63图2-11和复习问题,讲授6与-6的绝对值的意义。

2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a 的绝对值记作|a|.举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲授。

)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

初中数学的教学设计(集锦12篇)

初中数学的教学设计(集锦12篇)

初中数学的教学设计(集锦12篇)初中数学的教学设计第1篇近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。

特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。

因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。

一、加强广大师生对数学阅读重要性的理解数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。

数学教学活动中,数学阅读是“人——本”对话的数学交流形式。

在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。

因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。

另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。

因此,数学教学有必要重视数学阅读。

二、初中数学阅读教学的教学原则在初中数学教学中进行阅读教学,应当遵循如下的教学原则:1.主体性原则。

从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。

2.差异性原则。

学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。

也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“变量与函数”教学设计林俊伟(民航广州子弟学校),郑青青(广州石化中学)一.内容和内容解析【内容】变量与函数的概念【内容解析】“14.1变量与函数”是人教版义务教育课程标准实验教科书八年级上册第十四章第一单元,本设计是第1课时,引导学生从生活实例中抽象出常量、变量与函数等概念,其中函数的概念是本节核心内容.函数概念的核心是两个变量间的特殊对应关系:(1)由哪一个变量确定另一个变量;(2)唯一对应关系.如果直接研究某个量y有一定困难,我们可以去研究另一个与之有关的量x,从而达到研究的目的.这也是一种化繁为简的转化思想.本节课是函数入门课,首先必须准确认识变量与常量的特征,初步感受到现实世界各种变量之间联系的复杂性,同时感受到研究主要从化繁就简入手,在初中阶段主要研究两个变量之间的特殊对应关系.本设计把重点放在认识“两个变量间的特殊对应关系:由哪一个变量确定另一变量;唯一确定的含义.”而函数图象较为直观形象,有助于学生理解函数的概念,因此把函数图象中的部分内容提前到本课时学习.二.目标和目标解析【目标】理解常量、变量与函数的概念.【目标解析】(1)借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系.初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系.(2)借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简.(3)从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科.三、教学问题诊断分析变量与函数的概念把学生由常量数学的学习引入变量数学学习中.学生知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.【教学重点】借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.【教学难点】怎样理解“唯一对应”.四、教学过程设计(一)导言:1.《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?问题1中都涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.这一节课我们研究两个量的关系,研究怎样由一个量来确定另一个量.【设计意图】从学生的生活入手,开门见山,在极短的时间(一两分钟)内指明本节课的学习内容.现实世界中各种量之间的联系纷繁复杂,应向学生说明我们数学的研究方法是化繁就简,本节课只关注一类简单的问题.(二)概念的引入1.票房收入问题:每张电影票的售价为10元.(1)若一场售出150张电影票,则该场的票房收入是元;若售出205张、310张呢?(2)若一场售出x张电影票,则该场的票房收入y元,则y= .思考:(1)票房收入随售出的电影票变化而变化,即y随的变化而变化;(2)当售出票数x取定一个确定的值时,对应的票房收入y的取值是否唯一确定?2.成绩问题:如图是某班同学一次数学测试中的成绩登记表:这一次数学测试中,13号的成绩为______;15号的成绩为______;16号的成绩为______;23号的成绩为______.思考:(1)测试成绩随________的变化而变化;(2)任意确定一个学号x,对应的成绩f的取值是否唯一确定?3.气温问题:图一是抚顺春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(3)这一天中,在4时~12时,气温(),在16时~24时,气温().A.持续升高B.持续降低C.持续不变思考:(1)天气温度随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?【设计意图】这三个问题中都含有变量之间的单值对应关系,通过研究这些问题引出常量、变量、函数等概念,通过这种从实际问题出发开始讨论的方式,使学生体验从具体到抽象地认识过程.问题的形式有填空、列表、求值、写解析式、读图等,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.(三)概念的界定思考:上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如电影票的单价10元……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个.教师根据学生的回答,在黑板上板书:师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念.【设计意图】(1)如何把具体的实例进行抽象,形式化为数学知识是本课的关键.这里提出的问题“上述三个问题中,分别涉及哪些量的关系?通过哪一个量可以确定另一个量?”是一个关键的“脚手架”,借助“脚手架”,学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量、函数的概念,逐步了解如何给数学概念下定义.(2)此处板书是“脚手架”的重要组成部分,揭示“两个量的对应关系”.问题回顾:指出前面三个问题中涉及到的量,并指出其中的变量、常量、自变量与函数.【设计意图】巩固常量、变量、自变量、函数的概念.例1一个三角形的底边为5,这一边上的高h可以任意伸缩.(1)高h的变化会引起三角形中哪些量发生变化?这些变量是高h的函数吗?(2)试求面积s随h变化的关系式,并指出其中的常量、变量与自变量。

例2如果用r表示圆的半径,半径r的变化会引起圆中哪些量发生变化?这些变量是半径r的函数吗?【设计意图】例1、例2的引入用几何画板做动态演示.此两例引导学生体会几何问题中两个变量在动态变化过程中的依存关系.例3问题1中,售出票数是票房的函数吗?问题2中,学号x是成绩f的函数吗?【设计意图】(1)引导学生从逆向思维的角度进行思考,更全面地理解函数的概念.(2)培养学生逆向思维的习惯.(3)让学生对这三个问题留下更深刻的印象,特别是“成绩问题,”它将在函数这一章书的教学中反复被引用,帮助学生深入理解函数的概念.(四)概念巩固1.购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:(1)y随x变化的关系式y = ,是自变量,是的函数;(2)当购买8支签字笔时,总价为元.2.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离开家后的距离s(千米)与时间t(时)的关系如图所示.(1)当t=12时,s=________;当t=14时,s=________;(2)小李从______时开始第一次休息,休息时间为____小时,此时离家______千米.(3)距离s是时间t的函数吗?时间t是距离s的函数吗?【设计意图】(1)例题和巩固练习,巩固变量与函数等概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,隐含着在函数关系中表示两个变量的对应关系有解析法、列表法、图象法.(2)练习二2(4)从逆向思维的角度提出具有实际背景的问题有利于学生理解函数的“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,让学生养成多角度思考的习惯.(五)概念辨析1.两个变量x、y满足关系式,填表并回答问题:y是x的函数吗?为什么?2.下列各图中,表示y是x的函数的有_________________(可以多选).3.你能举出涉及两个变量的例子吗?它们具有函数关系吗?【设计意图】理解函数概念的核心是“①由哪一个变量确定另一个变量;②唯一对应关系”,给定自变量x的任意一个值就有唯一确定的y的值和它对应,这样的对应可以是“自变量的一个取值对应因变量的一个取值”(简称“一对一”),也可以是“自变量的多个取值对应因变量的同一个取值”(简称“多对一”),但不可以是“自变量的同一个取值对应因变量的多个取值”(简称“一对多”).(六)质疑、小结1.这一节课你有什么收获?还有什么疑问?你可以编一道题考一考同学,也可以向同学请教.2.函数是一种“数”吗?【设计意图】通过小结,让学生抓住函数概念的实质.(七)作业:略——————————————————注:设计组成员有林俊伟,郑青青,雷珮瑛,陈汉桥,陈秀君,陈李,郑燕,褚永华,梁颖瑜,陈敏妍,全文骊,潘瑞胜,伍晓焰,许世红。

《平方差公式》教学设计江苏省平潮高级中学陆志强一、内容和内容解析内容人教版《义务教育课程标准实验教科书·数学》八年级上册“15.2乘法公式”(第一课时)内容解析《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.二、目标和目标解析目标1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;2、掌握平方差公式的结构特征,能运用公式进行简单的运算;3、会用几何图形说明公式的意义,体会数形结合的思想方法.目标解析:1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.三、教学问题诊断分析学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某些项符号及漏项等问题.学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.四、教学过程设计(一)创设情境,引出课题问题1:计算下列多项式的积,你能发现什么规律?(1)(x+1)(x-1)= ;(2)(m+2)(m-2)= ;(3)=;(4)(2x+1)(2x-1)= .【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式.(二)探索新知,尝试发现问题2:依照以上四道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:.【设计意图】根据“最近发展区”理论,在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理.(三)数形结合,几何说理问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系.【设计意图】通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:,验证了其公式的正确性.(四)总结归纳,发现新知问题4:你能用文字语言表示所发现的规律吗?两个数的和与这两个数的差的积,等于这两个数的平方差.【设计意图】鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力.(五)剖析公式,发现本质在平方差公式中,其结构特征为:①左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即;②让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b 的广泛含义,归纳得出:a和b可能代表数或式.【设计意图】通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果.(六)巩固运用,内化新知问题5:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2);(3)(-m+n)(m-n);(4);(5);(6).【设计意图】学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.巩固平方差公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解.问题6:判断下列计算是否正确:(1)(2a–3b)(2a–3b)=4a2-9b2()(2)(x+2)(x – 2)=x2-2 ()(3)(-3a-2)(3a-2)=9a2-4 ()(4)()【设计意图】对学生常出现的错误,作具体的分析,以加深学生对公式的理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件.问题7:计算:(1)(2x +3)(3x-3);(2)(b+2a)(2a-b);(3).解:(1)(2x + 3)(2x –3)=(2x)2-32 = 4x 2-9(2)(b+2a)(2a-b)=(2a)2-b2=4a2-b2(3)==【设计意图】解决操作层面问题.可提议用不同方法计算,以体现学生的创造性.(七)拓展深化,发展思维问题8:计算:(1)98×(-102);(2).【设计意图】把相乘两数转化成两数和与两数差的乘积形式,此题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,注意不能用公式的仍按多项式乘法法则进行.问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.【设计意图】运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习了有用的数学,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解.(八)小试牛刀,挑战自我1.计算:2.在下列括号中填上合适的多项式:3.看谁算得快:【设计意图】设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.第2个填空题有两种填法,属开放设计.目的是加强学生对公式结构特征的理解,同时也锻炼学生的发散思维.(九)总结概括,自我评价问题10:这节课你有哪些收获?还有什么困惑?【设计意图】从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识.(十)课后作业必做题:P156习题15.2 1选做题:1.,则A的末位数是_______.2.计算:(1);(2);(3);(4).【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.六.目标检测设计一、选择题:1.下列多项式乘法中,可以用平方差公式计算的是()A. B.C. D.2.下列计算中,结果正确的是()A. B.=25-4C. D.二、填空题:3.计算:;4.计算:;5.(_____-4b)(_____+4b)=9a2-16b2.三、计算:6.;7.;8.;9.53×47.四、解答题10.已知:两个正方形的周长之和等于32cm,它们的面积之差为48cm2,求这两个正方形的边长.【设计意图】对本节重点内容进行现场检测,及时了解教学目标的达成情况.“用频率估计概率(第1课时)”教学设计荆州市教育科学研究院熊乾荆州市实验中学李宜红王用华一、内容和内容解析内容:人教版《义务教育课程标准实验教科书·数学》九年级上册“25. 3用频率估计概率”(第一课时).内容解析:不确定现象大量存在于自然界和人类社会中,概率正是研究这种现象、揭示其统计规律并帮助我们形成决策的数学工具. 且随着生产的发展和科学技术水平的提高,概率在现实生活和科学预测中的作用愈加广泛和重要,掌握概率的基本知识和思想方法已成为现代社会公民必备的素养.“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究. 教材这样编排其主要意图有三:1、遵从概率的产生及发展规律. 历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律. 概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.所谓频率,是在相同条件下进行重复试验时事件发生的次数与试验总次数的比值,其本身是随机的,在试验前不能够确定,且随着试验的不同而发生改变. 而一个随机事件发生的概率是确定的常数,是客观存在的,与试验次数无关. 从以上角度上讲,频率与概率是有区别的,但在大量的重复试验中,随机事件发生的频率会呈现出明显的规律性:随着样本量的增加,频率将会越来越集中在一个常数附近,具有稳定性,即试验频率稳定于其理论概率. 1713年,瑞士大数学家雅各布·伯努利对这一客观规律性从理论上给予了证明,并提出了大数定律中的伯努利定律. 基于此,我们可以用这个稳定的频率作为事件发生的概率──“一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么事件A发生的概率P(A)=P. ”这也就是概率的统计定义. 它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律. “频率稳定性”是概率统计定义的核心,相比古典定义“用频率估计概率”更具普适性,它是求概率最基本的方法.教学重点:了解用频率估计概率的必要性和合理性.二、目标和目标解析:目标:了解用频率估计概率的必要性和合理性,初步理解概率的统计定义;能通过对事件发生频率的分析,估计事件发生的概率;培养学生的动手能力和处理数据的能力,培养学生的理性精神.目标解析:1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.三、教学问题诊断分析1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.教学难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.四、教学过程:(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)08—09赛季火箭队VS奇才队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:。

相关文档
最新文档