纤维增强水泥基复合材料
纤维增强水泥基复合材料应用技术规程
纤维增强水泥基复合材料应用技术规程一、前言纤维增强水泥基复合材料是近年来发展起来的一种新型材料,其具有较好的机械性能、耐久性能和抗裂性能等优点,广泛应用于建筑、桥梁、隧道、地下工程等领域。
为了规范纤维增强水泥基复合材料的应用,提高其应用效果和安全性,本文将从材料的选择、配合比的设计、施工工艺等方面进行详细阐述。
二、材料选择1.水泥水泥是纤维增强水泥基复合材料的基础材料,其品种应根据工程的具体要求选择。
一般来说,普通硅酸盐水泥或硬磨石水泥都可以作为纤维增强水泥基复合材料的水泥基料。
2.纤维纤维是纤维增强水泥基复合材料中的增强材料,其种类繁多,应根据工程要求和使用环境选择。
常用的纤维有玻璃纤维、碳纤维、聚丙烯纤维等。
3.骨料骨料是纤维增强水泥基复合材料中的骨架材料,其品种也应根据工程要求选择。
一般来说,常规的碎石、碎砖等都可以作为骨料,但要注意骨料的品质和粒径。
4.掺合料掺合料是纤维增强水泥基复合材料中的辅助材料,其种类也很多。
常用的掺合料有矿渣粉、石灰石粉、煤灰等。
三、配合比设计1.水泥用量水泥用量应根据工程要求和强度等级来确定。
一般来说,水泥用量在400kg/m³左右比较合适。
2.纤维用量纤维用量应根据工程要求和纤维种类来确定。
在大多数情况下,纤维用量在1.5%~2.5%之间比较合适。
3.骨料用量骨料用量应根据工程要求和骨料种类来确定。
在大多数情况下,骨料用量在1000kg/m³左右比较合适。
4.掺合料用量掺合料用量应根据工程要求和掺合料种类来确定。
在大多数情况下,掺合料用量在20%~30%之间比较合适。
四、施工工艺1.基层处理在进行纤维增强水泥基复合材料的施工前,必须对基层进行处理。
基层处理应包括清理、打磨、喷水等步骤,以保证基层的平整度和粗糙度。
2.混合料的配制混合料的配制应在专门的搅拌机中进行,严格按照配合比进行配制。
在配制过程中,应注意控制搅拌时间和搅拌速度,以确保混合料的均匀性和稳定性。
ECC混凝土(纤维水泥基复合材料)介绍
ECC混凝⼟(纤维⽔泥基复合材料)介绍什么是ECC?⼯程⽤⽔泥基增强复合材料(Engineered Cementitious Composite),简称为ECC,它是纤维增强⽔泥基复合材料,具有⾼延展性和严格的裂缝宽度控制。
为何选择ECC?传统的混凝⼟⼏乎是不可弯曲的,具有⾼度脆性和刚性,应变能⼒仅0.1%,ECC的应变⼒超过3%,因此更像是韧性⾦属,⽽不像脆性玻璃。
ECC的组成可弯曲混凝⼟由传统混凝⼟的所有成分减去粗⾻料组成,并掺⼊聚⼄烯醇纤维。
它含有⽔泥,沙⼦,⽔,纤维和外加剂。
聚⼄烯醇纤维覆盖着涂层,可防⽌纤维破裂,因此ECC⽐普通混凝⼟变形性能更强。
⼯作机制每当载荷增加超过其极限值时,PVA纤维与混凝⼟在⽔化过程中形成的强分⼦键可防⽌其开裂。
ECC的不同组分共同抵御载荷。
ECC混凝⼟的优点具有像⾦属⼀样弯曲的能⼒,⽐传统混凝⼟更坚固,更耐⽤,持续时间更长;它具有⾃我修复的特性,可以通过使⽤⼆氧化碳和⾬⽔来⾃我治愈;约⽐普通混凝⼟轻20-40%。
ECC混凝⼟的缺点与传统混凝⼟相⽐,施⼯成本较⾼。
它需要熟练的劳动⼒来建造它。
它需要⼀些特殊类型的材料,在某些地区很难找到。
其质量取决于所⽤材料及其制造条件。
其抗压强度⼩于传统混凝⼟。
ECC的应⽤范围:抗震建筑:采⽤柔性混凝⼟制成的结构可承受更⼤的拉应⼒,不会因地震引起的振动⽽破坏。
在⽇本⼤阪,60层楼⾼的北滨⼤楼,就在建筑核⼼⽤了⼯程胶结复合材料,⽤于抗震。
桥⾯伸缩缝:桥⾯的伸缩缝经常堵塞。
ECC随着温度波动移动⽽实际扩展和收缩。
它消除了热胀冷缩相关的许多常见问桥⾯伸缩缝:题,例如连接处堵塞和裂缝,这导致⽔和除冰盐渗⼊联结处并腐蚀钢筋。
混凝⼟帆布:混凝⼟帆布也可以⽤柔性混凝⼟制成。
混凝⼟帆布⽐普通帆布更坚固耐⽤。
它可以⽤在军事领域。
第4章 纤维增强水泥基复合材料
1966年英国公布了Majumday抗碱玻璃纤维专利,才使玻璃纤 维增强水泥制品进入了一个新的发展时期。 1983年,中国建筑材料研究院在国家科委、国家经委和国家 建材局支持下,研究了含锆抗碱玻璃纤维和低碱水泥,并取得了成 功,其强度半衰期为100年,其耐久性处于国际领先地位。
4.3.2 玻璃纤维增强水泥基复合材料的原材料
4.2 纤维增强水泥复合材料分类:
1. 钢纤维增强水泥基复合材料。包括钢纤维混凝土、钢丝网增强 水泥复合材料。 2. 无机纤维增强水泥基复合材料。玻璃纤维、碳纤维增强水泥基 复合材料。 3. 有机纤维增强水泥基复合材料。天然纤维(木纤维、竹丝)和 人工合成纤维(尼龙纤维、芳纶纤维)增强水泥基复合材料。
钢纤维增强水泥基复合材料
钢纤维增强水泥基复合材料分类: A. 钢纤维增强水泥混凝土复合材料(钢纤维混凝土) B. 钢丝网增强水泥砂浆复合材料(钢丝网水泥)
20世纪50年代研究开发的钢丝网水泥板和钢丝网水 泥船
(1)钢纤维混凝土的定义
坍落度的测试方法:用一个上口 100mm、 下口200mm、高300mm喇叭状的塌落度桶, 灌入混凝土后捣实,然后拔起桶,混凝土 因自重产生塌落现象,用桶高 (300mm) 减 去塌落后混凝土最高点的高度,称为塌落 度。如果差值为10mm,则塌落度为10。
极限抗弯强度 初裂抗弯强度 初裂强度 冲击疲劳强度 抗渗等级
5.5MPa 4.88MPa 8.85N.m 5.96/cm2 P4
9.18-13.75MPa 7-8Mpa 23-53N.m 53.3-91/m2 P6-P12
(%) 54-100 4.4-28.2 67-520 43-100 160-500 8-15 倍 0.5 ~ 2.5 倍
碳纤维增强水泥基复合材料的制备
碳纤维增强水泥基复合材料的制备碳纤维增强水泥基复合材料(CFRP)是一种高强度、高刚度、耐久性好的新型材料,被广泛地应用于建筑、道路、桥梁等工程领域。
本文将对CFRP的制备过程进行介绍。
I. 碳纤维的制备碳纤维是CFRP的主要材料之一。
根据需要,碳纤维可以采用不同的制备方法,如化学气相沉积法、炭化毛毡法等。
其中,化学气相沉积法是目前应用最广泛的制备碳纤维的方法之一。
该方法以石油焦为原料,在高温下进行气相反应,使得碳化物沉积在钨丝或其他适合的表面上,形成了碳纤维。
II. 水泥基材料的制备水泥基材料是CFRP的另一个主要组成部分。
在制备水泥基材料时,需要确定其成分及配比,以保证其性能符合要求。
常用的水泥基材料有Portland水泥、硬化剂、矿物掺合料、增韧剂等。
其中,Portland水泥是一种常用的水泥基材料,具有硬化迅速、强度高、抗渗透等优点。
III. CFRP的制备CFRP制备的基本流程如下:先将碳纤维与水泥基材料进行混合,并加入适量的钢材、木材或其他增强材料,将其混合均匀后,将其加压至所需形状和尺寸,然后进行加热和固化。
加热和固化是CFRP制备的关键步骤之一。
加热和固化的目的是使CFRP材料在一定的压力下得到充分的硬化,从而达到理想的强度和刚度。
IV. CFRP的性能CFRP具有很好的强度和刚度,是一种具有高性能的新型复合材料。
CFRP具有以下特点:1. 高强度和高刚度:CFRP的强度和刚度比钢材高出很多。
2. 耐久性好:由于碳纤维具有优异的耐腐蚀性和耐磨性,CFRP具有很好的耐久性。
3. 轻质:CFRP具有低密度,重量轻。
4. 断裂韧性好:CFRP具有良好的断裂韧性,具有抗震能力。
V. 应用前景CFRP具有广阔的应用前景,目前已应用于许多工程领域。
例如,CFRP可以制成桥梁、隧道、建筑物等大型工程建筑材料,也可以应用于汽车制造、铁路、电力、环保等领域。
随着技术的不断进步和发展,CFRP的应用前景将会更加广泛。
高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势共3篇
高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势共3篇高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势1高延性纤维增强水泥基复合材料是一种新型的建筑材料,具有很好的耐久性和机械性能,可以应用于广泛的领域,如道路、桥梁、建筑和水利工程等。
本文将从微观力学设计、性能和发展趋势三个方面探讨该复合材料的最新研究进展。
一、微观力学设计高延性纤维增强水泥基复合材料的性能与微观结构密切相关。
为了设计出高性能的材料,需要对其微观结构进行优化。
最近几年,研究者在这方面取得了很多进展。
他们运用多种方法,如有限元分析、半解析法和多尺度方法等,对该复合材料的微观结构进行了建模和分析。
他们发现,纤维的排布和分布、纤维的形状和尺寸以及水泥基材料的组成和结构等因素都会对复合材料的性能产生重要影响。
一个恰当设计的微观结构可以提高该复合材料的强度、韧性和耐久性等性能。
二、性能高延性纤维增强水泥基复合材料具有众多优良性能,体现在以下几个方面。
1.高强度:该复合材料的强度远高于普通混凝土,具有较好的承载能力,适用于桥梁、隧道等大型工程。
2.高延性:该复合材料的延性比普通混凝土更好,能够抵御灾害因素的冲击,增加工程的安全性。
3.优异的耐久性:该复合材料中纤维的存在,能够有效提高其抗裂性和耐久性,使其在复杂环境中更为稳固。
4.良好的耐磨性:由于该复合材料内部含有高强度纤维,能够有效提高其强度,使其在耐久性上更胜一筹。
5.优秀的耐久性:该复合材料能够抵御较强的冲击力,避免出现应力等问题,长久维持良好的表现。
三、发展趋势随着科技的不断进步,高延性纤维增强水泥基复合材料还有很大的发展空间。
研究人员需要从以下几个方面进行深入研究。
1.探究微观结构优化:通过优化微观结构,进一步提高该复合材料的性能。
2.强度与韧性的平衡:进一步平衡复合材料的强度与韧性,使其适用于各种场所。
3.新型纤维材料的运用:运用新型纤维材料,如碳纤维等,进一步提高复合材料的机械性能。
纤维增强水泥基材料
能力以及抗冲击性能等与韧性有关的性能。
湖南工学院材化系
按其长度可分为非连续的短纤维和连续的长纤维。 目前用于配制纤维水泥基材料的纤维主要增强材料 是短纤维,使用较普遍的有钢纤维、玻璃纤维、聚
丙烯纤维和碳纤维。
湖南工学院材化系
4. 纤维选用原则
不论哪种纤维,作为水泥基复合材料的增强材料,其 必须遵循以下基本原则: (1)纤维的强度和弹性模量都要高于基体。 (2)纤维与基体之间要有一定的黏结强度,两者之间 的结合要保证基体所受的应力能通过界面传递给 纤维。 (3)纤维与基体的热膨胀系数比较接近,以保证两者 之间的黏结强度不会在热胀冷缩过程中被消弱。
湖南工学院材化系
碳纤维在水泥基材料中的应用:
邓家才等用压缩韧性指数衡量了碳纤维对水 泥基复合材料韧性的增强作用,发现碳纤维 水泥基复合材料的压缩韧性指数明显大于基 准水泥基复合材料(增加59%~110%),并 且随着碳纤维掺量的增加,变形能力和承载
能力增强。
湖南工学院材化系
近几年来,一些研究者利用碳纤维水泥基材料与 金属接触具有较低的电阻及良好的电磁屏效应的特 点,拟通过研究将碳纤维增强水泥基材料开发成某
水泥基复合材料的研究与发展
朱莉云
湖南工学院材化系
主要内容
复合材料 水泥基复合材料 水泥基复合材料的分类
定义
纤维的作用
纤维的分类
1.纤维增强水泥基复合材料
纤维的选用原则 纤维增强水泥基复合材料的主要研究方向 影响纤维增强效果的因素 纤维增强水泥基复合材料的成型工艺 纤维增强水泥基复合材料的应用
(1)对普通水泥改性:例如法国圣哥班公司在普通波特兰 水泥中同时掺加偏高岭土与丙烯酸酯乳液;德国海德堡水泥 公司使用高炉水泥(高炉矿渣粉含量在70%以上)并同时掺加偏 高岭土或其它材料。
纤维水泥复合材料
纤维水泥复合材料
纤维水泥复合材料是一种由水泥、纤维和其他添加剂混合而成的新型建筑材料。
它具有优良的耐久性、抗拉强度和耐磨性,因此在建筑领域得到了广泛的应用。
本文将从材料特性、制备工艺和应用领域等方面对纤维水泥复合材料进行介绍。
首先,纤维水泥复合材料具有高强度和耐久性。
它采用纤维增强技术,使得材
料具有较高的抗拉强度和抗压强度,能够有效地抵抗外部力的作用,延长材料的使用寿命。
同时,纤维水泥复合材料还具有优异的耐磨性,能够在恶劣环境下长期使用而不受损坏。
其次,纤维水泥复合材料的制备工艺相对简单。
它采用水泥、纤维和添加剂等
原材料进行混合,通过挤压、模压或喷射等工艺形成成型,然后经过充分固化和养护,最终形成坚固耐用的建筑材料。
制备工艺简单可控,适用于工厂化生产,能够满足不同规格和形状的需求。
此外,纤维水泥复合材料在建筑领域有着广泛的应用。
它可以用于墙体、地面、屋顶等建筑构件的制作,也可以用于室内装饰、家具制作等领域。
由于其优良的性能和多样的形状,纤维水泥复合材料被广泛应用于高层建筑、地铁隧道、桥梁等工程中,为建筑行业的发展提供了重要支持。
总的来说,纤维水泥复合材料具有优良的性能和广泛的应用前景,是建筑领域
中一种非常有潜力的新型材料。
随着科技的不断进步和工艺的不断完善,相信纤维水泥复合材料将在未来得到更广泛的应用,并为建筑行业带来更多的发展机遇。
纤维增强水泥基复合材料
纤维增强型水泥基复合材料一、纤维增强型水泥基复合材料的概述纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
•• 2.2 抗裂性在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
水泥基复合材料的应用与研究
水泥基复合材料的应用与研究一、前言水泥基复合材料是指以水泥、矿物掺合料和一定比例的纤维等材料为基础,加入适量的添加剂,通过混合、浇注、压制等工艺形成的一种综合性材料。
它具有高强度、耐磨、耐腐蚀、防火等优良性能,同时还具有良好的耐久性和可持续性,因此在工程建设领域得到了广泛的应用。
二、水泥基复合材料的种类1.纤维增强水泥基复合材料纤维增强水泥基复合材料是指在水泥基材料中加入纤维,使其具有更好的抗拉强度和韧性,常见的纤维有玻璃纤维、碳纤维、钢纤维等。
这种材料广泛应用于建筑、桥梁、路面等工程领域。
2.高性能混凝土高性能混凝土是指在水泥基材料中加入微粉、氧化硅等掺合料,以及控制水灰比等技术手段,使其具有更高的强度、耐久性和抗渗性。
这种材料广泛应用于高层建筑、大型桥梁、隧道等工程领域。
3.自密实混凝土自密实混凝土是指在水泥基材料中加入一定比例的特殊掺合料和添加剂,通过控制水泥胶凝体的形成,使其具有自密实的性能,从而提高了材料的耐久性和抗渗性。
这种材料广泛应用于水利水电、海洋工程等领域。
4.轻质水泥基复合材料轻质水泥基复合材料是指在水泥基材料中加入一定比例的轻质骨料,使其具有更轻的重量和更好的保温性能,常见的轻质骨料有珍珠岩、膨胀珍珠岩、膨胀粘土等。
这种材料广泛应用于建筑、隧道、地道等领域。
三、水泥基复合材料的应用1.建筑领域水泥基复合材料在建筑领域的应用非常广泛,主要包括建筑结构、外墙保温、地面修补等方面。
例如,在建筑结构中,水泥基复合材料可以用于加固和修补混凝土结构,提高其承载能力和抗震性能;在外墙保温中,水泥基复合材料可以用于制作外墙保温板,达到节能减排的效果;在地面修补中,水泥基复合材料可以用于修复地面裂缝和磨损部位,提高地面的使用寿命。
2.交通运输领域水泥基复合材料在交通运输领域的应用也非常广泛,主要包括桥梁、隧道、地铁等方面。
例如,在桥梁中,水泥基复合材料可以用于加固和修补桥梁结构,提高其承载能力和抗震性能;在隧道中,水泥基复合材料可以用于修补和加固隧道结构,提高其使用寿命和安全性;在地铁中,水泥基复合材料可以用于修补和加固地铁隧道结构,提高其使用寿命和安全性。
纤维增强水泥基复合材料
纤维增强型水泥基复合材料一、纤维增强型水泥基复合材料的概述纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
• 2.2 抗裂性在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
纤维增强水泥基复合材料单轴拉伸状态下性能综述
纤维增强水泥基复合材料单轴拉伸状态下性能综述首先,单轴拉伸性能是评价FRCC材料力学性能的重要指标之一、由于纤维的加入,FRCC材料在单轴拉伸状态下表现出较高的抗拉强度和延伸性能。
纤维可以阻碍开裂的扩散,增强材料的抗拉能力。
研究发现,FRCC的单轴抗拉强度明显高于传统水泥基材料。
此外,纤维的加入还会延缓材料的断裂过程,显著提高材料的延展性。
其次,纤维增强材料对FRCC的拉伸裂缝控制和延展性能改善起到了重要作用。
短纤维的加入可以有效地增加FRCC材料的延展性。
当加载应力达到材料的极限强度时,指数衰减的裂缝扩展发生,而不是剧烈的断裂。
这是因为纤维的引向性使得裂缝在纤维之间传播,从而提高了材料的塑性变形能力。
研究发现,纤维含量的增加可以显著改善FRCC的延展性。
此外,采用纤维方向性控制的方法,如预应力纤维和网状纤维,能够进一步提高材料的延展性。
此外,在单轴拉伸状态下,纤维增强水泥基复合材料还具有良好的防裂性能。
纤维的加入可以有效地抑制裂缝的发展和扩展。
细观机理研究表明,纤维的引导作用可以使材料中的裂缝转化为纤维间的变形裂纹,从而减缓和防止裂缝的扩展。
研究发现,纤维含量和长度的增加可以提高FRCC材料的防裂性能。
此外,纤维类型的选择也会对材料的防裂性能产生影响,如钢纤维具有较高的抗拉性能,在延展性和防裂性方面表现出优势。
最后,纤维增强水泥基复合材料在单轴拉伸状态下还具有良好的耐久性能。
纤维的加入可以改善材料的耐久性,如抗离析性能、抗氯离子侵蚀性能和抗碱颜料侵蚀性能。
研究发现,纤维的引导作用可以减缓氯离子的渗透和材料中的碱颜料的溶出,从而提高材料的耐久性。
综上所述,纤维增强水泥基复合材料在单轴拉伸状态下具有优异的性能。
纤维的加入可以显著提高材料的抗拉强度、延展性和防裂性能。
此外,纤维还可以改善材料的耐久性。
然而,纤维的类型、含量和方向等参数仍然需要进一步研究,以进一步优化材料的性能。
应变硬化纤维增强水泥基复合材料的有限元模拟研究
摘要应变硬化纤维增强水泥基复合材料是一种具有超高韧性的纤维增强水泥基复合材料,而ECC(Engineered cementitious composites)作为其中典型的高韧性代表,通过一定的材料配比和设计方法,该材料的极限抗拉应变3%以上。
国内对ECC的研究起步较晚但发展很快,目前大多数的研究主要集中于试验研究力和物力。
因此本文旨在从数值模拟的角度提出一种新的ECC材料的建模方法,利用有限元模型研究其各项力学性能并进行参数分析。
鉴于此,本文主要利用ABAQUS有限元软件,建立三维两相的细观有限元模型,考虑纤维和基体的界面相互作用,实现了对ECC材料有效的模拟,并研究主要参数对其力学性能的影响。
具体工作如下:(1)利用蒙特卡洛方法建立了纤维的随机投放过程,并用MATLAB编程语言研究了相应算法,实现了纤维横截面在二维空间中的随机投放、纤维纵截面在二维空间中的随机投放、三维实体纤维在三维空间中的随机分布、三维线性纤维在三维空间中随机投放,为建立有限元模型奠定基础。
(2)运用ABAQUS有限元模拟软件,纤维选用桁架单元,基体选用C3D8R 单元。
对于本构关系模型,基体采用塑性损伤模型,纤维本构采用基于纤维单丝拉拔荷载位移曲线提出的纤维-基体联合本构关系模型,并将纤维嵌入基体中,建立纤维和基体三维两相的有限元模型。
(3)利用建立的纤维基体两相三维有限元模型,模拟ECC材料的单轴压缩试验以及四点弯曲试验,通过与文献中试验进行对比,确认模型的有效性。
并改变纤维体积分数、基体开裂强度、初始滑动摩擦应力等参数进行参数分析。
对于抗压试验,ECC的抗压强度和纤维体积分数的关系不大,峰值应变变化并不明显,但ECC的受压破坏之后的韧性改善十分明显;对于四点弯曲试验,2%纤维体积掺量是理想的应变硬化现象产生的临界值,且随着纤维体积分数的不断增加,ECC的韧性会显著增加;降低基体开裂强度有助于ECC应变硬化能力τ与弯曲极限荷载呈正的提高,但会降低试件的峰值荷载;初始滑动摩擦应力比例关系,且对ECC弯曲韧性的影响并不是简单的线性关系,对于一定的纤维τ使得ECC的弯曲韧性最大。
纤维增强水泥基材料应用场景
纤维增强水泥基材料是一种由水泥、细粒骨料和纤维等成分组成的混凝土材料。
纤维增强水泥基材料由于其高强度、耐久性和抗裂性等优点,被广泛应用于各个领域。
以下是纤维增强水泥基材料应用场景的相关参考内容。
1.建筑业纤维增强水泥基材料在建筑业中的应用非常广泛。
它可以用于建筑物的墙体、地板、屋顶等部分的施工,提高建筑物的强度和耐久性。
同时,纤维增强水泥基材料还可以制作出各种形状和尺寸的墙板、楼梯和天花板等构件,提高建筑施工的效率和质量。
2.道路工程在道路工程中,纤维增强水泥基材料可以用于路面的施工。
它可以增加路面的抗裂性和抗压性能,延长路面的使用寿命。
此外,纤维增强水泥基材料还可以用于路面的补修和维护,提高道路的安全性和舒适性。
3.水利工程纤维增强水泥基材料在水利工程中也有广泛的应用。
例如,它可以用于水泥渠道、水闸和水库等建筑物的施工,提高其抗渗漏和抗冲刷能力。
同时,纤维增强水泥基材料还可以制作出各种形状的渠道、管道和河道等结构,提高水利工程的效率和可靠性。
4.隧道工程在隧道工程中,纤维增强水泥基材料可以用于隧道衬砌的施工。
它可以提高隧道的强度和稳定性,减少地层的变形和裂缝。
此外,纤维增强水泥基材料还可以抵御潮湿和高温等恶劣环境的影响,延长隧道的使用寿命。
5.钢结构加固纤维增强水泥基材料可以用于钢结构的加固和修复。
钢结构因受力而产生的裂缝和损伤可以通过纤维增强水泥基材料进行修复,提高钢结构的强度和稳定性。
此外,纤维增强水泥基材料还可以预防和修复混凝土结构的裂缝和损伤,提高结构的安全性和可靠性。
纤维增强水泥基材料的应用场景非常广泛,以上只是一部分常见的领域。
随着科学技术的不断发展,纤维增强水泥基材料将在更多的领域得到应用,并发挥其优越的性能和效果。
纤维增强水泥基复合材料的性能试验研究
纤维增强水泥基复合材料的性能试验研究摘要:最冷月平均温度≤-10℃或日平均温度≤5℃的天数≥145d的严寒地区在我国分布较广,这些寒冷地区的建筑施工问题一直是亟待解决的技术难题,这主要是因为目前国内建筑体系多采用混凝土结构,而寒冷环境下的混凝土施工需要克服混凝土缓凝以及冻胀破坏等问题,这些问题的存在给严寒地区的混凝土的材质和施工工艺提出了更高的要求。
目前,碳纤维增强水泥基复合材料在混凝土建筑结构中应用较为广泛,而这种复合材料在严寒地区的冻融循环作用下的性能变化规律仍不完全清楚。
本文采用干压成型法制备了碳纤维增强水泥基复合材料,研究了不同冻融循环次数下水泥基复合材料的显微形貌、孔隙率、抗压强度和热电性能,该试验成果已初步探明水泥基复合材料冻融循环作用对其性能影响的变化规律,并将利用这些变化规律解决严寒地区施工技术难题。
关键词:纤维增强水泥基;复合材料;性能试验;措施1纤维水泥基复合材料的相关概念1.1纤维水泥基复合材料纤维水泥基复合材料就是指以水泥砂浆、水泥浆或混凝土为粘结剂,以间歇短纤维或连续长纤维为增强材料的水泥基复合材料。
在水泥砂浆中加进去一定量的纤维不仅能够提升混凝土的刚度和韧性,同时对于水泥基复合材料的抗拉强度、抗弯强度和韧性也有一定的帮助,此外还能够有效抑制裂纹扩展,提高非成形材料的流动性,是改善其性能的最有效途径。
1.2纤维掺入水泥基复合材料的作用将纤维掺入水泥基复合材料具备以下三种作用:1.能够有效地增加水泥的基体的应力,促使水泥基体可以承受更大的外部压力。
2.在一定程度上能够对水泥基体韧性和冲击强度有所帮助,纤维基质的改善比水泥基体韧性的改善效果更加明显。
3.它可以有效地阻止裂纹的扩展或改变裂纹的方向,减小裂纹的宽度和平均裂缝面积。
1.3碳纤维水泥基复合材料碳纤维水泥基复合材料是将碳纤维材料合金化成水泥基复合材料而制成的复合材料,具有抗裂、耐腐蚀、抗静电、耐磨、重量轻等优点。
碳纤维材料对水泥基复合材料的改善主要是由于其优异的力学性能和两种材料的协同作用,以提高其整体力学性能。
PVA纤维与钢纤维对高性能纤维增强水泥基复合材料力学性能影响的试验研究的开题报告
PVA纤维与钢纤维对高性能纤维增强水泥基复合材料力学性能影响的试验研究的开题报告一、研究背景和意义高性能纤维增强水泥基复合材料是指将钢纤维、玻璃纤维、碳纤维、PVA纤维等等纤维材料与水泥基材料充分混合制成的复合材料,具有优异的力学性能,如高强度、高韧性、高耐久性、抗裂性能等等,在工程结构领域得到广泛应用。
而纤维是高性能复合材料中的重要组成部分,不同类型、不同性能的纤维在水泥基复合材料中的作用是不同的,因此学术界和工程界对不同纤维的影响机理进行了大量的研究。
PVA纤维作为一种新型纤维,在纤维增强水泥基复合材料中的应用越来越广泛。
相比于其他纤维,PVA纤维具有优异的耐久性、良好的粘结能力、化学惰性、可锻性等诸多优点。
许多学者已经在试验中研究了钢纤维和玻璃纤维对水泥基复合材料力学性能的影响,但是对于PVA纤维的影响还缺乏系统性、深入的研究。
本研究旨在通过试验方法,对PVA纤维与钢纤维对高性能纤维增强水泥基复合材料力学性能的影响进行较为深入的探究,为高性能水泥基复合材料领域的研究提供一定的参考和借鉴。
二、研究内容和方法本研究主要包括两个方面,分别是对PVA纤维与钢纤维对高性能纤维增强水泥基复合材料的力学性能进行试验研究,以及对试验结果的分析和解释。
1. 试验内容在本研究中,将采用压缩强度试验和拉伸强度试验分别测试不同类型的纤维对高性能纤维增强水泥基复合材料的力学性能的影响情况。
具体试验内容如下:1)压缩强度试验在试验中,将设置三种不同的纤维:PVA纤维、钢纤维和不加纤维的样品作为对照组,考虑不同纤维掺量情况下的压缩强度变化。
按照标准试验方法,采用试验机对每组样品进行压缩强度测试,并记录每组试验结果。
2)拉伸强度试验在试验中,同样设置三种不同的纤维,并考虑不同纤维掺量情况下的拉伸强度变化。
按照标准试验方法,采用试验机对每组样品进行拉伸强度测试,并记录每组试验结果。
2. 方法分析通过上述试验得到的试验结果,将进行数据分析和解释。
纤维增强水泥基复合材料
砂浆和玻璃纤维同时往模具上喷射的机理与直接喷射法相同。但它是 把坡璃纤维增强水泥喷射到一个带有减压装置的开孔台上,开孔台铺 有滤布。喷射完后,进行减压,通过滤纸或滤布,把玻璃纤维增强水 泥中的剩余水分脱掉。这种方法是成型水灰比低的高强度板状玻璃纤 维增强水泥的方法。 用喷射脱水法成型的刚脱水的未养护的板具有保持某种程度形状的能 力,因此,加上成型模具,可以进行弯曲加工等两次成型。 用喷射脱水法制作的制品,比直接喷射制品强度高,但制品形状仅限 于以板状或异形断面等的弯曲加工制造。喷射—脱水过程可通过机械 化很容易进行连续操作。
预混料注入到模具里后, 加压除去剩余水分,及 时脱模.可以提高生产 率,并能获得良好的表 面尺寸精度。这种方法 的要点是在加压时,根 据玻璃纤维增强水泥预 混料的配比来选定流动 性和剩余水的脱水方法。
使用这种方法制造的制 品,因形状和强度的原 因,使用范围有限。
与混凝土管的离心成型相同,在旋转的管状模具中喷入玻璃纤 维和水泥浆。该法能够控制纤维的方向性,使它有效地作用到 管子的结构强度上、而且在厚度方向上可以改变纤维量。
纤维增强水泥,无论在用途上,还是制法上, 都是处于开发的新材料。这里以玻璃纤维为 例来介绍纤维增强水泥的成型工艺。
直接喷射 法
抄造法
预混料浇 铸法
纤维增强 水泥
喷射脱水 法
压力法
Байду номын сангаас
离心成型法
把直径2mm以下的细骨料和水泥以及若干量的外加剂以一定的比例 进行拌合,制成水泥砂浆,经泵压送,用喷枪喷到模具面上。 同时,操作者手持喷射设备一边用粗纱切割器把耐碱玻璃纤维 精纱切成规定的长度(纤维的长度一般为12—50mm,含量为3 %—5%),一边重复水泥砂浆的喷吹途径直接将玻璃纤维喷射 到模具上而成型的。这种成型方法的关键是玻璃纤维的均匀分 散,以及喷射砂浆的脱泡和厚度的均匀性。这是最常用的成型 方法。
PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究共3篇
PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究共3篇PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究1 PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究复合材料是一种由两种或两种以上材料组合而成的新型材料。
在工程领域,常常使用纤维增强复合材料(FRC)来替换传统材料,以提高材料的力学性能。
而PVA纤维增强水泥基复合材料(PFRC)则是一种新型的FRC材料。
本研究采用PFRC材料为研究对象,考察了其假应变硬化及断裂特性。
首先,我们介绍PFRC材料的组成。
PFRC材料由水泥、砂、水、聚乙烯醇(PVA)纤维等多种材料组成,其中PVA纤维作为增强体起到支撑水泥基材料的作用。
研究表明,PVA纤维具有良好的柔韧性,可以增加PFRC材料的韧性和耐久性。
接着,我们介绍假应变硬化的概念。
在PFRC材料中,由于PVA纤维的作用,材料在受力时会发生一定量的应变,但是当应力达到一定的数值后,材料的应变就呈现出硬化的现象,即应变不再增加。
然而,经过实验测算,我们发现在PFRC材料中,这种应变硬化是一种“假”应变硬化,因为当应力分布不均匀时,该材料的应变并不是真的硬化。
在接下来的实验中,我们测量了PFRC材料在不同应力水平下的应变和应力数据,并按照负荷史和最大负荷史分别统计了材料的最大应力和断裂延伸能。
结果显示,在低应力范围内,PFRC材料的应变硬化越明显,而在高应力范围内应变硬化就逐渐减弱。
此外,当PVA纤维含量增加时,PFRC材料的断裂延伸能也有所提高。
最后,我们讨论了PFRC材料的断裂特性。
PFRC材料断裂时呈现出典型的拉伸断裂模式,同时材料表面会出现很多细小的裂纹。
我们还测量了材料的断裂延伸能,发现PFRC材料的断裂延伸能与应变硬化程度呈正相关关系。
这表明,PFRC材料在接受外部力的时候,在一定应力水平下具有很好的韧性和延展性。
综上所述,本研究通过对PFRC材料的假应变硬化及断裂特性研究,深入分析了PFRC材料的性能和特点,为PFRC材料在工程领域中的应用提供了一定的参考价值综合本研究结果表明,PFRC材料具有明显的应变硬化特征,但是这种硬化并非真实存在,而是受到应力分布不均匀的影响。
纤维增强水泥基复合材料的分类研究
纤维增强水泥基复合材料的分类研究摘要:纤维增强水泥基复合材料因应用广泛而备受关注,本文对纤维水泥基复合材料进行了分类介绍,并进行了简要的评述。
关键词:纤维水泥基复合材料纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
近年来,使用价格相对低廉的天然植物纤维的研究和应用愈来愈受到世界各国特别是发展中国家的重视。
研究开发植物纤维增强水泥基复合材料不仅能够降低造价,而且有利于环保和可持续发展,具有深远的意义。
1 PV A纤维水泥基复合材料PV A纤维是指聚乙烯醇纤维,也称之为维纶。
以PV A为主要原料,运用新型纺丝工业开发制成的高强高弹模PV A纤维和水溶性PV A纤维,通常称为新型PV A纤维。
日本用高新纺丝技术成功开发了高强PV A,强度达到21.1Cn/dtex,2000年总产达2.5万吨;日本公司开发的K—II高强高弹模PV A纤维强度达到22cN/dtex,这次所开发的PV A纤维与从前的水泥增强材料,在性质方面不同,不只增加强度,而且对混凝土还具有粘接性,使得耐震性和耐冲击性提高,混凝土的断裂和片状剥落现象这些弱点也难以发生。
而且,具有防止水向混凝土内的浸入性质,防止混凝土中性化,对防止钢筋的腐蚀也有很大效果。
2 玻璃纤维增强水泥基复合材料玻璃纤维增强水泥基复合材料是新型建筑材料的主要研究方向之一。
掺加玻璃纤维可以改善和提高水泥基体抗折强度及抗冲击性能差,但在实际应用中,复合材料的表面往往会出现开裂、渗水、胀溶、脱落等现象。
原因是水泥体系含有较多的自由水,当掺加一定量的玻璃纤维后,玻璃纤维与水泥基体之间形成界面结合,导致制品的密实度较差,水分容易渗透到复合材料的内部,并且反复改变方向进行迁移,导致复合材料的耐水性能较差。
同时,渗进复合材料内部微裂纹中的水分子薄膜所形成的契压力产生的破坏作用,也是导致其耐水性能差的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纤维增强型水泥基复合材料
一、纤维增强型水泥基复合材料的概述
纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能
在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度
•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
•
• 2.2 抗裂性
在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;
在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性
纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能
在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
2.5 抗冻性
纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。
•纤维的纤维掺量对混凝土强度的影响很大
•合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝
土内钢筋锈蚀时间推迟2.5倍。
除抗裂外,合成纤维还能提高混凝土的粘
聚性和抗碎裂性。
•以聚丙烯合成纤维为例
•掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。
纤维掺量对混凝土强
度的影响见下表。
三、几种主要增强型水泥基复合材料的应用现状
目前,常用于增强水泥基复合材料的纤维,主要包括钢纤维、碳纤维、玻璃纤维,聚乙烯醇纤维等。
3.1 钢纤维增强水泥基复合材料
钢纤维是发展最早的一种增强用水泥基复合材料纤维。
早在1910 年美国Porter 就提出了把钢纤维均匀地撒入混凝土中以强化材料的设想,随后俄国学者伏·波·涅克拉索夫首先提出了钢纤维增强混凝土的概念。
1963 年美国学者发表了一系列研究成果,从理论上阐述了钢纤维对水泥基复合材料的增强机理。
我国对钢纤维的应用研究相对于其它几种纤维也比较早。
目前,钢纤维水泥基复合材料因其具有高抗拉强度和弹性模量而得到广泛应用,但其价格较贵、且在基体中不易于分散。
3.2 碳纤维增强水泥基复合材料
碳纤维是20 世纪60 年代开发研制的一种高性能纤维,具有超高的抗拉强度和弹性模量、化学性质稳定、与水泥基复合材料粘结良好等优点。
与钢纤维相比较,碳纤维具有胜过钢材的刚度和强度的优良性能,碳纤维体积掺量为3%的水泥基复合材料与基准水泥基复合材料相比,弹性模量增加 2 倍,拉伸强度增加5 倍。
碳纤维的主要缺点是价格昂贵,最近几年开发的沥青基短碳纤维已使它们的价格大为下降,但是与其它纤维比较,其价格仍然高得多,限制了其应用。
3.3 玻璃纤维增强水泥基复合材料
玻璃纤维因其具有抗拉强度高、弹性模量高的特点,被广泛用于铺设水泥基复合材料路面等方面,在20 世纪70 年代,玻璃纤维在混凝土中的应用就已实现了工业化,但关于玻璃纤维混凝土的物理性能方面开展的研究较少,这是因为玻璃纤维水泥基复合材料在新拌水泥基复合材料中不易乱向分散且易受损伤,从而降低了材料强度,同时也存在污染环境的问题。
气中一段时间后,其强度和韧性会有大幅度下降。
纤维水泥基复合材料会由早期的高强度、高韧性向普通水泥基复合材料退化,长期使用时会使得水泥基复合材料强度下降。
目前,玻璃纤维水泥基复合材料多应用于结构加固等方面。
3.4 PVA纤维增强水泥基复合材料
PVA纤维是指聚乙烯醇纤维,也称之为维纶。
以PVA为主要原料,运用新型纺丝工业开发制成的高强高弹模PVA纤维和水溶性PVA纤维,通常称为新型PVA纤维。
现阶段研究的PVA纤维不只增加强度,而且对混凝土还具有粘接性,使得耐震性和耐冲击性提高,混凝土的断裂和片状剥落现象这些弱点也难以发生。
而且,具有防止水向混凝土内的浸入性质,防止混凝土中性化,对防止钢筋的腐蚀也有很大效果。