淬回火零件渗碳层深度的金相法测定

合集下载

实验三、渗碳件的金相

实验三、渗碳件的金相

剥层分析法 :

在试样上每0.05~0.1mm剥层进行定碳分 析。这种方法较精确,但很麻烦。
金相法 :

是生产上常用的方法。试块一般是退火状态,使 其得到平衡组织。如已经淬火,则必需作退火或等温 退火处理。金相试样磨制后,用4%的硝酸酒精侵蚀, 再在显微镜下放大100倍测量。目前对测量渗碳层深度 的标准还不一致,对于碳素钢,将过共析层+共析层 +1/2亚共析过渡层之和作为渗碳层深度,对于合金结 构钢,将过共析层+共析层+亚共析过渡层三者的总和 作为渗碳层。
它是渗碳介质在工件表面产生活性碳原子经过表面吸收和扩散将碳渗到低碳钢或低碳合金钢工件表层使其达到共析或略高于共析成分时的含碳量以便将工件淬火和低温回火后其表层的硬度强度特别是疲劳强度和耐磨性较心部都有显著的提高而心部仍保持一定的强度和良好的韧性
实验二 渗碳件的金相检验
一、实验目的

1、熟悉渗碳零件渗碳层深度的测量方法。 2、熟悉根据齿轮渗碳金相组织标准评定渗碳 组织的方法。

马氏体根据其针状大小确定,残余奥氏 体根据数量的多少确定。一般分为8级。1~5 级合格。在放大400倍下检查,检查部位以齿 面的节圆附近为准。
心部铁素体

合金钢的心部组织应为低碳马氏体。若 游离铁素体过多会使心部强度大大降低,造成 零件早期破坏。所以,原则上渗碳件心部自由 铁素体越少越好。一般分为8级,小模数的齿 轮1~4级合格。模数大于5时,1~5级合格。大 于5级就要返修。测量轮齿中心线上距齿顶2/3 高处为准。
低碳钢或低碳合金钢渗碳后缓冷表层 至心部的组织为: P+Fe3C→P → P+F →心部组织(P+F)
等温淬火法 :

渗碳层深度检验方法(金相法)

渗碳层深度检验方法(金相法)

渗碳层深度检测方法——金相法1金相试样的制备1.1 取样1.1.1取样原则表面处理零件的检验要求试样取自与处理表面相垂直的横截面,磨面必须平整不可有倒角、卷边,否则会导致处理层厚度的错误测试结果。

取样一般应遵循下述原则。

1)代表性。

对局部进行化学热处理的零件,必须在经表面处理过的部位取样。

对于大尺寸的零件,可在附带随炉试块上进行取样。

必要时在事务上取样,以利于对比分析。

2)重要性。

选择零件受力最大或最易损坏的薄弱部位。

在检查零件损坏原因时,必须在损坏的断口或者裂纹处截取试样。

截取试样不应该时试样发生组织变化为原则。

1)对渗层表面未淬硬的零件,可采用常规的机加工方法乳手工锯或车床、刨床等。

2)对已淬硬的零件,可用砂轮切割机(水冷)。

3)对大尺寸零件,先用氧乙炔割下一块,然后再用切割机在无热影响区域截取试样。

试样尺寸以磨面面积小于400mm2,高度15~20mm为宜。

1.1.2 金相试样选取1)纵向取样。

纵向取样是指沿着钢材的锻轧方向取样。

主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、塑性变形程度、变形后的各种组织形貌、热处理的全面情况等。

2)横向取样。

横向取样是指垂直于钢材锻轧方向取样。

主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表层缺陷深度、氧化层深度、脱碳层深度、腐蚀层深度、表面化学热处理及镀层厚度。

3)缺陷或失效分析取样截取缺陷分析的试样,应包括零件的缺陷部分在内。

取样时应注意不能使缺陷在磨制时被损伤甚至消失。

1.2清洗试样可用超声波清洗。

试样表面若有油渍、污物或锈斑,可用合适的溶剂清除。

任何妨碍以后基体金属腐蚀的镀膜金属应在抛光之前去除。

1.3试样镶嵌若试样过于细薄或过软、易碎、或需检验边缘组织、或者为便于在自动磨抛机上研磨试样实验室通常采用可采用热压镶嵌法和浇注镶嵌法较为方便。

所选用先前方法均不得改变试样原始组织。

1.3.1热压镶嵌法将样品磨面朝下放入模中,树脂倒入模中超过样品高度,封紧模子并加热、加压。

渗碳层深度的测定

渗碳层深度的测定

渗碳层深度的测定〔一)剥层化学分析法取渗碳随炉的棒状试样,按每次进入深度0. 05 mm车削分别用化学分析法测定碳含量。

这种方法对渗碳中的碳浓度分析较准确,常用于调试工艺。

(二)断口法在圆试棒上开一环形缺口,随炉渗碳后出炉直接淬火,然后打断。

由于渗层碳浓度较高,肉眼观察断口呈白色瓷状细晶粒,用读数显微镜测量其深度。

此法测量误差较大。

(三)金相法1.将过共析层、共析层及亚共析层之和作为全渗碳层。

由于工艺不同碳浓度梯度在共析、过共析区域的斜率不同,按有关标准中规定:过共析层+共析层之和不得小于总渗碳层深度的40~70%,以保证过渡区不能太陡。

2.在碳钢、合金渗碳钢中,把过共析层、共析层及1/2亚共析层之和作为渗碳层总深度。

其结果与硬度法测定有效硬化层的结果相近。

3.从渗层表面测量到体积分数为50%珠光体处作为渗碳层总深度。

这种方法在实际操作中.所观察到的珠光体+铁素体区域,往往是参差不齐的,对判定50珠光体界限误差较大。

4.等温淬火后测量渗碳层深度。

18Cr2Ni4W钢属马氏体型钢,它没有平衡组织,只能在等温淬火后测其深度。

这种钢渗碳后随炉冷却,从表面至心部均为马氏体,在基体与高碳区交界处有贝氏体析出,但在金相显微镜下观察其界限不甚清晰。

一般是将试样再加热到860℃后,放人280℃等温槽,数分钟后水淬,这时对含碳量的质量分数大于0.3%的区域形成淬火马氏体,而在含碳量近0.3%区域由于Ms点较高则形成回火马氏体,金相试样侵蚀后则有明显的白色(马氏体)区和黑色(回火马氏体)区的界线。

其相关标准可见JB/T 7710-1995《薄层碳氮共渗或薄层渗碳钢件显微组织检测》等行业标准。

(四)显微硬度法(有效硬化层深度测定法)显微硬度法是从试样边缘起测量显微硬度值的分布梯度,根据GB/T 9450-1988《钢件渗碳淬火有效硬化层深度的测定和校核》的标准规定判断渗层深度。

对GB/T 9450-1988标准的应用应注意:1.有效硬化层深度是指:从零件表面到维氏硬度值为550 HV 处的垂直距离。

渗层厚度的测定

渗层厚度的测定

金相法渗层厚度的测定一、实验目的1)了解渗碳、渗氮工艺及渗碳后热处理的组织特征。

2)掌握金相法测定渗层深度的方法。

二、原理概述渗碳是将钢件置于渗碳介质中,加热到单相奥氏体区,保温一定时间使碳原子渗入钢件表面层的热处理工艺。

渗碳的目的是使钢件获得硬而耐磨的表面,同时又使心部保持一定的韧性和强度。

对于进行渗碳的钢材是碳的质量分数一般都小于0.3%的低碳钢和低碳合金钢,渗碳后的工件主要用于受严重磨损和较大冲击载荷的零件,如齿轮、曲轴、凸轮轴等。

渗碳温度一般取860~930℃,不仅使钢处于奥氏体状态,而又不使奥氏体晶粒显著长大。

近年来,为了提高渗碳速度,也有将渗碳温度提高到1000℃左右的,渗碳层的深度根据钢件的性能要求决定,一般为l mm左右。

按照渗碳介质的状态,可分为固体渗碳、液体渗碳和气体渗碳三种,常用固体和气体渗碳。

渗氮又称氮化,是指向钢的表面层渗入氮原子的过程。

其目的是提高表面层的硬度与耐磨性以及提高疲劳强度、抗腐蚀性等。

传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内, 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。

这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。

与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。

渗氮有多种方法,常用的是气体渗氮和离子渗氮。

目前生产中多采用气体渗氮法。

1.渗碳工艺将渗碳件置入具有活性碳气氛中加热到860~930℃,保温一定时间,再将渗碳后的钢件按照性能要求不同,进行不同的热处理工艺有直接淬火、一次淬火和二次淬火三种。

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验

钢铁零件渗氮层深度测定和金相组织检验下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!钢铁零件的品质往往决定了整个设备的使用寿命和性能表现。

渗碳淬火硬化层深度检测标准

渗碳淬火硬化层深度检测标准

渗碳淬火硬化层深度检测标准渗碳淬火是一种常用的表面处理方法,用于提高金属材料的硬度和耐磨性。

在渗碳淬火过程中,碳原子会渗透到金属表面,并与金属原子结合形成碳化物,从而形成硬化层。

硬化层的深度是评估渗碳淬火质量的重要指标之一。

渗碳淬火硬化层深度的检测标准主要有以下几种方法:1. 金相显微镜观察法:这是一种常用的检测方法,通过金相显微镜观察样品的横截面,可以清晰地看到硬化层的深度。

通常,硬化层的深度应符合相关标准要求。

2. 显微硬度计测量法:显微硬度计是一种常用的硬度测试仪器,可以测量材料的硬度。

通过在硬化层上进行一系列硬度测试,可以确定硬化层的深度。

通常,硬化层的深度应达到一定的数值范围。

3. 金相腐蚀法:金相腐蚀是一种将试样浸泡在特定腐蚀液中,以观察和测量试样表面的腐蚀情况的方法。

通过在硬化层上进行金相腐蚀实验,可以确定硬化层的深度。

通常,硬化层的深度应达到一定的腐蚀程度。

4. 电子显微镜观察法:电子显微镜是一种高分辨率的显微镜,可以观察到非常细小的结构。

通过在硬化层上使用电子显微镜观察,可以清晰地看到硬化层的深度。

通常,硬化层的深度应达到一定的微米级别。

以上是常用的渗碳淬火硬化层深度检测标准方法。

在实际应用中,可以根据具体情况选择合适的检测方法。

同时,还需要注意以下几点:1. 检测设备的准确性和精度:选择合适的检测设备,并确保其准确性和精度。

只有准确的检测结果才能有效评估渗碳淬火的质量。

2. 标准要求的合理性:检测标准应该合理,符合实际应用需求。

标准要求过高或过低都会影响渗碳淬火的质量评估。

3. 检测结果的可靠性:在进行检测时,需要保证样品的代表性和一致性。

只有可靠的检测结果才能准确评估渗碳淬火的质量。

总之,渗碳淬火硬化层深度的检测标准是评估渗碳淬火质量的重要指标之一。

通过选择合适的检测方法,并注意检测设备的准确性和精度,以及标准要求的合理性和检测结果的可靠性,可以有效评估渗碳淬火的质量。

这对于提高金属材料的硬度和耐磨性具有重要意义。

20钢铁材料渗层深度测定及组织检验

20钢铁材料渗层深度测定及组织检验

第四节钢铁材料渗层深度测定及组织检验一、渗碳层检测钢的渗碳层检测包括渗碳层深度测定和渗碳层组织检验。

渗碳层深度检测方法有金相法、硬度法、断口法、剥层化学分析法,其中硬度法是仲裁方法。

(一)金相法一般来说,以过共析层+共析层+(1/2)亚共析过渡层之和作为总渗碳层深度,常用于碳钢;以过共析层+共析层+亚共析过渡层之和作为总渗碳层深度,常用于合金渗碳钢。

以上两种试样应为退火状态。

(二)硬度法硬度法是从试样边缘起测量显微硬度分布的方法。

执行标准为GB/T9450-2005《钢件渗碳淬火有效硬化层深度的测定与校核》和GB/T9451-2005《钢件薄表面总硬化层深度或有效硬化层深度的测定》。

被检测试样应在渗碳、淬火后采用维氏硬度试验方法进行,淬硬层深度是指从零件表面到维氏硬度值为550HV1处的垂直距离。

渗碳层的深度就是渗碳淬火硬化层深度,用CHD表示,单位为mm,如CHD=0.8mm;测定维氏硬度时试验力为1kg();硬度测试应在最终热处理后的试样横截面上进行。

测试时,一般宽度在1.5mm的范围内,垂直于渗碳层表面沿着两条平行线呈之字形打压痕,在一条直线上两相邻压痕的距离S不小于压痕对角线的倍,两条直线上相错位的压痕间距不应超过0.1mm。

测量压痕中心至试样表面的距离精度应在±μm的范围内,每个压痕对角线的测量精度应在±μm以内。

在适当条件下,可使用至HV1的试验力进行试验,并在足够的放大倍数下测量压痕。

测试时至少应在两条硬化线上进行,并绘制出每条线的硬度分布曲线(硬度值为纵坐标,至表面的距离为横坐标),用图解法分别确定硬度值为550HV处至表面的距离,如果两数值的差≤0.1mm,则取二者的平均值作为淬硬层深度,否则应重复试验。

上述方法适用于渗碳和碳氮共渗淬火硬化层,距表面3倍于硬化层深度处硬度值小于450HV且硬化层深度大于0.3mm的零件。

经协议各方协商,对于距表面3倍于硬化层深度处硬度大于450HV的钢件,可以选择硬度值大于550HV(以25HV为一级)的某一特定值作为界限硬度;可以使用其它维氏硬度载荷;也可以使用努氏硬度。

20钢铁材料渗层深度测定及组织检验.doc

20钢铁材料渗层深度测定及组织检验.doc

第四节钢铁材料渗层深度测定及组织检验一、渗碳层检测钢的渗碳层检测包括渗碳层深度测定和渗碳层组织检验。

渗碳层深度检测方法有金相法、硬度法、断口法、剥层化学分析法,其中硬度法是仲裁方法。

(一)金相法一般来说,以过共析层+共析层+(1/2)亚共析过渡层之和作为总渗碳层深度,常用于碳钢;以过共析层+共析层+亚共析过渡层之和作为总渗碳层深度,常用于合金渗碳钢。

以上两种试样应为退火状态。

(二)硬度法硬度法是从试样边缘起测量显微硬度分布的方法。

执行标准为GB/T9450-2005《钢件渗碳淬火有效硬化层深度的测定与校核》和GB/T9451-2005《钢件薄表面总硬化层深度或有效硬化层深度的测定》。

被检测试样应在渗碳、淬火后采用维氏硬度试验方法进行,淬硬层深度是指从零件表面到维氏硬度值为550HV1处的垂直距离。

渗碳层的深度就是渗碳淬火硬化层深度,用CHD表示,单位为mm,如CHD=0.8mm;测定维氏硬度时试验力为1kg(9.807N);硬度测试应在最终热处理后的试样横截面上进行。

测试时,一般宽度在1.5mm的范围内,垂直于渗碳层表面沿着两条平行线呈之字形打压痕,在一条直线上两相邻压痕的距离S不小于压痕对角线的2.5倍,两条直线上相错位的压痕间距不应超过0.1mm。

测量压痕中心至试样表面的距离精度应在±0.25μm的范围内,每个压痕对角线的测量精度应在±0.5μm以内。

在适当条件下,可使用HV0.1至HV1的试验力进行试验,并在足够的放大倍数下测量压痕。

测试时至少应在两条硬化线上进行,并绘制出每条线的硬度分布曲线(硬度值为纵坐标,至表面的距离为横坐标),用图解法分别确定硬度值为550HV处至表面的距离,如果两数值的差≤0.1mm,则取二者的平均值作为淬硬层深度,否则应重复试验。

上述方法适用于渗碳和碳氮共渗淬火硬化层,距表面3倍于硬化层深度处硬度值小于450HV且硬化层深度大于0.3mm的零件。

20Cr渗碳淬火金相检验

20Cr渗碳淬火金相检验

金相图谱图册内容汽车渗碳齿轮金相检验图片JB1675-75汽车渗碳齿轮金相检验(JB1673-75)本标准适用于15Cr、20Cr、40CrMo、18CrMnTi、20CrMnTi、12Cr2Ni4A和20Cr2Ni1A等钢制造的汽车渗碳齿轮的金相组织和渗碳层深度的检验。

一、技术要求1.渗碳层深度:按产品图样规定。

渗碳层深度包括过共析层,共析层及过渡区域,即由表面起到心部组织为渗碳层深度包括过共析层及共析层的深度系指由表面起到出现显著铁素体处为止。

面层含碳量应大于0.8%。

渗碳层中过共析层和共析层深度应为渗碳层总深度的50~75%。

2.渗碳层的金相组织应为马氏体,残余奥氏体及碳化物。

(1)碳化物:按本标准碳化物级别图评定。

常啮合齿轮1~6级合格;换档齿轮1~5级合格。

(2)马氏体及残余奥氏体:按本标准马氏体及残余奥氏体级别图评定。

对马氏体针状大小、残余奥氏体的多少,应分级进行平定,1~5级合格。

3.心部组织应为低碳马氏体,允许有托氏体、铁素体、铁素体含量按本标准铁素体级别图进行评定,模数小于或等于5的1~4级合格;模数大于5的1~5级合格。

4.表面及心部硬度:齿的表面硬度为HRC58~64,心部硬度为HRC33~48。

二、检验方法5.取样部位及检验方法:(1)取样部位:试样应在齿的横断面切取(垂直于齿的工作面),包括有齿顶到齿根的整个部位。

(2)渗碳层深度的测量方法:渗碳层深度在放大100倍下测量,测量部位应包括齿顶、齿根及节圆附近三处。

齿顶部的渗碳层深度允许超过图样规定的上限。

(3)马氏体及残余奥氏体在放大400倍下检查。

检查部位在齿面的节圆附近为准。

(4)碳化物检查部位:以齿顶角及工作面为准。

(5)心部硬度及心部组织检查部位:在距齿顶三分之二的齿全高处,如图1:(6)表面硬度:以齿顶或齿端面为准。

6.渗碳层深度的测量方法:从试样表面测至心部组织处。

见图2渗碳层测量图。

渗碳层的测量应在平衡组织状态下进行。

渗碳层深度检验方法与选择

渗碳层深度检验方法与选择
从快速来讲:
方法1、2、5都有相同的制样工序 方法5有两次回火,方法4需要磨床磨制试样,用时较长 2>1>3>4>5
准确性
1>4>5>3>2
选择与小结
关于几种检测方法的选择
首选-硬度法,因为:
渗碳淬火这一过程可以分解为渗碳和淬火两个单独过程;没有渗碳,淬火没有硬度;只有渗碳, 不淬火也没有硬度。渗碳、淬火是手段,硬度是目的,是工艺的最基本要求;
渗层更多考量渗碳结果,多用于评价二次淬火件渗碳质量 硬层更全面地评价渗碳及后序热处理的影响
渗层硬层检测方法
有多种检测方法,目前较为不同利益方能共同接受的是硬度梯度法, 简称硬度法
几种方法可以检测渗碳(渗碳淬火)工件的渗层(硬层),供参考 硬度法……..渗碳淬火后工件达到某一硬度值的深度 金相法……..工件表层达到(过)共析组织的深度 剥层法……..工件表层碳含量达到某规定值的深度 光谱分析法..工件表层碳含量达到某规定值的深度 Ms点法…….不同碳含量的组织转变温度不同的原理
在表中找出定义的碳含量点对应的深度值 如:图中0.8%浓度渗层约为3.4mm,
0.5%浓度渗层约为5.9mm
5. MS点法
此为轴承行业某知名公司独创的方 法,不方便透露过多
为保证试样能淬火时淬透,将渗碳 后(未淬火回火)的工件截取46mm厚度的截面
正常进行淬火
在两个不同的温度段分别进行回火
制样腐蚀并用卡尺根据试样腐蚀后 颜色不同区域测量此处距离表面的 距离,判定到达某一碳含量的渗碳 深度
Know-How : 不同碳含量的淬火马氏体转变为回 火马氏体的温度不同,想要知道具体数值需要 对同一钢种积累大量实验数据才行。一般公司 无法实现,但此方法值得学习材料的人去学习。

金相法测定渗层深度

金相法测定渗层深度

测量渗碳(碳氮共渗齿轮的有效硬化层深度测量渗碳碳氮共渗)齿轮的有效硬化层深度碳氮共渗常州齿轮厂(213001) 陈秋明张永年汽车、拖拉机齿轮大多采用渗碳或碳氮共渗淬火的表面热处理,以提高齿轮的耐磨、抗疲劳强度等性能。

国内汽车、拖拉机齿轮制造行业对此类齿轮的检验,过去一直采用测量渗层深度。

随着与国际标准的接轨,我国新制订的国家标准ZBT04001-88及QCn29018-91中明确规定应采用显微硬度法测量渗层的有效硬化层深度。

勿用置疑有效硬化层深度更能代表齿轮渗碳(碳氮共渗)淬火处理后的综合机械性能,但国内大多数齿轮生产厂家由于老标准应用的时间较长,已形成了习惯,对新的标准还不完全适应;另有少数工厂不具备检测有效硬化层深度的条件。

在生产过程中的炉前试块检验,用测量渗层深度与有效硬化层深度有明显的差异,用有效硬化层测量深度对试样的要求高,且检验周期长,不适合炉前快速检验,那么我们是否可找出一种既简便、又与有效硬化层深度有对应关系的金相测量方法呢?针对此问题,我厂进行了大量对比实验,实验证明可采用测量50%铁素体处距表面的距离来确定有效硬化层深度。

1 测量方法的制订有效硬化层深度的定义是从零件表面到维氏硬度值为550HV处的垂直距离。

从定义中我们知道,有效硬化层深度取决于渗层中的硬度分布,而硬度分布是与渗层中各处的含碳量密切相关的。

我们从齿轮渗碳(碳氮共渗)热处理工艺特点考虑,在正常淬火的条件下渗层淬火组织应为马氏体,渗层中各处的硬度取决于原材料的淬透性和碳浓度分布。

当材料一定时,对应于550HV处的含碳量也应该是一定的。

我厂渗碳(碳氮共渗)齿轮所用材料为20CrMo 或20CrMnTi,经渗碳(碳氮共渗)之后,对应于550HV处的碳浓度约为0.35%~0.40%,从理论上讲,相对应的平衡组织中铁素体与珠光体的比例是一定的,铁素体大约占50%~56%,在金相检验中,50%铁素体比较容易区分,故我们试用,测量50%~56%铁素体处至表面的距离定为有效硬化层深度。

渗碳及渗碳层厚度的测定

渗碳及渗碳层厚度的测定

二、实验原理概述
渗碳层厚度的测定
渗碳过程是碳原子在 Fe中的扩散过程,根据 扩散第二定律,如炉内的碳势一定,则渗碳层厚度 与渗碳时间有如下关系:
X K D
D D0 e
Q RT
二、实验原理概述

测量渗碳层厚度可用显微硬度法和金相法。 本实验采用金相法,即在显微镜下通过测微 目镜测量。渗碳层的厚度是从表面量到刚出 现钢材的原始组织为止。
五、实验报告要求


简述实验目的与实验过程。
画出一定渗碳温度下的渗碳层厚度与渗碳时 间的曲线,并分析讨论实验结果。 比较用显微硬度法和金相法测得的渗碳层厚 度。

END!
二、实验原理概述
图2
低碳钢渗碳后缓冷渗层组织
Байду номын сангаас
二、实验原理概述
过共析渗碳区:这是渗碳零件的最表层,其碳
浓度最高,在一般正常的渗碳工艺条件下,这一区 的含碳量约在0.8%-1.0%之间。 这一层的含碳量约为0.77%。
共析渗碳区:紧接着过共析区的是共析渗碳区, 亚共析过渡区:自渗碳零件表面向心部延伸,
后,可提高表面的硬度、耐磨性及疲劳强度,而心部则仍保 持一定的强度和良好的塑性、韧性,主要用于受严重磨损和 较大冲击载荷的零件。
分类:按照渗碳介质的状态,可分为固体渗碳、液体渗碳
和气体渗碳三种。
二、实验原理概述
渗碳后的热处理
①直接淬火:渗碳后直接淬火,工艺简单,生产
效率高,成本低,脱碳倾向小。
三、实验设备及材料

井式渗碳炉 金相显微镜 目镜测微尺 直尺 表面微氏硬度计 冷却剂(水、10号机油)等 20钢、20CrMnTi钢试样。

淬回火零件渗碳层深度的金相法测定

淬回火零件渗碳层深度的金相法测定

淬回火零件渗碳层深度的金相法测定1---摘要金相法测定渗碳层深度要求试件必须为退火状态。

采用金相法对淬火+低温回火状态渗碳试件进行了渗层深度的测定,并对其误差作了对比分析。

实验说明,直接用金相法测定淬火+低温回火状态的化学热处理试件渗层深度是可行性的。

2---关键词淬火和回火;渗层深度;金相法测定3---引言渗层深度的测量有断口法、显微硬度法和金相法。

断口法仅适用于热处理炉前检查;显微硬度法能直接反映零件的力学性能,为渗层深度的仲裁方法,并有相应的国家标准[1]及行业标准[2];金相法采用渗碳后缓冷试样测定渗层,由于检测效率较高且界限明显而得到广泛使用[3]。

目前渗碳层深度的测定若是仲裁和校核则采用显微硬度法[4],一般生产控制普遍采用金相法。

我公司生产的汽车渗碳齿轮材质为20CrMo钢,采用气体渗碳,渗碳后采用预冷直接淬火+低温回火工艺,炉前检测渗碳层深度采用断口法,最终检验采用试件缓冷后的金相法。

由于试件状态与实际生产零件的不同,退火金相法测定的结果不能代表零件的最终使用状态,因此需要对预冷直接淬火+低温回火零件直接进行渗层深度测量,但是目前对淬火+低温回火零件渗碳层深度的测定尚无明确的方法与界限阐述。

01淬回火件渗层深度金相法测量的可行性目前国内常用的渗碳钢有20钢、20Mn钢、20Cr钢、20CrMo 钢和20CrMnTi钢等,其含碳量均在低碳钢(或低碳合金钢)范围。

低碳钢与合金钢渗碳时的主要区别在于低碳钢比合金钢渗层中的碳浓度要低,其组织和硬度略有不同,但对渗碳层深度测量无影响。

由于渗碳层具有变化的碳浓度,其由表及里逐渐减小,退火状态的渗碳层由表及里由以下三个区域组成[5]:①过共析层组织为珠光体+二次渗碳体;②共析层组织为珠光体;③亚共析渗碳层过渡层,组织为珠光体+铁素体。

珠光体逐渐减少,铁素体逐渐增加,直到心部原始组织(珠光体+铁素体),渗碳缓冷试样渗碳层界限为出现铁素体组织,较容易区分。

渗碳层深度检测标准

渗碳层深度检测标准

渗碳层深度检测标准渗碳层深度是指在金属材料表面形成的一层碳化物,通常用于增强金属材料的硬度和耐磨性。

渗碳层深度的准确检测对于材料的质量控制和工程应用具有重要意义。

因此,制定一套科学严谨的渗碳层深度检测标准显得尤为重要。

一、检测方法。

1. 金相显微镜法。

金相显微镜是一种通过金相显微镜观察金属材料显微组织结构来检测渗碳层深度的方法。

通过金相显微镜的放大倍数和图像分析软件的辅助,可以准确测量渗碳层的深度。

2. 硬度计法。

硬度计是一种通过在金属材料表面进行硬度测试来间接检测渗碳层深度的方法。

由于渗碳层通常比基体金属硬度高,因此可以通过硬度值的变化来推断渗碳层的深度。

3. 电子探针法。

电子探针是一种通过电子束轰击样品表面并测量反射电子能谱来确定元素组成和深度分布的方法。

通过电子探针的分析,可以准确测量出渗碳层的深度和碳浓度。

二、检测标准。

1. 检测设备要求。

金相显微镜、硬度计和电子探针等检测设备应符合国家标准,且经过定期校准和维护,确保检测结果的准确性和可靠性。

2. 检测操作规程。

检测人员应经过专业培训,并熟练掌握各种检测方法的操作技巧和注意事项。

在进行渗碳层深度检测时,应按照标准的操作规程进行,确保检测结果的准确性。

3. 检测结果评定。

根据检测方法的测量结果,对渗碳层深度进行评定。

对于不同的工程应用和材料要求,可以制定相应的渗碳层深度标准,以确保材料的质量和性能满足要求。

三、质量控制。

1. 质量管理体系。

建立健全的质量管理体系,对渗碳层深度检测工作进行全面管理和控制。

包括检测设备的管理维护、检测人员的培训考核、检测操作规程的制定和执行等方面。

2. 数据分析与应用。

对渗碳层深度检测结果进行数据分析和应用,及时发现和解决存在的质量问题。

并根据检测结果,对生产工艺进行调整和改进,以提高渗碳层深度的稳定性和一致性。

3. 质量监督抽查。

定期进行质量监督抽查,对渗碳层深度检测工作进行全面检查和评估。

发现问题及时整改,确保检测结果的准确性和可靠性。

QCT 262-1999 汽车渗碳齿轮金相检验

QCT 262-1999 汽车渗碳齿轮金相检验

中华人民共和国专业标准QC/T 262—1999代替ZB T04 001—88汽车渗碳齿轮金相检验1 主题内容与适用范围1.1 本标准规定了汽车钢制渗碳齿轮金相组织,渗碳层有效层深度的含义及检测方法。

1.2 适用于渗碳淬硬层有效深度大于0.3mm的汽车齿轮。

1.3 用于齿轮在完成所有热处理工序后的质量检查。

2 引用标准GB××××钢件渗碳淬硬层有效深度的测定GB××××齿轮材料热处理后质量检查的一般规定3 术语3.1 表面硬度齿宽中部节圆附近表面的硬度。

3.2 心部硬度在齿宽中部横截面上,轮齿中心线与齿根圆相交处的硬度(见示意图)。

3.3 渗碳淬硬层有效深度从轮齿表面起,在9.81N(1kgf)载荷下测至550HV,也可在49.03N(5kgf)载荷下测至513HV处的垂直距离。

4 试样要求4.1 在制备试样时,不得有因受热而导致组织改变的现象。

4.2 测定渗碳淬硬层有效深度时,被测表面应与硬度机的载物台平行。

5 技术要求5.1 渗碳淬硬层有效深度,由产品图样规定,测试方法按GB××××《钢件渗碳淬硬层有效深度的测定》的规定。

至心部硬度降按GB××××《钢件渗碳淬硬层有效深度的测定》的规定。

5.2 面层含碳量按GB××××《钢件渗碳淬硬层有效深度的测定》的规定。

5.3 碳化物在放大400倍下检查,检查部位以齿顶角及工作面为准,按本标准中碳化物级别图评定。

常啮合齿轮1~5级合格,换档齿轮1~4级合格。

5.4 残余奥氏体及马氏体在放大400倍下检查,检查部位以节圆附近表面及齿根处为准。

按本标准中残余奥氏体马氏体级别图分别评定,1~5级合格。

5.5 表面硬度为HRC~63,心部硬度由产品图样规定。

5.6 表层缺陷组织按GB××××《齿轮材料处理后质量检查的一般规定》6 组织等级6.1 碳化物等级根据其形态、数量、大小、分布情况确定,说明见表1。

关于渗碳层深度的几个问题

关于渗碳层深度的几个问题
但试块渗层深度和工件渗层深度的差异应引起注意根据我们切开工件观察工件为220马力推土机终传动二级主动齿轮模数10个渗层1822mm同材质同模数试块较工件渗层深为015020mm所以建议试块的渗层深度不宜控制在渗层公差的下限而应控制在中上限
关于渗碳层深度的几个问题
·39 ·
关于渗碳层深度的几个问题
青海齿轮厂 (810021) 陈春怀
根据尺寸链的计算公式
m
n- 1
L 0 ,max = 6 L i ,max - 6 L j ,min
i=1
j=m+1
m
n- 1
L 0 ,min = 6 L i ,min - 6 L j ,max
i=1
j=m+1
图 3 所形成的尺寸链示意图
式中 : L 0 ,max ; L 0 ,min ———封闭环最大及最小极 限尺寸 ; L i ,max ; L i ,min ———增环最大及 最 小 极 限 尺寸 ; L i ,max ; L i ,min ———减环最大及 最 小 极 限 尺寸 。 因而可列出 L 0 ,max = L 2 ,max + L 3 ,max - L 1 ,min 。
即 1. 25 + 0. 15
=
L 2 ,max +
1 2
( 119. 5 + 0. 10
-
120)
,因为是半径尺寸
,故乘以
1 2

L 2 ,max = 1. 60
同样地
L 0 ,min = L 2 ,min + L 3 ,min - L 1 ,max
1 . 25 - 0. 15 =
L 2 ,min +
2 如何由试棒渗层深度推知试块渗层深度

渗碳层深度检验方法(金相法)

渗碳层深度检验方法(金相法)

渗碳层深度检测方法——金相法1金相试样的制备1.1 取样1.1.1取样原则表面处理零件的检验要求试样取自与处理表面相垂直的横截面,磨面必须平整不可有倒角、卷边,否则会导致处理层厚度的错误测试结果。

取样一般应遵循下述原则。

1)代表性。

对局部进行化学热处理的零件,必须在经表面处理过的部位取样。

对于大尺寸的零件,可在附带随炉试块上进行取样。

必要时在事务上取样,以利于对比分析。

2)重要性。

选择零件受力最大或最易损坏的薄弱部位。

在检查零件损坏原因时,必须在损坏的断口或者裂纹处截取试样。

截取试样不应该时试样发生组织变化为原则。

1)对渗层表面未淬硬的零件,可采用常规的机加工方法乳手工锯或车床、刨床等。

2)对已淬硬的零件,可用砂轮切割机(水冷)。

3)对大尺寸零件,先用氧乙炔割下一块,然后再用切割机在无热影响区域截取试样。

试样尺寸以磨面面积小于400mm2,高度15~20mm为宜。

1.1.2 金相试样选取1)纵向取样。

纵向取样是指沿着钢材的锻轧方向取样。

主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、塑性变形程度、变形后的各种组织形貌、热处理的全面情况等。

2)横向取样。

横向取样是指垂直于钢材锻轧方向取样。

主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表层缺陷深度、氧化层深度、脱碳层深度、腐蚀层深度、表面化学热处理及镀层厚度。

3)缺陷或失效分析取样截取缺陷分析的试样,应包括零件的缺陷部分在内。

取样时应注意不能使缺陷在磨制时被损伤甚至消失。

1.2清洗试样可用超声波清洗。

试样表面若有油渍、污物或锈斑,可用合适的溶剂清除。

任何妨碍以后基体金属腐蚀的镀膜金属应在抛光之前去除。

1.3试样镶嵌若试样过于细薄或过软、易碎、或需检验边缘组织、或者为便于在自动磨抛机上研磨试样实验室通常采用可采用热压镶嵌法和浇注镶嵌法较为方便。

所选用先前方法均不得改变试样原始组织。

1.3.1热压镶嵌法将样品磨面朝下放入模中,树脂倒入模中超过样品高度,封紧模子并加热、加压。

钢件渗氮层深度测定和金相组织检验-最新国标

钢件渗氮层深度测定和金相组织检验-最新国标

钢件渗氮层深度测定和金相组织检验1 范围本文件规定了钢制零件渗氮及氮碳共渗渗层深度的测定方法和渗氮金相组织的检验方法及技术要求。

本文件适用于气体渗氮、离子渗氮、氮碳共渗处理后的渗氮硬化层深度和化合物层厚度的测定,以及渗氮层脆性、疏松、脉状氮化物和渗氮前组织的检验与评定。

2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。

其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 4340.1 金属材料维氏硬度试验第1部分:试验方法GB/T 4340.2 金属材料维氏硬度试验第2部分:硬度计的检验与校准GB/T 7232 金属热处理术语GB/T 18449.1 金属材料努氏硬度试验第1部分:试验方法GB/T 18449.2 金属材料努氏硬度试验第2部分:硬度计的检验与校准3 术语和定义GB/T 7232界定的以及下列术语和定义适用于本文件。

渗氮硬化层深度nitriding hardness depth (NHD)从渗氮层表面至比心部高出50 HV硬度界限处的垂直距离。

注:心部硬度是3个以上测量值的算术平均值,按四舍五入取10 HV的整数。

化合物层厚度compound layer thickness (CLT)化学热处理时渗入元素与基体中金属元素形成的表面化合物层厚度。

原始组织prior metallographic structure; original structure钢件在渗氮处理前的显微组织。

渗氮层脆性brittleness of nitrided layer在一定的试验力作用下,渗氮件表面维氏硬度压痕边角碎裂的程度。

渗氮层疏松porosity of nitrided layer渗氮件表面化合物内微孔的密集程度。

脉状氮化物nervation and wave like nitride渗氮件扩散层中与表面平行走向的脉浪状氮化物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淬回火零件渗碳层深度的金相法测定
陈静,易琨
(东风汽车电气公司,襄樊441021)
摘要:金相法测定渗碳层深度要求试件必须为退火状态。

采用金相法对淬火+低温回火状态渗碳试件进行了渗层深度的测定,并对其误差作了对比分析。

实验说明,直接用金相法测定淬火+低温回火状态的化学热处理试件渗层深度是可行性的。

关键词:淬火和回火;渗层深度;金相法测定
1 引言
渗层深度的测量有断口法、显微硬度法和金相法。

断口法仅适用于热处理炉前检查;显微硬度法能直接反映零件的力学性能,为渗层深度的仲裁方法,并有相应的国家标准[1]及行业标准[2];金相法采用渗碳后缓冷试样测定渗层,由于检测效率较高且界限明显而得到广泛使用[3]。

目前渗碳层深度的测定若是仲裁和校核则采用显微硬度法[4],一般生产控制普遍采用金相法。

我公司生产的汽车渗碳齿轮材质为20CrMo钢,采用气体渗碳,渗碳后采用预冷直接淬火+低温回火工艺,炉前检测渗碳层深度采用断口法,最终检验采用试件缓冷后的金相法。

由于试件状态与实际生产零件的不同,退火金相法测定的结果不能代表零件的最终使用状态,因此需要对预冷直接淬火+低温回火零件直接进行渗层深度测量,但是目前对淬火+低温回火零件渗碳层深度的测定尚无明确的方法与界限阐述。

2 淬回火件渗层深度金相法测量的可行性
目前国内常用的渗碳钢有20钢、20Mn钢、20Cr钢、20CrMo钢和20CrMnTi钢等,其含碳量均在低碳钢(或低碳合金钢)范围。

低碳钢与合金钢渗碳时的主要区别在于低碳钢比合金钢渗层中的碳浓度要低,其组织和硬度略有不同,但对渗碳层深度测量无影响。

由于渗碳层具有变化的碳浓度,其由表及里逐渐减小,退火状态的渗碳层由表及里由以下三个区域组成[5]:①过共析层组织为珠光体+二次渗碳体;②共析层组织为珠光体;③亚共析渗碳层过渡层,组织为珠光体+铁素体。

珠光体逐渐减少,铁素体逐渐增加,直到心部原始组织(珠光体+铁素体),渗碳缓冷试样渗碳层界限为出现铁素体组织,较容易区分。

渗碳零件采用渗碳预冷直接淬、回火工艺的一般工艺曲线如下[6]。

图1 渗碳预冷直接淬、回火工艺
由于零件自渗碳温度预冷至略高于心部A r3温度实行淬火,而此时温度也高于渗碳层各区域A r3温度,按含碳量高低分区,淬火后零件表层组织为针状淬火马氏体+残余奥氏体+颗粒状碳化物,中间层为隐针马氏体组织,里层为隐针马氏体+低碳马氏体+托氏体组织,心部组织为低碳马氏体。

低温回火后实际零件应由以下三个区域组成:
①过共析层含碳量为0.8%~1.0%,组织为针状回火马氏体+残余奥氏体+颗粒状碳化物;
②共析层含碳量为0.5%~0.8%,组织为隐针马氏体;
③亚共析渗碳层(过渡层) 含碳量为0.15%~0.5%,组织为隐针马氏体+低碳马氏体;隐针马氏体逐渐减少,低碳马氏体逐渐增加。

3 淬回火件金相法测渗碳层组织界限探讨
要对渗碳淬火+低温回火零件直接进行渗碳层深度的测量,必须先找出渗碳层的三个区域界限。

图2至图4(图中虚线为开始界限,实线为结束界限)是同一零件经渗碳淬火低温回火的渗碳层由外及里的组织照片,可以看出组织具有容易分辨的界限。

金相法检验渗碳层深度的理论,是建立在渗碳层组织的变化及其区分上的。

而含碳量在0.2%~0.3%之间淬火形成的主要是板条状马氏体,含碳量在0.6%~0.8%之间淬火形成的主要是针状马氏体[7]。

若用淬火低温回火试样直接测量渗碳层深度,理论上以组织出现低碳马氏体作为判定界限。

图2 过共析层组织(针状回火马氏体+残余奥氏体+颗粒状碳化物) 180×
图3 共析层组织(隐针马氏体) 180×图4 过渡层组织(隐针马氏体+低碳马氏体) 180×
由以上渗碳热处理组织探讨及相应的组织图片分析,认为渗碳预冷淬火回火零件直接进行渗碳深度的测量是可行的,其界限分辨可以依据低碳马氏体的出现来判定。

4 渗碳层深度测量及评定
用金相法进行渗碳层深度的测量,主要就在于渗层深度界限的规定,现以低碳马氏体的出现作为依据,其界限见图5a~d,测量操作及界限分辨规定如下。

(a)(b)
(c)(d)
图5 过渡层组织及界线200×
(1)制样方法金相试样按一般方法制样,采用4%的硝酸酒精溶液侵蚀,侵蚀时间4~10s,夏天取下限,冬天取上限;试样侵蚀后立即用水冲洗,快速用脱脂棉蘸酒精轻轻擦拭磨面后吹干。

(2)界限规定在光学显微镜下判定界限时,以出现发亮的板条状马氏体为界限。

(3)渗层深度测量时混淆组织的判别如下:
碳化物:一般在零件边缘出现,光学显微镜下呈白亮色的棱角块状,有时呈网状分布,在零件尖角处更多;显微硬度高。

铁素体:一般在零件中间部位出现,光学显微镜下呈白亮色的块状,一般不呈网状分布,亮度较碳化物弱一些,显微硬度低。

有碳化物出现的区域不会有铁素体存在。

残余奥氏体:一般在零件边缘随碳化物、针状或隐针马氏体出现,光学显微镜下呈亮色,亮度较铁素体更弱一些,充填针状马氏体针叶之间的空隙。

按以上方法对渗碳层深度进行测量,并对同一状态、同一观察部位的试样采用显微硬度法进行对比测量,对近两年来的渗碳深度要求为0.2~014mm,0.4~0.8mm,0.7~1.0mm和0.9~115mm的渗碳件进行了多次重复测量,渗层深度的测量结果均值对比见表1。

可以看出,采用直接金相法测量渗碳层深度的误差
一般<5%,只在渗层深度<0.3mm时误差较大,采用退火试样金相法测量渗碳层深度的一般误差为5%。

5 说明
本方法适用于合金钢或低碳钢的渗碳、碳氮共渗零件,渗氮层深度测定亦可参照使用,只是渗氮层表面多了一层白亮层。

由于合金钢与低碳钢渗碳后组织在光学显微镜下极其相似,划界方法相同。

界限判定推荐放大倍数为100倍,也可在其它≤400的放大倍数下进行。

放大倍数太高,组织粗化、明度减弱,不利于界限的确定。

在有显微硬度计的场合,可以以本方法作为日常测定,把握有困难时采用显微硬度法作为仲裁测定。

对于不同渗碳钢界限的三种规定与退火试样金相法检测时界限的三种规定一致,即①合金渗碳钢
以过共析、共析和过渡层三者之和作为渗碳层深度。

②碳素渗碳钢以过共析、共析和过渡层的1/2三者之和作为渗碳层深度。

③含铬的渗碳钢以过共析、共析和过渡层的2/3三者之和作为渗碳层深度。

6 结论
采用淬火+低温回火试样的直接金相法可以测量≥0.3mm渗碳层深度,其误差<5%,完全能够满足一般生产需要。

测量<0.3mm渗碳层深度时误差较大,应谨慎使用。

采用直接金相法(淬火回火试样)测量渗碳层深度,可以在同一个试样上观察零件淬火回火金相组织和测量渗碳层深度,提高了实验效率。

本方法可以对实际零件直接进行渗碳层深度的测量,在对零部件进行失效分析时十分方便。

相关文档
最新文档