食品生物技术导论复习资料最终
食品生物技术导论复习考试题
第一章绪论1.什么是食品生物技术?答:食品生物技术是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。
2.举例说明传统生物技术与现代生物技术?两者的区别和联系答:不同:传统生物技术的研究水平是细胞或组织水平,现代生物技术的研究水平是在分子水平。
联系:现代生物技术的研究是以传统生物技术为基础。
现代生物技术的研究能够促进传统生物技术研究现代生物技术和古代利用微生物的酿造技术和近代的发酵技术有发展中的联系,但又有质的区别。
古老的酿造技术和近代的发酵技术只是利用现有的生物或生物机能为人类服务,而现代的生物技术则是按照人们的意愿和需要创造全新的生物类型和生物机能,或者改造现有的生物类型和生物机能,包括改造人类自身,从而造福于人类。
现代生物技术生物工程,是人类在建立实用生物技术中从必然王国走走向自由王国、从等待大自然的恩赐转向主动向大自然索取的质的飞跃。
3.食品生物技术主要包含哪些内容?答:内容:基因工程、细胞工程、蛋白质工程、酶工程、发酵工程、生物工程下游技术、现代分子检测技术。
4.食品生物技术各部分间是怎样的关系?答:在某种意义上,基于现代分子生物学基础上的基因工程技术是食品生物技术的核心和基础,它贯穿于细胞工程、酶工程、发酵工程、蛋白质工程、生物工程下游技术和现代分子检测的技术之中。
而细胞工程、发酵工程、蛋白质工程和现代分子检测技术又相互融合,相互穿插,与基因工程技术构成了一个既有中心,又各有侧重点,又相互联系的密不可分的有机整体。
5.食品生物技术各内容在食品工业发展中的地位和作用?答:食品生物技术研究内容已涉及到食品工业的方方面面,从原料到加工无处不存在食品生物技术的痕迹。
(1)基因工程技术可以根据人类的需要人为地设计新型的食品及食品原料,基因工程还可以为发酵工程提供更优良的工株,促进食品发酵工业的发展。
最新食品生物技术导论复习题
一、名词解释诱变育种:利用诱变剂处理微生物细胞,提高基因突变频率,再通过适当的筛选方法获得所需高产优质菌种的方法。
代谢控制发酵:是指利用生物的、物理的、化学的方法,人为的改变微生物的代谢途径,使之合成、积累、分泌我们所需要的产品的过程。
寡核苷酸介导诱变(oligonucleotide-directed mutagenesis):指在DNA水平上改变氨基酸的编码序列,也称定点诱变(site-specific mutagenesis);补料分批培养:在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。
临界溶氧浓度:指不影响呼吸所允许的最低溶氧浓度。
诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶.非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学.抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶细胞培养:是指动植物细胞在体外条件下的存活或生长,此时细胞不再形成组织.愈伤组织:在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。
接触抑制:细胞从接种到长满底物表面后,由于细胞繁殖数量增多相互接触后,不再增加。
细胞系:原代细胞经第一次传代后,形成的细胞群体,即具有增殖能力,类型均匀的培养细胞,一般为有限细胞系。
抗性互补筛选法:利用亲本细胞原生质体对抗生素、除草剂及其它有毒物质抗性差异选择杂种细胞。
细胞拆合:是指以一定的实验技术从活细胞中分离出细胞器及其组分,然后在体外一定条件下将不同细胞来源的细胞器及其组分进行重组,使其重新装配成为具有生物活性的细胞或细胞器.基因重组 (gene recombination):是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
食品生物技术导论题库及答案2013
食品生物技术导论题库及答案20131. 什么是食品生物技术?答:食品生物技术指利用生物技术手段,包括基因工程、微生物发酵、细胞培养、酶工程等技术,对食品进行加工改良,以达到提高食品品质、增强食品营养成分、改善食品口感、延长食品保质期、开发新型食品等目的的一种技术。
2. 基因工程在食品方面的应用有哪些?答:基因工程被广泛应用于农作物、家禽、水产等的基因改良,以提高其产量、抗病性、抗逆境等性能。
在食品方面,基因工程被用于制备转基因食品,如基因改良玉米、大豆、油菜、番茄、西瓜等,以获得更高产量、抗病性、耐旱性等性能。
3. 食品微生物学是什么?答:食品微生物学是研究食品中微生物的生长、代谢、致病机理、防治等方面的科学。
它是食品科学技术的重要分支,对于保证食品的品质和安全具有非常重要的意义。
4. 食品中常见的致病微生物有哪些?答:食品中常见的致病微生物包括沙门氏菌、大肠杆菌、金黄色葡萄球菌、脑膜炎球菌等。
这些微生物如果进入人体,会引起食物中毒、肠炎、腹泻、呼吸系统感染等多种疾病。
5. 食品加工中常用的酶有哪些?答:食品加工中常用的酶包括淀粉酶、蛋白酶、脂肪酶、果胶酶、酯酶、纤维素酶等。
这些酶可以被用于制备食品添加剂、改善食品口感、增强食品营养成分等方面。
6. 转基因食品的优缺点是什么?答:转基因食品的优点是可以提高产量、增强抗病性、抗逆境等性能;可以开发新型食品,增加产业经济效益;可以提高食品的营养成分、味道、外观等方面。
缺点是有可能产生未知的不良反应和风险,可能对人体健康造成影响;可能对生态环境造成影响。
7. 什么是发酵食品?答:发酵食品是指利用微生物对食材进行发酵,从而改善食品的口感、香味、营养品质、消化吸收等方面的食品。
发酵食品包括豆腐、酸奶、酱油、米酒、醋等。
8. 酸奶的制作原理是什么?答:酸奶的制作原理是利用了乳酸菌对牛奶中的乳糖进行发酵,产生乳酸,使牛奶的pH值下降,形成凝固的酸奶。
在发酵过程中,乳酸菌还会分解出牛奶中的部分蛋白质和脂肪,增加酸奶的营养成分和口感。
食品生物技术复习资料
第一章绪论•生物技术—定义为“红色生物技术”、“绿色生物技术”和“灰色生物技术”三类。
“红色生物技术”是指生物制药技术,“绿色生物技术”是指农业和食品生物技术,而“灰色生物技术”是指工业、环保生物技术。
•食品生物技术---现代食品生物技术的作用•一食品原料和食品微生物的改良,提高食品的营养价值及加工性能;•二生产各种功能食品有效成份、新型食品添加剂;•三可直接应用于食品生产过程的物质转化;•四工业化生产预定食品或食品功能成分。
第二章基因工程4个问题:1.什么是基因工程——基因工程的概念在体外通过人工剪、接,将不同来源的DNA分子组成一个杂合DNA分子(DNA分子重组体),然后导入宿主细胞去复制扩增或表达。
因为通过人工设计,得到一定的设计方案,故称为基因工程.由于整个操作在分子水平上进行,所以也称分子克隆。
基因工程的基本特点是,分子水平操作,细胞水平表达。
2. 为什么能进行基因工程——基因工程的原理和技术(涵盖3XX论和3大技术准备)四.基因工程3XX论,3大技术准备:(一)理论上的3大发现:1. 20世纪40年代,Avery发现了生物遗传物质的化学本质是DNA。
超越时代的科学成就往往不易被人们接受,Avery当时并未赢得阵阵掌声,他的论文事隔10年以后才公开发表。
2. 20世纪50年代,Watson-crick提出了DNA结构的双螺旋结构模型,搞清楚了生物遗传物质的分子机制。
3. 20世纪60年代,确定了遗传信息的传递方式:DNA→RNA→Pr,破译了全部遗传密码,43。
1.“基因剪刀”-限制性内切酶的发明2.载体(“交通工具车子”)-将质粒作为基因工程载体使用3.逆转录酶3.怎样进行基因工程——3大步骤(DNA体外重组,重组DNA如何进行扩增和表达,基因工程后处理)4. 基因工程的应用和前景(一)基因(gene)基因------从化学上来说,指的是一段DNA或RNA顺序,该顺序可以产生或影响某种表型(genotype,phenotype);从遗传学上来说,基因代表一个遗传单位,一个功能单位,一个突变单位。
食品生物技术复习资料
⾷品⽣物技术复习资料⾷品⽣物技术复习资料1、⽣物技术:利⽤⽣物体系,应⽤先进的⽣物学和⼯程技术,加⼯或不加⼯底物原料,以提供所需的各种产品或达到某种⽬的的⼀门新型跨学科技术。
2.基因:具有⽣物学功能的DNA分⼦⽚断,是⼀个分⼦遗传的功能单位。
其本质是DNA,以线形⽅式存在于染⾊体上。
第⼆章基因⼯程及其在⾷品⼯业中应⽤基因⼯程:DNA重组技术的产业化设计与应⽤,包括上游技术和下游技术两⼤组成部分(⼴义的基因⼯程)。
上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因⼯程);⽽下游技术则涉及到含有重组外源基因的⽣物细胞(基因⼯程菌或细胞)的⼤规模培养以及外源基因表达产物的分离纯化过程。
在⾷品⼯业中应⽤是:⾷品原料或⾷品微⽣物的改良。
1、限制性内切酶(⼀)种类I型:切点识别特异性差,应⽤价值不⼤。
II型:切点识别特异性强,识别序列和切割序列⼀致。
⼴泛应⽤于基因⼯程。
2、DNA连接酶由同尾酶产⽣的DNA⽚段,是能够通过其粘性末端之间的互补作⽤彼此连接起来的。
功能:催化DNA中相邻的3`-OH和5`-P之间形成磷酸⼆脂键。
来源:E.coli DNA连接酶:需要NAD作为辅助因⼦3、质粒概念:存在于细菌、放线菌及酵母细胞质中双螺旋共价闭环的DNA(cccDNA),能独⽴复制并保持恒定遗传的复制⼦。
4.⽬的基因采取的两条途径:(1) ⽣物学⽅法(2)酶促合成法或化学合成法5.基因⼯程载体应具备的条件:1、本⾝是⼀个复制⼦,能⾃我复制2、相对分⼦质量要⼩3、有选择标记4、具有单⼀的限制性内切酶位点6.基因重组:将⽬的基因在体外连接构建成重组⼦。
主要靠T4 DNA连接酶7.转化:是指受体细胞直接摄取供体细胞游离的DNA⽚段,将其同源部分进⾏碱基配对,组合到⾃⼰的基因中,从⽽获得供体细胞的某些遗传性状。
8.感受态:指受体细胞能吸收外源DNA分⼦⽽有效地作为转化受体的⽣理状态。
9.基因⼯程在⾷品⼯业中应⽤(1)改良⾷品加⼯原料1、动物:⽜⽣长激素:提⾼母⽜产奶猪⽣长激素:使猪瘦⾁型化2、植物:马铃薯:含较⾼固形物延缓蔬菜成熟、控制果实软化、提⾼抗病和抗冻能⼒⼤⾖、芥花菜:提⾼不饱和脂肪酸的⽐(2)改良微⽣物菌种性能1、改良⾯包酵母:麦芽糖透性酶和麦芽糖酶含量提⾼,⾯包加⼯中CO2量提⾼,产出松软可⼝的⾯包。
食品生物技术复习资料
食品生物技术复习资料第一章绪论 1. 食品生物技术的定义和内容。
食品生物技术:是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。
内容:包括细胞工程,酶工程,发酵工程和蛋白质工程等技术,贯穿于食品制造的全过程(上游过程和下游过程)。
2. 为什么说生物技术是一门综合性的学科,它与其他学科有什么关系?生物技术是研究生命的科学技术,是生物科学和工程学综合交叉的边缘学科。
它是应用生命活动的原理,以细胞生物学、微生物学、生理学、生物化学、分子遗传学等学科为支撑,又结合诸如化学、物理学、化学工程学、数学、微电子技术、计算机技术、信息学等基础学科。
同时还应用了大量的现代化高新仪器及分析检测技术。
第二章基因工程 1. DNA的组成和结构。
DNA是由脱氧核苷酸碱基(腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶)间通过碱基互补配对,在氢键的作用下形成的双螺旋结构.在脱氧核苷酸内部,磷酸基和脱氧核糖是通过3,5磷酸二脂键连接的.DNA是反向(向右)双螺旋结构.构成DNA分子的基本单位是脱氧核苷酸,许许多多脱氧核苷酸通过一定的化学键连接起来形成脱氧核苷酸链,每个DNA分子是由两条脱氧核苷酸链组成。
2. 基因工程、食品基因工程的基本定义。
基因工程:用人工的方法把不同生物的遗传物质分离出来,在体外进行剪切、拼接、重组,形成基因重组体,然后再把重组体引入宿主细胞或个体中以得到高效表达,最终获得人们所需要的基因产物食品基因工程:指利用基因工程的技术和手段,在分子水平上定向重组遗传物质,以改良食品的品质和性状,提高食品的营养价值、贮藏加工性状以及感官性状的技术3. 基因工程研究的理论依据。
理论依据:首先,不同基因具有相同的物质基础;其次:基因是可切割和转移的;第三,多肽和基因之间存在对应关系,并且有着相同的遗传密码;最后,基因的遗传信息是可以遗传的。
食品生物技术复习纲要10页word文档
食品生物技术一、基因工程1、限制性内切酶能识别并切断外来DNA分子的某些部位,使外来DNA失去活性,限制外来噬菌体的繁殖,把这类酶称为限制性核酸内切酶。
分类:1型,2型和3型。
命名:用具有某种限制性内切酶的有机体学名缩写命名。
有机体属名第一个字母和种名前两个字母构成基本名称,加上特殊菌株的名称符号,最后的罗马数字表示同一个细菌中分离出来的不同的限制性内切酶。
2型:性状:分子量较少的单体蛋白,需镁离子维持活性。
NaCl有抑制作用,能被Mg2+激活,巯基有保护作用,对热不稳定,通常是溶于含有50%甘油的缓冲液中贮存于–20℃环境下。
取出使用时必须立即置于冰浴中。
功能:在特殊微点切割DNA,产生具有黏性末端或其他形式的DNA分子片段。
作用:特异位点上切割DNA,产生特异的限制性内切酶切割的DNA片段;建立DNA分子限制性内切酶物理图谱;构建基因文库;用限制性内切酶切出相同的黏性末端,以便进行DNA重组。
2、DNA连接酶:能将两段DNA拼接起来的酶,催化两条DNA之间相邻的5磷酸基和3羟基形成磷酸二酯键。
分类:T4DNA连接酶由大肠杆菌T4噬菌体DNA编码,和大肠杆菌连接酶由大肠杆菌染色体编码。
三种方法:第一种方法是用DNA连接酶连接具有互补性粘性末端DNA片段;第二种方法是用T4DNA连接酶直接将平头末端的DNA片段连接起来,或用末端脱氧核苷酸转移酶给具平头末端的DNA片段加上多聚(dA)或多聚(dT)尾巴之后,再用DNA连接酶将它们连接起来(同聚物加尾连接);第三种方法是先在DNA片段末端加上化学合成的衔接物,使之形成粘性末端之后,再用DNA连接酶将它们连接起来。
这三种方法虽然各有差异,但共同的一点都是利用DNA连接酶所具有的连接和封闭单链DNA的功能。
3、DNA聚合酶共同特点:都能把脱氧核糖核苷酸连续加到双链DNA分子引物链的3’-OH末端,催化核苷酸的聚合,而不发生从引物模板上解离的情况。
大肠杆菌DNA聚合酶1:具有5-3DNA聚合酶活性,3-5外切核酸酶活性(水解错配的碱基对),5-3外切核酸酶活性(切除变异的片段)。
食品生物技术导论 复习题(仅供参考)
考试题型:名词解释(5题15分)填空题(15分)选择题(20分)简答题(6题30分)论述题(2题20分)名词解释(15’)1、基因工程技术:在基因水平上,用分子生物学的技术手段来操纵、改变、重建细胞的基因组,从而使生物体的遗传性状按要求发生定向的变异,并能将这种结果传递给后代。
2、基因工程:是利用人工的方法把不同生物的遗传物质分离出来,在体外进行剪切、拼接、重组,形成基因重组体,然后再把重组体引入宿主细胞或个体中以得到高效表达,最终获得人们所需的基因产物。
3、细胞工程:就是在细胞水平研究开发、利用各类细胞的工程。
是人们利用现代分子学和现代细胞分子学的研究成果,根据人们的需要设计改变细胞的遗传基础,通过细胞培养技术、细胞融合技术等,大量培养细胞乃至完整个体的技术。
4、基础培养基:是含有一般微生物生长所需的基本营养物质的培养基。
5、加富培养基:(营养培养基)在基础培养基中加入某些特殊营养物质制成的一类营养丰富的培养基,这些特殊营养物质包括包括血液、血清等。
6、鉴别培养基:在培养基中加入某种特殊化学物质,某种微生物在培养基中生长后能产生某种代谢产物,而这种代谢产物可以与培养基中的特殊化学物质发生特定的化学反应,产生明显的特征变化,根据这种特征变化,可将该种微生物与其他微生物区分开来。
7、选择培养基:是用来将某中或某类微生物从混杂的微生物群体中分离出来的培养基。
8、细胞全能性:一个微生物细胞就是一个生命,而分化的植物细胞在合适的条件下具有潜在的发育成完整植株或个体的能力。
固体培养基:在液体培养基中加入一定量凝固剂,使其成为固体状态即为固体培养基。
9、固定化酶:酶分子通过吸附、交联、包埋及共价键结合等方法束缚于某种特定支持物上而发挥酶的作用。
10、蛋白质工程:是指通过生物技术对蛋白质的分子结构或者对编码蛋白质的基因进行改造,以便获得更适合人类需要的蛋白质产品的技术。
11、发酵工程:就是利用微生物的特定性状和功能,通过现代化的工程技术生产有用物质或直接应用于工业化生产的技术体系。
(完整版)食品生物技术导论复习题
一、名词解释诱变育种:利用诱变剂处理微生物细胞,提高基因突变频率,再通过适当的筛选方法获得所需高产优质菌种的方法。
代谢控制发酵:是指利用生物的、物理的、化学的方法,人为的改变微生物的代谢途径,使之合成、积累、分泌我们所需要的产品的过程。
寡核苷酸介导诱变(oligonucleotide-directed mutagenesis):指在DNA水平上改变氨基酸的编码序列,也称定点诱变(site-specific mutagenesis);补料分批培养:在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。
临界溶氧浓度:指不影响呼吸所允许的最低溶氧浓度。
诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶.非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学.抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶细胞培养:是指动植物细胞在体外条件下的存活或生长,此时细胞不再形成组织.愈伤组织:在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。
接触抑制:细胞从接种到长满底物表面后,由于细胞繁殖数量增多相互接触后,不再增加。
细胞系:原代细胞经第一次传代后,形成的细胞群体,即具有增殖能力,类型均匀的培养细胞,一般为有限细胞系。
抗性互补筛选法:利用亲本细胞原生质体对抗生素、除草剂及其它有毒物质抗性差异选择杂种细胞。
细胞拆合:是指以一定的实验技术从活细胞中分离出细胞器及其组分,然后在体外一定条件下将不同细胞来源的细胞器及其组分进行重组,使其重新装配成为具有生物活性的细胞或细胞器.基因重组 (gene recombination):是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
食品生物技术导论复习提纲
第二、四、八章一、名词解释1、食品生物技术:食品生物技术指生物技术在食品工业中的应用,其以基因工程技术为核心手段,包括细胞工程、酶工程、发酵工程和蛋白质工程等技术,贯穿于食品制造的全过程(上游过程和下游过程)。
或者,利用生物体及其细胞、亚细胞和分子组成部分,结合工程学、信息学等手段研究及加工处理或制造食品产品的新技术。
2、基因工程:指用酶学方法将异源基因与载体DNA进行体外重组,将形成的重组DNA导入宿体细胞,使异源基因在宿体细胞中复制表达,从而达到改造生物品种或性状,大量生产出人类所需的生物品种和产物,也称分子克隆或重组DNA技术。
3、目的基因:指已被或欲被分离、改造、扩增和表达的特定基因或DNA片段,能编码某一产物或某一性状,又称特异基因或靶基因。
4、基因重组:指将目的基因(或外源基因)与载体在体外结合构建形成重组子。
5、感受态:指宿主细胞能吸收外源DNA分子而有效作为转化受体的某些生理状态。
6、限制性内切酶:指一类以环形或线形双链DNA为底物,能识别双链DNA中特殊核苷酸序列,并在合适的反应条件下使每条链一定位点上的磷酸二酯键断开,产生具有3’-OH和5’-P基团的DNA片段的内切脱氧核糖核酸酶。
7、酶的固定化:是指将酶与不溶性载体结合,使游离酶、细胞或细胞器等的催化活动完全或基本上限制在一定空间内的过程。
8、酶分子修饰:通过改变酶分子的结构,使酶的某些特性和功能发生改变的技术。
9、转基因食品:是指用转基因生物制造、生产的食品、食品原料及食品添加物等。
10、受体(宿主)细胞:指在转化、转导和杂交中接受外源基因DNA导入的细胞,是重组体扩增的场所。
二、思考题1、碱性SDS法提取质粒的原理。
在pH12.0~12.5范围内使染色体中双螺旋开链DNA选择性变性,而闭环双链DNA不变性。
经乙酸钠中和后,SDS引起蛋白质-SDS复合物和相对分子质量高的DNA沉淀,再经高速离心将质粒DNA留于上清液中而分离。
食品生物技术总复习
食品生物技术总复习第1章绪论1、概念:食品生物技术食品生物技术:是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。
2、食品生物技术的研究内容蛋白质工程、基因工程、细胞工程、发酵工程、生物技术下游工程、酶工程第2章基因工程与食品产业1、概念:基因工程、限制性内切酶基因工程:是用人工的方法利用重组DNA技术,在体外通过剪切和拼接方法,对生物的基因进行改造和重新组合,然后导入受体细胞内进行增殖,并使重组基因在受体内表面,产生出人类需要的基因产物。
限制性内切酶:特异性识别一定的DNA核苷酸序列使磷酸二酯键断开,产生具有3'-OH基因和5'-P基因。
2、基因工程诞生的标志:双抗性菌株的获得。
3、基因工程诞生起决定性作用的理论发现和技术三大理论发现:(1)DNA是遗传物质的证实(2)DNA双螺旋模型的提取(3)“中心法则”和“操纵子”学说的提取三大技术发明:(1)核酸限制性内切酶的发现和应用(2)DNA连接酶的发现和应用(3)载体的发现及其应用4、基因工程的主要操作步骤(1)获取供体内的目的基因(2)寻找合适的载体(3)将目的基因与载体体外重组(4)导入受体细胞中(5)筛选和鉴定(6)含重组体的受体细胞大量培养(7)获得表达产物5、获得目的基因的方法(1)生物学方法(鸟枪法):物理法或酶法切割。
(2)物理化学法①密度离心法②单链酶法③分子杂交法(3)化学合成法:已知目的基因(较短)碱基序列或氨基酸序列,用化学方法合成目的基因。
(4)逆转录法:以RNA指导DNA合成,合成的叫cDNA(互补DNA)。
(5)PCR扩增法:PCR多聚酶链式反应。
高温变性低温退火中温延伸(72℃)6、理想载体应具备的条件①能在宿主细胞可进行独立和稳定的自我复制②质量尽量小③在DNA序列中有适当的酶切位点④具一个或多个选择标记基因7、常见载体的种类①质粒:双链环状DNA分子,在细菌中独立于染色体之外。
食品生物技术考前复习资料
名词解释1、重组分子:外源DNA与载体连接后形成的杂种DNA分子。
2、细胞全能性:多细胞生物中每个个体细胞的细胞核具有个体发育的全部基因。
3、生物技术:生物技术应用自然科学及工程学的原理,依靠生物催化剂(酶或活细胞)的作用将物料进行加工,以提供产品或用于社会服务的技术。
4、细胞克隆技术:又叫细胞培养技术,是指同一个亲代细胞形成大量子细胞的无性繁殖过程。
5、蛋白质组学:以蛋白质组为研究对象,即细胞、组织或机体在特定时间和空间上表达的所有蛋白质,从整体的角度分析细胞内动态变化的蛋白质组成与活动规律。
6、发酵工程:是利用微生物特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。
7、质粒:是指细菌细胞中游离于细胞核外的小型共价闭合环状的dsDNA。
8、基因工程:是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外与载体连接,(构建杂种DNA分子,然后导入受体活细胞,以改变生物原有的遗传特性,)获得新品种、生产新产品。
9、基因工程的原理:在体外将不同来源的DNA进行剪切和重组,形成镶嵌的DNA分子,然后将之导入宿主细胞,使其扩增表达,从而使宿主细胞获得新的遗传特性,形成新的基因产物。
9、脱分化:脱分化又称去分化.是指分化细胞失去特有的结构和功能变为具有未分化细胞特性的过程。
11、生物热:是指微生物在生长繁殖中,培养基质中的碳水化合物、脂肪、蛋白质被氧化分解成二氧化碳、水和其他物质时释放出的热。
12、连续发酵:是指以一定的速度向培养系统内添加新鲜的培养液,同时以相同的速度流出培养液,从而使培养系统内培养液的量维持恒定,使微生物细胞能在近似恒定状态下生长的微生物发酵培养方式。
13、植物细胞培养:是指对植物器官或愈伤组织上分离出的单细胞或小细胞团进行培养,形成单细胞无性系或再生植株,或产生代谢产物的技术。
【免费下载】食品生物技术导论
○1○2○318、基因文库筛选法:鸟枪法、基因组文库法、cDNA文库法。
19、PCR(聚合酶链式反应)定义:是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
○1○220、PCR步骤:变性。
将模板DNA置于95℃的高温下,使双链DNA的双链解开变成单链DNA。
退○3火。
将反应体系的温度降低至55℃左右,使得一对引物能分别与变性后的两条模板链相配对。
延伸。
将反应体系温度升高到TaqDNA聚合酶作用的最适温度72℃,然后以目的基因为模板,合成新的DNA链。
如此反复进行约30个循环,即可扩增得到目的DNA序列。
○121、PCR反应体系:要有与被分离目的基因的DNA双链两端序列相互补的DNA引物(约20个碱基)、○2○3○4○5具有热稳定性的酶,如TaqDNA聚合酶dNTP作为模板的目的DNA序列反应缓冲液。
一般PCR反应可扩增出100~5000bp的目的基因。
○1○2○322、PCR种类:逆转录PCR、锚定PCR、反向PCR。
PCR引入的质粒原子:λ噬菌体载体。
23、反义基因技术的概念:指把一段DNA序列以反义方向插入到合适的启动子与终止子之间,然后把此基因构建体转化到受体细胞中去(通常用农杆菌转化的方法),通过选择培养获得转化生物体的技术。
○1○2○324、细胞工程的基本操作和技术:无菌操作技术、细胞培养技术、细胞融合技术。
○1○2○3○425、一般培养基的主要成分:碳源、氮源、无机盐、维生素。
○1○226、培养基的种类(应用):(1)成分划分天然(基因克隆技术实验室、工业大规模发酵生产)合成(微生物营养需求、代谢、分类鉴定、生物量测定、菌种选育、遗传分析等方面实验室研究工作)(2)○1○2物理状态固体(微生物的分离鉴定活菌计数及菌种保藏等)半固体(观察微生物的运动特征、分类鉴○3○1定及噬菌体效价滴定)液体(大规模生产发酵产品和菌体)(3)用途主要基本(一般微生物生长所需)○2○3、加富(培养苛刻的异样型微生物、富集和分离某种微生物鉴别(微生物的快速分类鉴定、分离和筛○4○1选产生某种代谢产物的菌种)选择(分离某种或某类特定微生物)(4)用途次要分析(分析抗生素维○2○3生素浓度和微生物营养需求、)还原性(培养厌氧型微生物)组织培养物(培养专性活细胞寄生的微生物)。
食品生物技术导论期末复习
蛋白质工程:是指以蛋白质的结构及其功能关系为基础,通过基因修饰、蛋白质修饰等分子设计,对现存蛋白质加以改造,从而组建新型蛋白质,或全新设计新的蛋白质的现代生物技术。
酶工程:研究酶的生产和应用的技术过程,包括酶的制备、酶的固定化、酶分子修饰与改性和酶反应器等。
基因疫苗:将含有编码某种抗原蛋白的基因序列的质粒作为疫苗,直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,诱导宿主产生对抗该抗原蛋白的免疫应答而达到免疫的目的。
也叫DNA疫苗或核酸疫苗。
发酵工程:就是利用微生物的特定性状和功能,通过现代化的工程技术生产有用物质或直接应用于工业化生产的技术体系。
什么是一类发酵?二类发酵?三类发酵?一类发酵:产物形成与底物利用直接相关,为生长联系型,又称简单发酵型,产物直接由碳源代谢而来,产物生成速度的变化与微生物对碳源利用速度的变化是平行的,产物生成与微生物的生长也是平行的。
在这些发酵过程中,菌体的生长、基质的消耗、产物的生成三个速度都有一个高峰,三高峰几乎同时出现。
二类发酵:产物形成与底物利用间接相关,为部分生长联系型,又称中间发酵型,产物不是碳源的直接氧化产物,而是菌体代谢的主流产物。
它的特点是在发酵的第一时期碳源大量消耗用于菌体的迅速增长而产物的形成很少或全无,第二时期碳源大量消耗用于产物的高速合成及菌体的生长。
三类发酵:产物形成与底物利用不相关,为非生长联系型,又称复杂发酵型,产物的生成在菌体生长和基质消耗完以后才开始,与菌体生长不相关,与基质消耗无直接关系,所形成的产物为次级代谢产物。
发酵工程应用:⑴医药工业:生产出了如抗生素、维生素、动物激素、药用氨基酸、核苷酸等。
⑵食品工业上的应用主要包括:第一、生产传统的发酵产品,如啤酒、食醋等,使产品的质量和产量得到明显提高。
第二、生产食品添加剂。
如柠檬酸、谷氨酸、红曲素等。
第三、单细胞蛋白的生产。
⑶能源工业:通过微生物发酵或固相化细胞或酶的技术生产绿色能源;采油微生物、产氢微生物、产石油微生物的运用;微生物电池。
食品生物技术(复习专用)
一、名词说明1、基因:是具有遗传效应的片段。
2、质粒:质粒存在于很多细菌以与酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状分子。
3、限制酶:是可以识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割的一类酶4、基因工程:又称基因拼接技术和重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种分子,然后导入活细胞,以变更生物原有的遗传特性、获得新品种、生产新产品。
5、酶工程:是指工业上有目的的设置肯定的反应器和反应条件,利用酶的催化功能,在肯定条件下催化化学反应,生产人类须要的产品或服务于其它目的的一门应用技术。
6、末端转移酶:是一种无需模板的聚合酶,催化脱氧核苷酸结合到分子的3'羟基端。
7、葡萄糖淀粉酶:又称糖化酶。
它能把淀粉从非还原性未端水解1.4葡萄糖苷键产生葡萄糖,也能缓慢水解1.6葡萄糖苷键,转化为葡萄糖。
同时也能水解糊精,糖原的非还原末端释放β葡萄糖。
8、相对酶活力:具有相同酶蛋白量的固定化酶与游离酶活力的比值称为相对酶活力。
9、α-淀粉酶:可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度快速降低,变成液化淀粉,故又称为液化淀粉酶、液化酶、α-1,4-糊精酶。
10、甲基化酶:作为限制与修饰系统中的一员,用于爱护宿主不被相应的限制酶所切割。
11、葡萄糖异构酶:也称木糖异构酶,能将葡萄糖、木糖、核糖等醛糖可逆地转化为相应的酮糖。
12、发酵工程:是指采纳现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或干脆把微生物应用于工业生产过程的一种新技术。
13、补料分批发酵:又称“流加发酵”,是指在微生物分批发酵过程中,以某种方式向发酵系统中补加肯定物料,但并不连续地向外放动身酵液的发酵技术,是介于分批发酵和连续发酵之间的一种发酵技术。
最新四川大学食品生物技术导论复习题
段飞霞版本,标红的为今年的考题,题型为名词解释6个三十分,简答题4个四十分,阐述题2个三十分。
一、绪论1.食品生物技术的基本概念:食品生物技术是现代生物技术在食品领域中的应用,指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的手段和方法设计新型的食品和食品原料。
2.食品生物技术研究的内容:(1)改善农业生产、解决食品短缺①提高农作物产量及其品质(培育抗逆的作物优良品系、植物种苗的工厂化生产、提高粮食品质、生物固氮,减少化肥使用量、生物农药,生产绿色食品)②发展畜牧业生产(动物的大量快速无性繁殖、培育动物的优良品系)(2)食品生产、食品加工、食品检测(3)提高生命质量、延长人类寿命(开发制造奇特而又贵重的新型药品、疾病的预防和诊断、基因治疗)(4)解决能源危机、治理环境污染(解决能源危机、环境保护)(5)制造工业原料、生产贵重金属(制造工业原料、生产贵重金属)二、基因工程1.什么是基因工程?优点?利用重组DNA或扩增技术从工体生物基因组中分理出、或以人工合成的方法取得目的基因,通过一系列切割、加工修饰、拼接等方法产生重组DNA分子,将其转入适当的受体细胞并使重组基因在受体细胞中表达,以获得人类所需要的基因产物。
优点:1.大大缩短育种年限 2.打破常规育种难以打破的物种隔离2.基因工程的操作步骤?①用限制性内切酶分离或人工合成目的基因,并制备运载体(质粒、病毒、噬菌体);②将目的基因与运载体用DNA连接酶连接组成重组体;③将重组体导入细胞;④筛选、鉴定出含有外源目的基因的菌体或个体3.什么是基因重组?利用限制性内切酶和其他一些酶类,切割和修饰载体DNA和目的基因,并将两者连接起来。
主要包括4个步骤:目的基因的分离或制备;外源基因DNA与载体的连接反应;将重组DNA导入受体(宿主)细胞;通过筛选找到理想重组体的受体(宿主)细胞。
4.基因工程研究的理论依据是什么?①不同基因具有相同的遗传物质②基因是可切割和转移的③多肽与基因存在对应关系,并且有相同的遗传密码④基因的遗传信息是可以遗传的5.什么是反义DNA\RNA?RNA怎么被沉默?反义RNA是指有义DNA链转录成的、与特异的靶RNA互补结合并能抑制靶RNA表达的一段序列。
安农大2012-2013《食品生物技术》复习资料
2013年5月《食品生物技术导论》复习资料第1章绪论现代生物技术的发展趋势主要体现在如下几个方面。
①基因重组操作技术将进一步完善。
高效、定位更准确基因操作技术的研究;高效表达系统的研究;定时、定位表达技术的研究等新技术、新方法将会推动生物技术的发展,一些地球上从未有过的生物物种将会出现,丰富地球的生物物种。
②基因工程药物和疫苗的研究与开发将会突飞猛进,高效、低副作用的新型生物治疗药剂将在基因工程技术、发酵工程和生物工程下游技术发展的基础上不断地出现,人类目前的许多疑难杂症无法用药物治疗的局面将被克服。
③转基因动植物将会取得重大突破。
现代生物技术在农业上的广泛应用将全面展开,人类历史上新一轮的绿色革命将会出现。
人类将不会再面临食物短缺的威胁。
④生命基因组计划将在许多生命领域展开,但重点集中在与人类活动密切相关的领域,如人类重大疾病、农业和食品等。
后基因组学与蛋白质组学将是研究与开发的重点。
⑤基因治疗将会取得重大进展,有可能革新整个疾病的预防和治疗领域。
预计在21世纪初,恶性肿瘤、艾滋病等严重危害人类健康的疾病防治可望有所突破。
⑥蛋白质工程、酶工程、发酵工程将在基因工程的基础上达到长足的发展,它们将会把分子生物学、结构生物学、计算机技术、信息技术、现代工程技术等有机地结合起来,形成一个相互包含、相互依赖的高度综合的学科。
⑦信息技术渗透到生物技术的领域中,形成引人注目、用途广泛的生物信息学。
这将会大大促进生物技术的研究、应用和开发。
⑧食品生物技术将会伴随着现代生物技术的发展飞速向前发展,会有更多的新食品和新技术出现,这不仅可以丰富人们对食品多样化的要求,而且还将在21世纪对解决由于人类人口爆炸带来的食品短缺起到无法估量的作用。
因此,作为现代生物技术重要分支的食品生物技术对人类的作用可以归结为:①解决食品短缺,缓解由于人口增长带来的压力;②丰富食品种类,满足不同层次消费人群的需求;③开发新型功能性食品,保障人类健康;④生产环保型食品,保护环境;⑤开发新资源食品,拓宽人类食物来源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品生物技术绪论名词解释1 食品生物技术食品生物技术(food biotechnology):是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成果为基础,结合现代工程技术手段和其它学科的研究成果,用全新的方法和手段设计新型的食品和食品原料2 基因工程基因工程:通过一系列技术操作过程,获得人们预先设计好的生物,该生物所具有的特性往往是自然界不存在的。
是用人工的方法把不同生物的遗传物质(基因)分离出来,在体外进行剪切,拼接,重组形成基因重组体,然后再把重组体引入宿主细胞或个体中得以高效表达,最终获得人们所需要的基因产物。
3 细胞工程细胞工程(cell engineering):在细胞水平研究、开发、利用各类细胞的工程。
是人们利用现代细胞分子生物学的研究成果,根据需求设计改变细胞的遗传基础。
4 蛋白质工程蛋白质工程(protein engineering):通过对Pr化学、Pr晶体学和动力学的研究,获得有关Pr理化特性和分子特性的信息,以此为基础有目的设计改造编码蛋白的基因,通过基因工程技术获得可以表达Pr的转基因生物系统,该生物系统可以是转基因微生物、转基因植物、转基因动物,或细胞系统。
最终产出改造过的Pr5 酶工程酶工程(enzyme engineering):利用酶催化作用进行物质转化的技术,是酶学理论、基因工程、蛋白质工程、发酵工程相结合而形成的一门新技术6 发酵工程发酵工程是将微生物学、生物化学和化学工程等学科基本原理有机结合,是建立在基因工程技术基础上的一门应用技术性学科。
7 生物工程下游技术生物工程下游技术(biotechnique downstream processing):将发酵工程、酶工程、蛋白质工程和细胞工程生产的生物原料,经过提取、分离、纯化、加工等步骤,最终形成产品的技术二问答题1 食品生物技术研究内容包括哪些?内容:基因工程、细胞工程、蛋白质工程、酶工程、发酵工程、生物工程下游技术、现代分子检测技术2 食品生物技术在食品工业发展的地位如何?地位食品生物技术研究内容已涉及到食品工业的方方面面,从原料到加工无处不存在食品生物技术的痕迹。
利用基因工程技术以根据人类的需要人为地设计新型的食品及食品原料,基因工程还可以为发酵工程提供更优良的工株,促进食品发酵工业的发展。
(1)基因工程将处在21世纪食品工业的核心位置;(2)发酵技术很早被人们用于生产食品,食品发酵工程在食品工业中占有举足轻重的作用;(3)食品与酶的关系密切,食品生产离不开酶处理,蛋白质工程和酶工程在食品工业中所占比重将会更大;(4)生物工程下游技术作为现代食品工业不可缺少的部分将对食品工业的发展起到推动作用。
3 叙述一下你对生物技术食品的安全性,特别是转基因食品的安全性有何看法?①转基因食品中外源基因对人健康的潜在危险;②转基因作物新基因对食物链其它环节的不良后果;③转基因植物对生物多样性的影响。
第二章一、名词解释1 基因工程基因工程:通过一系列技术操作过程,获得人们预先设计好的生物,该生物所具有的特性往往是自然界不存在的。
是用人工的方法把不同生物的遗传物质(基因)分离出来,在体外进行剪切,拼接,重组形成基因重组体,然后再把重组体引入宿主细胞或个体中得以高效表达,最终获得人们所需要的基因产物。
2 基因工程载体基因工程载体(vector or carrier):在细胞内具有自我复制能力的、运载目的基因进入宿主细胞的运载体。
3 限制性内切酶限制性内切酶(restriction enzyme: RE):在特定部位限制性地切割DNA分子的酶。
通过该酶作用,生物基因被切成许多独立小片段,从中分离出目的基因,进一步克隆、鉴定它们。
有三种限制性内切酶!4 黏性末端有些限制性内切酶切割DNA后产生5’磷酸基团突出的末端和3’羟基突出的末端,统称为黏性末端。
5 平末端一些在切割两条链两端平整(平末端)的DNA分子,这些末端叫平末端(blunt end)。
6 DNA连接酶能将两段DNA拼接起来的酶称DNA连接酶(ligase)13 外源基因插入到载体内的非自身的DNA片段称为外源基因(foreign gene)。
14 目的基因(objective gene)目的基因(objective gene),又叫靶基因( target gene) ,是指根据基因工程的目的和设计所需要的某些DNA分子的片段,含有一种或几种遗传信息的全套密码(code)。
15 人工接头人工接头(linker) 是人工合成的具有特定限制性内切酶识别和切割序列的双股平端DNA短序列,将其接在基因片段和载体DNA上,使它们具有新的内切酶位点,用相应的内切酶切割,就可以分别得到互补的黏性末端16 转化与转染转化(transformation) 使重组体DNA分子在热休克(heat shock)的短暂时间内被导入受体。
转染未包装病毒DNA导致基因转移的现象。
17 受体细胞受体细胞也叫宿主细胞,分原核受体细胞(最主要是大肠杆菌)、真核受体细胞(最主要是酵母菌)、动物细胞和昆虫细胞(真核受体细胞)。
18 DNA体外重组将目的基因与载体连接在一起,称DNA体外重组。
19 基因重组(gene recombination)是基因工程的核心,利用限制性内切酶和其他一些酶类,切割和修饰载体DNA和目的基因,并将两者连接起来20 亚克隆(sub-cloning)把DNA片段从某一类型的载体无性繁殖到另一类型载体的过程称亚克隆(sub-cloning)。
21 同族酶同族酶也叫同裂酶(isoschizomer),指来源于不同机体但具有相同识别和切割序列的酶。
22 克隆(cloning)目的基因与载体连接成重组DNA后,将其导入受体细胞进行扩增和筛选,得到重组子,这就是外源基因的无性繁殖—克隆(cloning)。
23 热休克24 体外包装(in vitro package)在体外将重组体DNA放置到噬菌体蛋白质外壳内,再通过正常噬菌体感染过程导入宿主细胞。
将重组子噬菌体包装成噬菌体颗粒,使其能够感染细菌,并在宿主菌体内扩增和表达外源基因。
25 共转化(co-transformation)将外源基因与报告基因(report gene)共同导入感受态真核细胞的方法,称“共转化”(co-transformation)。
26 电转化(electro-transformation)电转化(electro-transformation) 也称高压电穿孔法(high-voltage electroporation,简称电穿孔法electro-poration) ,向受体细胞施加短暂的高压脉冲电流,使质膜形成纳米大小微孔,DNA直接通过这些微孔,或作为微孔闭合时所伴随发生的膜组分重新分布而进入细胞质中。
27 微注射技术(micro-injection)微注射技术(micro-injection) 也称直接显微注射技术(directmicro-injection) ,用微吸管吸取供体DNA溶液,在显微镜下准确插入受体细胞核中,将DNA注射进去。
此法常用于转基因动物的基因转移。
28 脂质体(liposome,人工膜泡)脂质体(liposome,人工膜泡)作为体内或体外输送载体的方法,一般都需要将DNA或RNA包囊于脂质体内,然后进行脂质体与细胞膜的融合,通过融合导入细胞。
39 重组DNA载体转化法简称载体法,是以载体为媒介的基因转移,即将目的基因连接于某一载体DNA上,然后通过宿主感染受体植物而将外源基因转入植物细胞的方法—最常用。
30 反义RNA (antisense RNA)反义RNA (antisense RNA) 指有义(sense) DNA链转录成的、与特异靶RNA互补结合并能抑制靶RNA表达的一段序列。
31 反义基因(antisense gene)转录产生反义RNA的基因称之为反义基因(antisense gene)。
二简答题1 基因工程基本过程基因工程基本过程:利用重组DNA技术,经体外“cut”和“splice”等方法,改造和重组生物基因,再导入受体细胞中增殖、表达,产出人类需要的基因产物。
2 基因工程主要内容基因工程主要内容:切、接、贴和检查、修复等。
基因工程操作4步骤①由供体分离出目的基因or人工合成目的基因并制备运载体(质粒、病毒或噬菌体) ;②目的基因经DNA连接酶接入运载体—重组体;③将重组体引入宿主细胞;④筛选、鉴定出含有外源目的基因的菌体或个体。
3 Ⅱ型限制性内切酶命名原则:Ⅱ型限制性内切酶命名原则:有机体属名第一个字母(大写、斜体)和种名前两个字母(小写、斜体)构成基本名称,株系数字通常省略;若酶存在于一种特殊菌株中,在基本名称后面加上菌株名称符号;罗马数字表示从同一个细菌中分离出来的不同限制性内切酶。
4 Ⅱ型限制性内切酶作用特点与主要用途特点:①位点特异性酶,识别双链DNA分子中特异序列,在特异部位水解双链DNA中每一条链上的磷酸二酯键,造成双链缺口,切断DNA分子。
②识别位点为4、5、6、8个或更多碱基对③缺口DNA序列大多呈回文结构(正、反读一样)。
主要用途:①在特异位点将DNA切成片段;②建立DNA分子的限制性内切酶物理图谱;③构建基因文库;④切出相同的黏性末端,以便重组DNA。
5 DNA连接酶用途用途:①连接带匹配黏端的DNA分子;②使平端双链DNA分子互相连接或使合成的接头相连接14 理想的基因工程载体应具备的特征有哪些?常见基因载体有哪些?特征:①在宿主细胞内独立、稳定地自我复制。
外源DNA插入其DNA之后,仍保持稳定复制能力和遗传特性。
②易于从宿主细胞中分离,并进行纯化。
③在DNA序列中有限制性内切酶单一酶切位点—位于DNA复制非必需区,在这些位点上插入外源DNA不影响载体自身DNA复制。
④有能直接观察的表形特征(报告基因),插入外源DNA后,这些特征可作为重组DNA选择标记。
常见的基因载体:细菌质粒载体、农杆菌质粒载体、λ噬菌体载体、柯氏质粒载体和病毒载体等。
18 常用的噬菌体载体有哪些?各有什么特点?•λ噬菌体:λ噬菌体是温和噬菌体,注入的DNA整合到大肠杆菌染色体中,与染色体一起复制,在某种营养或环境胁迫条件下,整合的λ噬菌体DNA被切割出来,进入裂解循环。
λ噬菌体是一种线状双链分子,其中大约20kb对于整合/切割过程极为关键,称整合/切割(I/E)区域。
构建核基因文库来时,将这20kb DNA片段去掉,强迫重组λ噬菌体进入裂解循环。
•M13载体:M13载体是一种细丝状的特异性大肠杆菌噬菌体—单链噬菌体载体。
可插入外源DNA而不影响噬菌体增殖。
M13感染细菌后呈双链复制型(RF)DNA。
允许包装大于病毒单位长度的外源DNA;感染细菌后复制环状DNA经包装形成噬菌体颗粒,分泌到细胞外而不溶菌。