函数信号发生器和任意波形发生器对比

合集下载

函数与任意波发生器原理及使用精品文档

函数与任意波发生器原理及使用精品文档

函数与任意波发生器原理及使用精品文档一、函数与任意波发生器的原理信号发生器的核心部分是一个数字模拟转换器(DAC),它能够将数字信号转换为模拟电压信号。

通过改变DAC的输出电压,可以改变信号的幅值。

同时,通过改变DAC的采样率和相位,可以改变信号的频率和相位。

函数与任意波发生器不同于传统的信号发生器,它能够生成任意形状的波形。

这是通过在DAC输出之前加入一个波形存储器来实现的。

波形存储器中存储了一系列的采样值,这些采样值组成了特定的波形。

通过改变波形存储器中的采样值,可以生成各种不同的波形,如正弦波、方波、三角波、锯齿波等。

二、函数与任意波发生器的使用方法1.连接和设置首先,将函数与任意波发生器连接到待测试的电子设备上。

需要注意的是,输出信号的频率和幅值应该与待测试设备的要求相匹配。

然后,打开函数与任意波发生器的电源,并打开数字控制器。

接下来,通过数字控制器设置所需的波形类型、频率、幅值和相位等参数。

通常,函数与任意波发生器都提供了一个用户界面,通过旋钮或按钮可以方便地进行设置。

2.选择波形类型3.设置频率和相位设置所需的输出频率和相位。

函数与任意波发生器通常支持广泛的频率范围,并提供了高精度的频率调节功能。

相位是指波形的起始位置,通过调节相位可以实现波形的移动和延迟。

4.调整幅值和偏置根据测试需求,设置所需的波形幅值和偏置。

波形幅值是指波形的峰峰值或峰值,可以通过改变函数与任意波发生器的输出电压范围来实现。

偏置是指波形的直流分量,可以通过改变函数与任意波发生器的偏置电压来实现。

5.输出信号设置完所有参数后,通过函数与任意波发生器的输出端口连接到待测试设备上。

然后,启动输出信号。

函数与任意波发生器将按照所设置的波形类型、频率和幅值等参数产生相应的信号。

三、函数与任意波发生器的注意事项1.避免输出过载在设置波形幅值时,要注意不要超出函数与任意波发生器的输出能力。

如果输出信号过载,会导致失真和不稳定的波形。

任意波形发生器介绍

任意波形发生器介绍

1、什么是任意波形发生器,与函数发生器的区别,如何产生任意波形信号,“任意”如何理解2、任意波形发生器的基本原理答:以DDS技术为基础,通过改变DDS中的查找表的数据,来实现任意波形。

根据所采用DDS的结构不同,采用DDFS结构的叫做函数/任意波形发生器,以Agilent的33250和Tektronix的AFG3000系列为典型代表,采用DDWS结构的叫做任意波形发生器,以Tektronix的AWG5000和AWG7000系列为代表3、任意波形发生器的形式答:大体上分为两种——台式仪器和模块式仪器,台式仪器如Agilent的33250,33120,tektronix的AFG和AWG系列等,模块化仪器包括VXI、PXI、cPCI、LXI(部分LXI模块也提供键盘、显示,可划归为台式仪器)、USB接口模块仪器等4、任意波形发生器的结构,每部分的作用,完成的功能,以及相应的对外接口信号?答:主要包括CPU模块、任意波形合成模块、模拟通道、电源四大组成部分1)CPU模块a)主控制器(包括单片机、ARM嵌入式处理器、PC机等,有板载CPU和非板载CPU之分,如台式仪器、VXI模块是板载CPU,而PXI模块是非板载CPU)b)键盘模块(台式仪器所特有,包括功能键、数字键以及飞梭)c)程控接口模块(一般为台式仪器特有,包括USB,LAN,GPIB,RS232等)d)显示模块(一般为台式仪器特有,有些模块化仪器也提供VGA接口,支持外接显示器的功能)2)任意波形合成模块a)时钟发生模块●在参考时钟(一般为10MHz,其准确度决定了采样时钟及输出频率的准确度)的作用下,产生波形DAC模块所需的采样时钟。

如果为DDFS架构,采样时钟为固定频率,如果为DDWS架构,采样时钟为可变频率。

●提供外部参考时钟和内部参考时钟的切换功能(有两种方法,一种是参考时钟内外源自动切换,当有外部参考时钟接入时,自动切换到外部参考时钟;一种是手动切换,并且当外部参考时钟超过一定范围时,自动切换到内部参考时钟)●提供内/外部采样时钟的切换功能(不是所有的仪器都有,一般在高档仪器上才有)●提供仪器内部所需的一些时钟信号,如调制模块中ADC所需的采样时钟、触发模块中所需的触发信号产生器的计数时钟等思考:1、为什么要提供外部采样时钟,作用是什么?2、如何用参考时钟产生采样时钟?方法有哪些?b)地址产生模块——产生波形存储器模块所需的寻址信号●累加器模块——对送入的频率控制字进行累加操作,产生相应的寻址信号;累加器模块应提供清零信号输入,通过控制清零信号,可产生Burst调制波形输出●相位加法器模块●频率控制字生成模块——产生累加器所需的频率控制字,可实现调频、扫频、FSK调制●相位控制字生成模块——产生相位加法器所需的相位控制字,可实现调相、PSK调制●地址位数选择模块——选择输出地址的位数,一般来说,当任意波形发生器工作在函数模式时,地址位数选择为16位,有利于在保证波形质量的前提下提供切换速度;当工作在任意波形模式时,将提供最大的地址输出能力(视存储容量而定)c)存储器模块●存储器(目前一般采用ZBT SRAM,也有采用DDR SDRAM,QDRSRAM或异步SRAM的),根据所要实现的采样率不同,也分为单片存储器和多存储器并行两种模式,具体参见多存储器并行任意波形合成技术●存储器管理模块——负责管理存储器地址线、数据线、读、写、片选等,注意任意波形的工作过程,1、由CPU将所需的波形数据写入波形存储器中,此时,存储器的地址、数据、写、片选都由CPU提供,读信号无效;2、地址产生模块提供地址信号连续读取存储器的波形数据,此时,存储器的地址由地址产生模块提供,读、片选均应一直使能,写信号无效,读取的数据送数据合成模块d)数据合成模块●对存储器传入的波形数据进行处理后传送给波形DAC模块●处理包括调幅、数据插值(并串转换)等e)波形DAC模块f)调制模块●产生内部调制时所需的调制波形数据(调频、调幅、调相和SWEEP需要)●对外部调制源送入的调制信号通过ADC进行采样,采样后产生相应的调制波形数据●进行调制源选择●产生Burst调制所需的清零控制信号g)触发模块●产生内部触发信号●对触发信号进行触发极性选择●进行触发源选择h)同步Marker模块●产生同步Marker数字信号●对产生的Marker数字信号进行幅度控制等i)方波产生模块●在Stratix3及其以上的器件中实现,通过数字的方法产生占空比精密可调的方波信号、脉宽精密可调的脉冲信号以及PWM调制波形信号3)模拟通道模块(根据模拟输出的指标不同而略有区别)a)滤波器模块b)脉冲沿调整模块c)幅度控制模块d)衰减模块e)放大模块f)加偏模块一、任意波形发生器的接口及指标1、主输出:波形信号的输出主要指标包括:工作模式:连续、触发、门控、序列输出特性:输出样式:单端或差分输出阻抗:50欧姆或75欧姆输出幅度范围、分辨力、准确度输出偏移范围、分辨力、准确度输出波形种类、频率范围、频率准确度输出正弦信号谐波失真、非谐波失真、SFDR、相位噪声方波上升、下降时间、占空比、过冲调制波形种类以及调制的参数(具体在调制部分再介绍)DAC垂直分辨位数存储深度2、时钟电路部分(通道共用)(1)内部参考输出:输出仪器内部晶振产生的参考时钟信号,该信号可用于同步多台任意波形发生器,或同步任意波形发生器和其它仪器。

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼

国产函数、任意波形发生器大比拼典型的DDS原理框图如图所示。

其实质是数模转换,仍然要遵循奈奎斯特采样定理。

即输出的频率不超过采样率的一半,事实上商用的采用DDS技术的函数/任意波形发生器由于受到低通滤波器设计以及杂散分布的影响限制,输出波形的最高频率均不超过采样率的40%。

相对于直接模拟频率合成,锁相频率合成,其优点如下:·频率分辨率高。

若时钟频率不变,DDS频率分辨率仅由相位累加器位数来决定,也就是理论上的值越大,就可以得到足够高的频率分辨率。

目前,大多数DDS的分辨率在1Hz数量级,许多都小于1mHz甚至更小,这是其他频率合成器很难做到的。

·工作频带较宽。

根据Nyquist定律,只要输出信号的最高频率分辨率分量小于或等于fclk/2就可以实现。

而实际当中由于受到低通滤波器设计以及杂散分布的影响限制,仅能做到40% fclk左右。

·超高速频率转换时间。

DDS是一个开环系统,无任何反馈环节,这种结构使得DDS的频率转换时间极短。

DDS 的频率转换时间可达到纳秒数量级,比使用其它的频率合成方法都要小几个数量级。

·相位变化连续。

改变DDS输出频率,实际上改变的是每一个时钟周期的相位增量,相位函数的曲线是连续的,只是在改变频率的瞬间其频率发生了突变,因而保持了信号相位的连续性。

·具有任意输出波形的能力。

只要ROM中所存的幅值满足并且严格遵守Nyquist定律,即可得到输出波形。

例如三角波、锯齿波和矩形波。

·具有调制能力。

由于DDS是相位控制系统,这样也就有利于各种调制功能。

同时DDS合成技术也有一些固有的缺点,如下:·杂散分量丰富。

这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。

因为在实际的DDS电路中,为了达到足够小的频率分辨率,通常将相位累加器的位数取大。

但受体积和成本的限制,即使采用先进的存储方法,ROM的容量都远小于此,因此在对ROM寻址时,只是用相位累加器的高位去寻址,这样不可避免地引起误差,即相位舍位误差。

电路实验报告 函数信号发生器

电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。

在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。

信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。

信号发生器用途广泛, 有多种测试和校准功能。

本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。

三种波形的幅值及方波的占空比均在一定范围内可调。

报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。

二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。

3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。

(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。

2.三种输出波形的输出阻抗小于100Ω。

3.用PROTEL软件绘制完整的印制电路板图(PCB)。

(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。

2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。

四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。

波形发生器

波形发生器

波形发生器波形发生器是一种能够产生各种形式波形的仪器,通常用于电子测试与测量、通信等领域。

它能够产生各种波形,如正弦波、方波、脉冲波、锯齿波、三角波等,并可调节波形的频率、幅度、相位等参数。

在电子测试与测量中,波形发生器是一种非常重要的仪器。

本文将从波形发生器的原理、种类、应用等角度进行介绍。

一、波形发生器的原理波形发生器的原理是利用放大器和反馈电路实现的。

当输入稳定的DC偏置电压时,电路输出一个稳定的幅值和频率的信号波形。

根据不同的反馈电路,波形发生器的输出波形也会不同。

例如,正弦波的反馈路径为RC电路,三角波的反馈路径为反向绝缘栅极场效应晶体管,方波的反馈路径则为比较器等等。

二、波形发生器的种类1. 标准波形发生器标准波形发生器是目前最常见的一种波形发生器。

它能够产生多种波形,例如正弦波、方波、三角波、脉冲波等,并可调节波形的频率、幅度和相位等参数。

2. 函数波形发生器函数波形发生器不仅能够产生标准波形,还能够产生各种复杂的波形。

它通常配备了一个键盘和一块屏幕,可以通过键盘输入各种复杂的波形公式,通过程序控制产生相应的波形。

3. 数字波形发生器数字波形发生器是一种数模混合波形发生器,它采用数字方式产生波形,并将数字信号转换成模拟信号输出。

与传统的模拟波形发生器相比,数字波形发生器具有高精度、高稳定性、高精度等优点。

三、波形发生器的应用波形发生器广泛应用于电子测试与测量、通信、自动化等领域。

以下是波形发生器的主要应用:1. 信号发生器:波形发生器能够产生各种形式的信号波形,如正弦波、方波、脉冲波、锯齿波、三角波等。

这些信号波形可以用于信号生成器,如用于测试、调制解调等。

2. 测试系统:波形发生器可以与其他测量仪器一起组成测试系统。

例如,它可以与示波器或频谱仪等一起使用,用于测试和分析信号波形的性质和特征。

3. 通信系统:波形发生器能够产生各种信号波形,如数字信号、模拟信号、调制信号等,这些信号波形可以用于通信系统中。

信号发生器的分类

信号发生器的分类

信号发生器的分类信号发生器是电子测试仪器中常用的一种设备,用于产生不同频率、幅度和波形的电信号。

根据其功能和应用领域的不同,信号发生器可以分为多种类型。

本文将对几种常见的信号发生器进行分类和介绍。

一、函数发生器(Function Generator)函数发生器是最常见的一种信号发生器,它可以产生多种波形信号,如正弦波、方波、锯齿波和三角波等。

函数发生器可以根据用户的需求,通过调节频率、幅度和相位等参数,生成不同形态的信号。

它广泛应用于电子实验、通信测试和教学等领域。

二、任意波形发生器(Arbitrary Waveform Generator)任意波形发生器是一种高级的信号发生器,可以产生任意复杂的波形信号。

与函数发生器相比,任意波形发生器可以通过用户提供的采样点数据,生成非周期性的任意波形信号。

任意波形发生器在研发新产品、模拟真实信号和测试复杂系统等方面具有重要应用。

三、脉冲发生器(Pulse Generator)脉冲发生器是专门用于产生脉冲信号的设备。

脉冲发生器可以产生具有特定频率、宽度和占空比的脉冲信号,常用于数字电路测试、脉冲测量和脉冲信号调试等领域。

脉冲发生器还可以模拟各种脉冲干扰,用于电磁兼容性测试和抗干扰性能评估。

四、频率计(Frequency Counter)频率计是一种用于测量信号频率的设备,通常与信号发生器配合使用。

频率计可以精确地测量输入信号的频率,并显示在数码显示屏上。

频率计广泛应用于科研实验、无线通信、广播电视等领域,常用于校准信号发生器和检测频率稳定性。

五、噪声发生器(Noise Generator)噪声发生器是一种用于产生随机噪声信号的设备。

噪声发生器可以产生不同类型的噪声信号,如白噪声、粉噪声和高斯噪声等。

噪声发生器在通信系统测试、声学实验和信号处理等领域具有重要应用,可以模拟真实环境中的噪声情况。

六、微波信号发生器(Microwave Signal Generator)微波信号发生器是专门用于产生微波频率信号的设备。

函数信号发生器

函数信号发生器

江苏联合职业技术学院江苏省惠山中等专业学校(办学点)(论文) 系专业电子信息工程技术年级 09 班级 31 姓名周烨静学号 095223103 指导教师王晓琳2013年 3 月25 日摘要本文介绍一种用AT89C51单片机构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。

在介绍DAC0832芯片特性的基础上,论述了采用DAC0832芯片设计数字函数信号发生器的原理以及整机的结构设计。

对其振荡频率控制、信号输出幅度控制以及频率和幅度数显的实现作了较详细的论述。

该函数信号发生器可输出三角波,方波和正弦波文章给出了源代码,通过仿真测试,其性能指标达到了设计要求【关键字】单片机;DAC;函数信号发生器;形调整目录1 绪论1.1 函数信号发生器1.1.1 函数信号发生器概述信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。

众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。

同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波1.1.2 函数信号发生器的分类信号发生器应用广泛,种类繁多,性能各异,分类也不尽一致。

按照频率范围分类可以分为:超低频信号发生器、低频信号发生器、视频信号发生器、高频波形发生器、甚高频波形发生器和超高频信号发生器。

示波器函数发生器的介绍

示波器函数发生器的介绍
➢ ch1 menu 设置
需要同时观察的输入信号交、直流情况,耦合选“直流”;只观 察的输入信号交流情况,耦合选“交流”
数字示波器的使用方法
波形显示
手动设置(以信号从CH1通道输入为例)
➢ 调节VOLTS/DIV 、SEC/DIV 、LEVEL旋 钮,使信号波形稳定显示合适大小
数字示波器的使用方法
示波器的垂直通道—探头
(a)过补偿的探头 (b)欠补偿的探头 (c)正确补偿的探头
示波器的垂直通道—带宽
• 示波器带宽决定了示波器能观测多高 频率和多宽频带的信号;
• 在选择示波器的时候,应该选择大于 最高正弦信号频率3~5倍的带宽。
• 我们电子技术实验室的模拟示波器的 带宽是20MHz。
数字示波器的使用方法
从广义上分
任意函数发生器(AFG) 任意发生器
任意波形发生器(AWG)
逻辑信号源
脉冲信号发生器 码型发生器
信号源的分类
射频信号发生器
按照输出信号的类型分
扫描信号发生器 频率合成器
噪声信号发生器
按照使用频段分
低频信号源 高频信号源
模拟式函数发生器
作用是减小输

比较器
出电阻和增加 负载驱动能力。
要 三角波发生器
此扫时描扫线描就时会基立线即将回出到现显示 在屏显中示央屏,的而正被中发间现。
示波器的垂直通道—耦合方式
3V
在需要观测信号直流电
1V
直 流 电 平 平或极低频率分量时,
0
2V 0 -1V
t t
必需号须要频这的直置观率是信流当低由的D号电“察又输, 于影C,平入脉电响直 不D耦含信宽容,C合流 很”号很器使挡分 低频宽充信;量 时率时放号当, (很,电的不信 一

信号源的基本介绍

信号源的基本介绍

信号源的基本介绍信号源发展到今天,它的涵盖范围已非常广。

我们可以按照频率范围对它进行分类:超低频(0.1m~1kHz)、音频(20Hz~20kHz)、视频(20kHz~10MHz)、射频及高频(200k~3000MHz)、微波(≥3000MHz)、光波信号源等;按工作原理可以分为:LC 源、锁相源、合成源等。

经常会看到信号源型号前面有几个字母,你知道他们代表什么意思吗?这些字母是有说头的,我来解释解释。

音频信号源(AG)、函数信号源(FG)、功率函数发生器(PFG)、脉冲信号源(PG)、任意函数发生器(AFG)、任意波形发生器(AWG)、标准高频信号源(SG)、射频信号源(RG)、电视信号发生器(TVSG)、噪声信号源(Noise)、调制信号发生器(MSG)、数字信号源(DG)。

一般来说,任意波形发生器(AFG)可提供12 种标准函数波形、脉冲波形、调制波形、扫频和突发信号等,同时可快速编辑任意波形,在中档信号源中极具代表性,是一种革命性的数字产品。

它的基本技术指标与其他的信号源指标相同,但也有特殊的要求。

下面就任意波形发生器(AFG)相关性能指标进行说明。

带宽(Fw):带宽是所有测量交流仪器必须考虑的技术指标,指仪器输出或能测量的信号幅度衰减-3dB 处的最高频率。

输出幅度(Vpp):信号源输出信号的电压范围,一般表示为峰- 峰值。

输出通道(CH):信号源对外界输出的通道数量。

垂直分辨率(DAC):垂直分辨率与仪器数模转换的二进制字长度(单位:位)有关,位越多,分辨率越高。

数模转换的垂直分辨率决定复现波形的幅度精度和失真。

分辨率不足的数模转换会导致量化误差,导致波形生成不理想。

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比

函数信号发生器和任意波形发生器对比1、函数信号发生器函数发生器是使用最广的通用信号源信号发生器,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。

函数波形发生器在设计上分为模拟式和数字合成式。

众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。

2、任意波形发生器任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。

在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。

任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。

由于任意波形发生往往依赖计算机通讯输出波形数据。

在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真实验。

另外,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比,或通过随机接口通讯传输到计算机作更进一步分析与处理。

有些任意波形发生器有波形下载功能,在作一些麻烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。

泰克推出的AFG3000系列三合一信号源,可以完成以上提到的功能,并且在波形输出的精度、稳定性等方面都有较大提高,是走在行业前列的新一代任意波发生器。

信号源的主要技术指标传统函数发生器的主要指标和新近研发的任意波形发生器的主要指标有一些不同,我们这里分开介绍。

信号发生器使用 (2)

信号发生器使用 (2)

信号发生器使用一、信号发生器信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

能够产生多种波形的信号发生器,如产生三角波、锯齿波、矩形波(含方波)、正弦波的信号发生器称为函数信号发生器信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。

所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。

随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。

信号发生信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。

所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。

随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。

二、信号发生器的分类信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。

由于信号源信号的特征参数均可人为设定,所以可以方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验特别有用。

在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。

例如,用信号发生器产生一个频率为1kHz 的正弦波信号,输入到一个被测的信号处理电路(功能为正弦波输入、方波输出),在被测电路输出端可以用示波器检验是否有符合设计要求的方波输出。

高精度的信号发生器在计量和校准领域也可以作为标准信号源(参考源),待校准仪器以参考源为标准进行调校。

函数信号发生器..

函数信号发生器..

8、计数、复位开关:按计数键,LED
显示开始计数,按复位键,LED显示 全为0。 9、计数/频率端口:计数、外测频率 输入端口。 10、外测频开关:此开关按入LED显 示窗显示外测信号频率或计数值。 11、电平调节:按入电平调节开关, 电平指示灯亮,此时调节电平调节旋 钮,可改变直流偏置电平。
12、幅度调节旋钮(AMPLITUDE):
顺时针调节此旋钮,增大电压输出幅度。 逆时针调节此旋钮可减小电压输出幅度。 13、电压输出端口(VOLTAGE OUT): 电压输出由此端口输出。 14、TTL/CMOS输出端口:由此端口输 出TTL/CMOS信号。
15、VCF:由此端口输入电压控制频率
7、为了观察准确的函数波形,
建议示波器带宽应高于该仪器上 限频率的二倍。 8、如仪器不能正常工作,重新 开机检查操作步骤
学习到此为止!!!
4、斜波产生
(1)、波形开关置“三角波”。 (2)、占空比开关按入指示灯亮。 (3)、调节占空比旋钮,三角波将变成 斜波。
5、外测频率
(1)、按入外测开关,外测频指示灯 亮。 (2)、外测信号由计数/频率输入端输 入。 (3)、选择适当的频率范围,由高量 程向低量程选择合适的有效数,确保测 量精度(注意:当有溢出指示时,请提 高一档量程)。
5、内置线性/对数扫频功能。 6、数字微调频率功能,是测量更 精确。 7、50HZ正弦波输出,方便于教学 实验。 8、外接调频功能。 9、VCF压控输入。 10、所有端口有短路和抗输入电压 保护功能。
幅度显示
1、显示位数:三位; 2、显示单位:VP-P或mVp-p ; 3、显示误差:±15%±1个字; 4、负载为1MΩ时:直读; 5、负载电阻为50Ω:直读÷2; 6、分辨率:1mVp-p(40dB)

任意波形信号发生器

任意波形信号发生器

种形式,一般将前者称为任意波形信号发生器(AWG),
将后者称为任意函数波形发生器(AFG)。
③ 通常所说的函数/任意波形信号发生器则兼具函数信号发
生器与任意波形信号发生器的功能。
电子测量与仪器(第3版) 2.6 任意波形信号发生器
电子工业出版社
2.6.1 任意波形信号发生器的电路结构形式
④ DDFS波形数据表中给出的是波形的相位与幅度关系表。
储的最大样点数。该容量越大,存储的样点数越多,表现波
形随时间变化的内容越丰富。
4. 采样率
定义:从D/A变换器从波形存储器中读取数据的速率。
电子测量与仪器(第3版)
电子工业出版社
2.6.3 任意波形信号发生器的主要技术指标
5. 输出通道数
任意波形信号发生器可以单通道输出,也可以双通道或
多通道输出,还可以模拟通道与数字通道输出。
电子测量与仪器(第3版) 2.6.2 建立任意波形数据表的方法
电子工业出版社
2. 数学方程法
对能用数学方程描述的波形,先将其方程(算法)存入
计算机中,在使用时,输入方程中的有关参量,计算机经过
运算后提供波形数据。也可用多个表达式分段链接成一个组
合的波形。
3. 复制法
将其他仪器,如数字存储示波器等获得的波形数据通过
故幅度分辨率一般为10位或略高。
电子测量与仪器(第3版)
电子工业出版社
2.6.3 任意波形信号发生器的主要技术指标
3. 任意波形长度或波形存储器容量
原因:因为任意波形信号发生器的波形实质上是由许多
样点拼凑出来的,样点多则可拼凑较长的波形,所以用样点
数来表示波形长度。
波形存储器容量又称为存储器深度,是指每个通道能存

任意波形发生器等同于仿真利器 任意波形发生器不等于函数信号发生器

任意波形发生器等同于仿真利器 任意波形发生器不等于函数信号发生器

任意波形发生器等同于仿真利器任意波形发生器不等于函数信号发生器对于波形发生器,很多朋友存在一定误解。

有诸多朋友无法分辨任意波形发生器和函数信号发生器,缘由在于大家对任意波形发生器缺乏正确理解。

本文将为大家介绍任意波形发生器和函数信号发生器,并阐明任意波形发生器是仿真实验的最佳仪器的原因,一起来了解下吧。

一、函数信号发生器信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。

众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。

谈及模拟式函数信号源,结构图如下:这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波。

而三角波是如何产生的,公式如下:换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。

同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下:当I1 =I2时,即可产生对称的三角波,如果I1 》》I2,此时即产生负斜率的锯齿波,同理I1 《《I2即产生正斜率锯齿波。

再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。

同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。

而在占空比调整上的设计有下列两种思路:1、频率(周期)不变,脉宽改变,其方法如下:改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。

任意波形发生器介绍

任意波形发生器介绍
(3)内部采样时钟输出
(4)外部采样时钟输入
时钟指标主要包括:
输出电平/幅度、频率、阻抗、准确度、分辨力
输入电平/幅度范围、频率、阻抗
时钟源
3、(1)同步/marker输出(通道独立)
输出频率范围、频率分辨力、频率准确度、阻抗、电平/幅度范围、电平
准确度、电平分辨力、输出阻抗
(2)外部触发输入(通道共用)
d)显示模块(一般为台式仪器特有,有些模块化仪器也提供VGA接口,
支持外接显示器的功能)
2)任意波形合成模块
a)时钟发生模块
在参考时钟(一般为10MHz,其准确度决定了采样时钟及输出频率 的准确度)的作用下,产生波形DAC模块所需的采样时钟。如果为
DDFS架构,采样时钟为固定频率,如果为DDWS架构,采样时钟 为可变频率。
f)加偏模块
一、任意波形发生器的接口及指标
1、主输出:波形信号的输出
主要指标包括:
工作模式:连续、触发、门控、序列
输出特性:
输出样式:单端或差分
输出阻抗:50欧姆或75欧姆
输出幅度范围、分辨力、准确度
输出偏移范围、分辨力、准确度
输出波形种类、频率范围、频率准确度
输出正弦信号谐波失真、非谐波失真、SFDR、相位噪声
产生内部调制时所需的调制波形数据(调频、调幅、调相和SWEEP
需要丿
对外部调制源送入的调制信号通过ADC进行采样,采样后产生相应
的调制波形数据
进行调制源选择
产生Burst调制所需的清零控制信号
g)触发模块
产生内部触发信号
对触发信号进行触发极性选择
进行触发源选择
h)同步Marker模块
产生同步Marker数字信号

电子测量仪器的分类

电子测量仪器的分类

电子测量仪器的分类
测量仪器是指用于检测或测量一个量,或为达到测量目的而供应的测量器具。

凡是利用电子技术构成的测量仪器,统称为电子测量仪器。

电子测量仪器种类许多,一般分为专用仪器和通用仪器。

一、其中通用电子仪器按其功能可分为以下几类:
1、信号发生器:用于供应测量的各种波形信号,如:LF、HF、脉冲、函数、扫频及噪声信号发生器;
图1 任意波形发生器
2、信号分析仪:用于观测、分析和记录各种电量的变化,包括时域、频域和数据域分析仪;
图2 数字示波器
图3 频谱仪
图4 规律分析仪
3、频率、时间及相位测量仪器:这类仪器包括各种频率计、相位计、以及各种时间、频率标准等;
4、网络特性测量仪:这类仪器有扫频仪、阻抗测量仪及网络分析仪等;
5、电子元器件测试仪:用于测量各种电子元器件的电参数及显示特性曲线等。

如:RLC测试仪、晶体管参数测试仪等。

6、电波特性测试仪:用于测量电波传播、电磁场强度及干扰强度等。

如:场强仪、测试接收机、干扰测量仪等。

帮助仪器:与上述各种仪器协作使用的仪器。

如:各种放大器、衰减器、滤波器、以及各种交直流稳压电源等。

二、电子测量仪器的功能(补充):
1、转换功能:电量(功率、电流、电阻)→电压;非电量→电量(电压);
2、信号处理与传输功能:信号调理、模/数、抗干扰、压缩、有线或无线传输;
3、显示功能:指针在仪表度盘;数码管、液晶或阴极射线管显示测量结果。

电子行业电子测量简介

电子行业电子测量简介

电子行业电子测量简介引言电子行业是现代工业的重要组成部分,涵盖了广泛的应用领域,例如电子产品制造、通信技术、自动化控制等。

在电子行业中,电子测量是一个非常重要的环节,它可以确保电子设备和电子系统的性能和质量符合规格要求。

本文将简要介绍电子测量的概念、常见的电子测量仪器以及其应用。

电子测量概述电子测量是指对电子器件、电子设备或电子系统的性能参数进行定量测量和评估的过程。

通过电子测量,我们可以准确地了解电子设备的各种性能指标,如电压、电流、功率、频率、阻抗等。

这些测量结果对于电子设备的设计、测试和维护都具有重要意义。

常见的电子测量仪器示波器示波器是一种常见且功能强大的电子测量仪器。

它可以用来观察和测量电信号的变化情况。

示波器通常通过将电信号转换为图像的形式来展示测量结果,以便用户更直观地观察和分析。

示波器有很多种类,例如模拟示波器和数字示波器。

模拟示波器基于模拟电路工作原理,能够准确地测量高频信号的波形和幅度。

数字示波器则是基于数字化技术,能够对信号进行更精确的采样和分析,同时还具有更多的功能和特性。

信号发生器信号发生器是用于产生各种类型和频率的电信号的仪器。

它可以模拟真实世界中的各种信号,如正弦波、方波、脉冲信号等。

信号发生器通常被用于电子设备的测试和校准,以及各种实验和研究工作中。

信号发生器也有多种类型,例如函数信号发生器、任意波形发生器和频率计。

函数信号发生器能够产生各种基本的周期性波形信号。

任意波形发生器则可以产生用户指定的任意波形信号。

频率计则用于测量信号的频率。

多用表多用表是一种多功能的电子测量仪器,集合了电压、电流、电阻等多种测量功能于一身。

多用表可以用来测量直流和交流电压、电流和阻抗,同时还可以进行连续测试和临界测试等。

多用表通常会有多个测量模式,例如直流电压模式、交流电压模式、直流电流模式、交流电流模式和电阻模式等。

用户可以根据需要选择不同的测量模式进行测量操作。

电子测量的应用电子产品制造在电子产品制造过程中,电子测量起着至关重要的作用。

任意波形函数信号发生器 任意波形长度

任意波形函数信号发生器 任意波形长度

任意波形函数信号发生器任意波形长度
任意波形函数信号发生器(也称为任意波形发生器或AWG)是一种设备,
可以生成多种不同形状的波形,包括正弦波、方波、三角波、锯齿波等。

这些波形可以用于各种不同的应用,例如测试和测量、信号处理、电子通信等。

关于任意波形长度的问题,这主要取决于所使用的设备和技术。

一般来说,任意波形函数信号发生器的输出信号长度是有限的,这通常由设备的内存大小或可用的数据存储容量决定。

一些高端的任意波形函数信号发生器可能具有更大的内存和数据存储容量,因此可以生成更长的波形。

对于需要生成非常长波形的情况,可能需要使用多个设备或通过其他方式解决,例如将波形分成多个部分并在多个设备上生成,或者使用具有更大内存和数据存储容量的设备。

以上内容仅供参考,如需更准确的信息,建议查阅任意波形函数信号发生器的产品说明或向相关厂商咨询。

任意信号发生器

任意信号发生器

• 12、CHB界面:B通道显示界面,显示B通道输出时的信息; • 13、功能信息:菜单键显示信息界面,显示菜单键的信息; • 14、Frequency:频率显示界面,显示输出的频率; • 15、Amplitude:幅值显示界面,显示输出的幅值; • 16、Harmonic:谐波失真界面,显示输出信号的谐波失真情
路和系统的频率特性、非线性 失真、增益及灵敏度等。按频 率覆盖范围,可分为低频信号 发生器、高频信号发生器和微 波信号发生器。
脉冲信号发生器
项目3-3 信号发生器
一、信号发生器的常见种类
(三)脉冲信号发生器 产生宽度、幅度和重
复频率可调的矩形脉冲,可 用以测试线性系统的瞬态响 应,或用模拟信号来测试雷 达、多路通信和其他脉冲数 字系统的性能。
背面
项目3-3 信号发生器
二、 YB32010任意波形发生器的面板结构
18.外部触发 19.调制信号 输入 20.通讯接口 21.同步输出 22.电源插座
项目3-3 信号发生器
四、任意波形信号发生器的使用注意事项
1. 信号发生器输出探头的黑夹子和红夹子严禁短接。 2. 信号发生器的输出电压指的是带负载时的电压,并且更改一次频率都 需要调整一次输出电压。调节信号发生器输出频率时,应先选择频率范 围,再进行频率细调。 3. 使用信号发生器时要注意输出的信号要由小到大,缓慢调节。每次变 换频率及波形时,要把输出信号关到最小处。 4.信号发生器设有“电源指示”,使用时指示灯不亮,应更换电池后再 使用。
函数信号发生器
项目3-3 信号发生器
一、信号发生器的常见种类
(一)函数发生器
又称波形发生器,能产生某些特定的周期 性时间函数波形信号,如正弦波、方波、三角 波、锯齿波和脉冲波等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数信号发生器和任意波形发生器对比
1、函数信号发生器
函数发生器是使用最广的通用信号源信号发生器,提供正弦波、锯齿波、方波、脉冲波等波形,有的还同时具有调制和扫描功能。

函数波形发生器在设计上分为模拟式和数字合成式。

众所周知,数字合成式函数信号源(DDS)无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟式,其锁相环(PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phaseJitter)及频率漂移均能达到相当稳定的状态,但数字式信号源中,数字电路与模拟电路之间的干扰始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器,如今市场上的大部分函数信号发生器均为DDS信号源。

2、任意波形发生器
任意波形发生器,是一种特殊的信号源,不仅具有一般信号源波形生成能力,而且可以仿真实际电路测试中需要的任意波形。

在我们实际的电路的运行中,由于各种干扰和响应的存在,实际电路往往存在各种缺陷信号和瞬变信号,如果在设计之初没有考虑这些情况,有的将会产生灾难性后果。

任意波发生器可以帮您完成实验,仿真实际电路,对您的设计进行全面的测试。

由于任意波形发生往往依赖计算机通讯输出波形数据。

在计算机传输中,通过专用的波形编辑软件生成波形,有利于扩充仪器的能力,更进一步仿真实验。

另外,内置一定数量的非易失性存储器,随机存取编辑波形,有利于参考对比,或通过随机接口通讯传输到计算机作更进一步分析与处理。

有些任意波形发生器有波形下载功能,在作一些麻烦费用高或风险性大的实验时,通过数字示波器等仪器把波形实时记录下来,然后通过计算机接口传输到信号源,直接下载到设计电路,更进一步实验验证。

泰克推出的AFG3000系列三合一信号源,可以完成以上提到的功能,并且在波形输出的精度、稳定性等方面都有较大提高,是走在行业前列的新一代任意波发生器。

信号源的主要技术指标
传统函数发生器的主要指标和新近研发的任意波形发生器的主要指标有一些不同,我们这里分开介绍。

(一)普通函数发生器的主要指标:
带宽(输出频率范围)
仪器的带宽是指模拟带宽,与采样速率等无关,信号源的带宽是指信号的输出频率的范围,并且一般来讲信号源输出的正弦波和方波的频率范围不一致,例如,某函数发生器产生正弦波的频率范围是1mHz~240MHz,而输出方波的频率范围是1mHz~120MHz。

频率(定时)分辨率
频率分辨率,即最小可调频率分辨率,也就是创建波形时可以使用的最小时间增量。

频率准确度
信号源显示的频率值与真值之间的偏差,通常用相对误差表示,低档信号源的频率准确度只有1%,而采用内部高稳定晶体振荡器的频率准确度可以达到108~1010。

例如,某信号源的频率准确度为1ppm。

频率稳定度
频率稳定度是指外界环境不变的情况下,在规定时间内,信号发生器输出频率相对于设置读数的偏差值的大小。

频率稳定度一般分为长期频率稳定度(长稳)和短期频率稳定度(短稳)。

其中,短期频率稳定度是指经过预热后,15分钟内,信号频率所发生的最大变化;长期频率稳定度是指信号源经过预热时间后,信号频率在任意三小时内所发生的最大变化。

输出阻抗
信号源的输出阻抗是指从输出端看去,信号源的等效阻抗。

例如,低频信号发生器的输出阻抗通常为600Ω,高频信号发生器通常只有50Ω,电视信号发生器通常为75Ω。

输出电平范围
输出幅度一般由电压或者分贝表示,指输出信号幅度的有效范围。

另外,信号发生器的输出幅度读数定义为输出阻抗匹配的条件下,所以必须注意输出阻抗匹配的问题。

(二)任意波发生器的主要指标:
取样(或采样)速率
取样速率通常用每秒兆样点或者千兆样点表示,表明了仪器可以运行的最大时钟或取样速率。

取样速率影响着主要输出信号的频率和保真度。

奈奎斯特取样定理规定,取样频率或时钟速率必须至少是生成的信号中最高频谱成分的两倍,以保证精确的复现。

存储深度(记录长度)
存储深度是指用来记录波形的数据点数,它决定着波形数据的最大样点数量(相当于时间)。

每个波形样点占用一个存储器位置,每个位置等于当前时钟频率下取样间隔时间。

任意波形发生器的带宽是由任意波发生器的取样速率和存储深度决定的。

垂直(幅度)分辨率
信号源的垂直分辨率是指信号源中可以编程的最小电压增量,也就是仪器数模转换器的二进制字宽度,单位为位,它规定了波形的幅度精度。

在混和信号源中,垂直分辨率与仪器DAC的二进制字长度有关,位越多,分辨率就越高。

信号源的主要功能
一台功能较强的信号源,还有信号调制、频率扫描、TTL同步输出、参考时钟输出、Burst及频率计等功能:
信号调制功能:信号调制是指被调制信号中,幅度、相位或频率变化把低频信息嵌入到高频的载波信号中,得到的信号可以传送从语音、到数据、到视频的任何信号。

信号调制可分为模拟调制和数字调制两种,其中模拟调制,如幅度调制(AM)和频率调制(FM)最常用于广播通信中,而数字调制基于两种状态,允许信号表示二进制数据。

频率扫描功能:测量电子设备的频率特点要求“扫描”正弦波,其会在一段时间内改变频率。

一般分成线性(Lin)扫频及对数(Log)扫频;高级信号发生器支持扫频功能,而且可以选择开始频率、保持频率、停止频率和相关时间,有些信号发生器还提供与扫频同步的触发信号。

TTL同步输出功能:一般信号源输出的TTL同步信号是方波经三极管电路转成的,电平为0(Low)、3.6~5V(High)。

主要用来同步其他信号源,或其他类型的仪器,以保证触发同步。

参考时钟输出功能:TTL同步输出只能保证触发同步,要想使信号源完全同步就要让时钟同步,参考时钟输出就是为了让两台信号源的时钟同步而设计的,一般参考时钟输出频率较稳定的方波信号。

Burst功能:类似OneShot功能,输入一个TTL信号,则可让信号源产生一个周期的信号输出,设计方式是在没有信号输入时,输出接地即可。

频率计:除市场上简易的刻度盘显示之外,无论是LED数码管或LCD液晶显示频率,其与频率计电路是重叠的。

来源:/shownews.asp?id=468。

相关文档
最新文档